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Lecture 14
February 21, Part A

Finding a root of a function f : R → R, i.e., to say a root of the equation

f(x) = 0

is a common problem in applied mathematics. We will discuss over how to numerically solve the equation
for functions with a closed form, along with some other conditions.
Iteration Methods

All the numerical methods which we will use for approximating the root of the equation will be iteration
methods. In iteration methods we compute a sequence of increasingly accurate estimate of the root of
the equation f(x) = 0.

14.1 Bisection Method
Suppose we have a function f : R → R, such that

• f ∈ C[a, b], i.e., f in continuous on the closed set [a, b].
• f(a)f(b) < 0, i.e., f(a) and f(b) have opposite signs.

Then note that from Intermediate Value Theorem1, we have, there exists at least one α ∈ [a, b] such
that f(α) = 0. In this setup we can use bisection method to find a root to the equation f(x) = 0, to
our precise degree of accuracy. We will now design an algorithm for the bisection method.

14.1.1 Algorithm for Bisection Method
Our function will take 4 inputs:

• The continuous function f .
• Points a and b in the domain of f such that a < b, and we have f(a)f(b) < 0.
• An error tolerance level ε > 0. The error tolerance level will indicate our function when to stop

the iteration process.
The bisection method will consist of the following steps:

Step 1. Define c = 1
2 (a + b).

Step 2. If b − c ≤ ε, then terminate the iteration process and return c as the root.
Step 3. If sgn(f(b)) · sgn(f(c)) ≤ 0, then set a = c, else set b = c, and return to Step 1.

1Intermediate Value Theorem: Let f : [a, b] → R, be a continuous function, and let η be any real number between
f(a) and f(b), then there exists a c ∈ [a, b] such that f(c) = η.
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Figure 14.1.1: Bisection Method

Now, we will show that if f is a continuous function on the set [a, b], where a and b are points such that
f(a)f(b) < 0, then bisection method is guaranteed to converge to a root of f .

14.1.2 The Bisection Method is guaranteed to converge to a root
Let an, bn and cn be the nth computed values of a, b and c respectively and we have a1 = a, b1 = b.
And let α be the true root of the function f , i.e.,

f(α) = 0

Then observe that
bn+1 − an+1 = 1

2(bn − an), ∀ n ∈ N (14.1.1)

and hence from equation (14.1.1), and using induction we easily get that

bn − an = 1
2n−1 (b − a), ∀ n ∈ N (14.1.2)

Now at the nth iteration, we will have, cn = 1
2 (an +bn), and since throughout the process we have either

f(an)f(cn) ≤ 0 or f(cn)f(bn) ≤ 0, thus α either lies in the interval [an, cn] or in the interval [cn, bn],
in either case, we since

cn − an = bn − cn = 1
2(bn − an)

we get that
|α − cn| ≤ 1

2(bn − an)

and then using equation (14.1.2), we get that

|α − cn| ≤ 1
2n

(b − a) (14.1.3)

and hence since
lim

n→∞

1
2n

(b − a) = 0
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we deduce that cn → α, as n → ∞, hence the bisection method guarantees that eventually our estimate
will converge to a root of f . Now ofcourse our function can not run for enternity, so we must terminate
it at a certain point this is where Step 2 is necessary. But the next question that arises is how many
iterations would we need to reach to our desired root?

14.1.3 How many iterations do we need?

Theorem 14.1.1. Let n be the number of iterations required to a root within our desired error
tolerance level ε > 0, then we have

n ≥
ln
(

b−a
ε

)
ln 2

where a and b, are the endpoints of our initial interval.

The number iterations required, is equivalent to finding the n such that

|α − cn| ≤ ε

But from equation (14.1.3), this is equivalent to finding n such that

1
2n

(b − a) ≤ ε ⇒ b − a

ε
≤ 2n

taking logarithm on both sides we get that we must have

n ≥
ln
(

b−a
ε

)
ln 2 (14.1.4)

14.1.4 Pros and Cons of Bisection Method

Pros:
• The number of iterations, i.e., n can be estimated.
• Is guaranteed to converge to a root of the function.

Cons:
• The algorithm converges to a desired root more slowly than other algorithms.
• To we must find a and b such that α ∈ [a, b], which can be sometimes difficult to find.
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Lecture 15
February 21, Part B

15.1 Newton’s Method/Newton-Raphson Method
Unlike the Bisection Method, here we don’t have to evaluate f to find the appropriate a and b, which
is a good thing. However, Newton’s Method, as we will see, is not guaranteed to converge, which is a
bad thing. We will also see that it depends crucially on the selection of x0. Moreover, we will need the
function to be differentiable in our domain of interest.

15.1.1 Algorithm
First, we make an estimate of the root α of f , which we shall denote by x0. Consider the equation of
the line tangent to the graph of y = f(x) at (x0, f(x0))

p1(x) = f(x0) + f ′(x0) (x − x0) .

This is just the linear Taylor polynomial for f at x0.
Define x1 to be the root of p1(x) = 0. We solve

p1(x1) = f(x0) + f ′(x0)(x − x0) = 0.

for x1 to get
x1 = x0 − f(x0)

f ′(x0) .

Repeating this procedure, we get x2 from x1 as

x2 = x1 − f(x1)
f ′(x1) .

Proceeding inductively, we get a sequence {xn} according to the following recusion formula:

xn+1 = xn − f(xn)
f ′(xn+1) , n ≥ 0 (15.1.1)

The sequence {xn} is a sequence of estimates for α. This procedure of estimating the root α using the
recursion formula (15.1.1) is known as the Newton-Raphson Method.
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Figure 15.1.1: Newton Raphson Method

15.1.2 An example computation problem
Now, we take a look at an example computation problem that can be solved using the Newton-Raphson
Method.
Given a, b ∈ N, we want to compute a

b without performing the division operation.
Early computers could support addition, subtraction and multiplication but division needed to be imple-
mented using an algorithm as we are going to discuss. In order to solve this problem, we take the inputs
a, b, following which we can get the answer by multiplying a and 1

b . For this, we need to compute 1
b ,

which can be done by solving
f(x) = b − 1

x
= 0 (15.1.2)

Remember that here we are trying to estimate the root α = 1
b of the function f defined in (15.1.2) . We

have f ′(x) = 1
x2 . So, by the Newton’s Method, the recursion that we get is

xn+1 = xn −
b − 1

xn

1
x2

n

.

which on simplifying gives us
xn+1 = xn (2 − bxn) , n ≥ 0 (15.1.3)

Notice that the arithmetic of (15.1.3) involves only subtraction and multiplication which were supported
in the early computers.
Now, we look at the error analysis of this procedure. From ϵxn = α−xn

α , we easily get

ϵxn+1 = ϵ2
xn

=⇒ ϵxn
= (ϵx0)2n

(15.1.4)

According to (15.1.4), the relative error of xn,i.e. ϵxn
, can rapidly decrease to 0, as n increases if we

can ensure |ϵx0 | < 1.
So, we want | α−x0

α | < 1.
• If x0 > α, then x0−α

α < 1 =⇒ x0 < 2α = 2
b
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• If x0 < α, then α−x0
α < 1 =⇒ x0 > 0

This gives us the equivalent condition 0 < x0 < 2
b Therefore, the Newton-Raphson Method guarantees

convergence to α = 1
b if and only if x0 satisfies the above condition.

At the lowest levels, this procedure is how computation is carried out by some computers even today.
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Lecture 16
February 28, Part A

16.1 Error Analysis of the Newton Raphson method
We begin by assuming that we are to use the Newton Raphson method to find a root α of a function f
(which we have a closed form expression for). We start with an initial guess of α, which we denote
by x0. The iteration used in the Newton Raphson method is

Definition 16.1.1.
xn+1 = xn − f(xn)

f ′(xn) ∀(n ≥ 0)

We can calculate f(xn) and f ′(xn) because we have a closed form expression for f .
Note that if any of the f ′(xn)’s are 0, the iteration immediately fails at that stage. This is a flaw present
in the Newton Raphson method that the bisection method doesn’t suffer from.
In order to carry out the error analysis, we have to make some assumptions which we list below.

• There exists a ρ > 0 such that f is continuously differentiable atleast twice in [α − ρ, α + ρ]. This
assumption must be taken on faith.

• f ′(α) ̸= 0. If this assumption is not true, it is not possible for the iteration to converge to α, as
the term f(xn)

f ′(xn) would blow up to infinity if it did.

Note that the two assumptions listed above imply that f ′ ̸= 0 in some neighbourhood of α.
Next, we assume that for some n xn is sufficiently close to α. Sufficiently close as in sufficiently close
for the manipulations that follow. Then, using a Taylor Expansion (we can do that because we have a
closed form expression for f), and cutting it off after 3 terms, we can write

f(α) = f(xn) + (α − xn)f ′(xn) + 1
2(α − xn)2f ′′(xn)

=⇒ 0 (1)= f(xn) + (α − xn)f ′(xn) + 1
2(α − xn)2f ′′(xn)

=⇒ 0 (2)= f(xn)
f ′(xn) + (α − xn) + (α − xn)2 f ′′(xn)

2f ′(xn)

where equality (1) follows from the fact that α is a root of f , equality (2) is obtained by dividing both
sides of the equation by f ′(xn), which we can do since f ′(xn) is close to f ′(α) ̸= 0, which in turns hold
because f ′ is continuous (by assumption) and xn is sufficiently close to α. Using equation 16.1.1, we
obtain
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Corollary 16.1.0.1.

α − xn+1 = (α − xn)2
[
− f ′′(xn)

2f ′(xn)

]

Therefore we may say that
Error in xn+1 ∼ (Error in xn)2

where ∼ stands for proportionality. (Note that we are assuming that f ′(xn) ̸= 0). For convergence,
f ′′(xn)
2f ′(xn) must not be too big.

Next, we run into yet another problem: We cannot compute either side of equation 16.1.0.1, as we don’t
know the value of α. Which brings us to the next section.

16.2 Bounding some Parameters
Although we don’t know the value of α, we are working with an xn which is “sufficiently close” to it. In
that case, since f ′′ and f ′ are continuous at α ∈ [α − ρ, α + ρ], we have

M := − f ′′(α)
2f ′(α) ≈ − f ′′(xn)

2f ′(xn)

Rewriting 16.1.0.1, we get

α − xn+1 ≈ (α − xn)2M

=⇒ M (α − xn+1) ≈ [M (α − xn)]2

Now, we carried out this analysis assuming that the iteration converges. If we also assume that iterates
do not again stray far from α after they get close to it (this is possible because for convergence only the
behaviour in the long run matters), and if we assume that x0 is sufficiently close to α (previously we’d
let xn be sufficiently close to α for some n whose value was unknown to us), using induction we get

Theorem 16.2.1.
M (α − xn) ≈ [M (α − x0)]2

n

Since the iteration converges, it cannot be the case that |M(α − x0)| ≥ 1, which implies that

Theorem 16.2.2. Under the conditions required for 16.2.1 to hold,

|M(α − x0)| < 1 =⇒ |α − x0| <
1

|M |

The above theorem implies, among other things, that if |M | is very large, our initial guess x0 will have to
be very small, for the error analysis in theorem 16.2.1 to hold. Intuitively, f should not be “flat” around
the root. Newton Raphson will fail often and fail miserably if f ′′(α) is finite, and f ′(α) = 0, which
happens even when you’re dealing with relatively ordinary functions like the trigonometric functions.
The case where f ′′(α) blows up to infinity doesn’t happen as often; for examples look at functions that
have exponential-like growth.

16.3 Even more computational problems
We once again ask ourselves - what are the things we can compute? A little reflection should reveal to
you that we can compute the following and just that:
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• We have a closed form expression for f , and hence
• We know the values of x0, x1, . . . .
• We know the values of f(x0), f(x1), . . . .
• We know the values of f ′(x0), f ′(x1), . . . .
• We know the values of f ′′(x0), f ′′(x1), . . . .

Now, using the mean value theorem and the fact that f(α) = 0, if xn is sufficiently close to α, we have

f(xn) = f(xn) − f(α) = f ′(ξn)(xn − α)

for some ξn ∈ (α, xn). The last equation can be written as

α − xn = − f(xn)
f ′(ξn)

If − f(xn)
f ′(ξn) ≈ − f(xn)

f ′(xn) , then from definition 16.1.1, we obtain

α − xn ≈ xn+1 − xn

One way to use this is to find such a ξn, in which case you can guess where α lies relative to xn, use the
above equation for error analysis, etc.
We end by noting that although the bisection method always works (provided you can bracket the roots),
but Newton Raphson can fail. However when it does work, Newton Raphson converges to the root much
faster than the bisection method.

16.4 The Secant method
We wish to find a root α of a function f . Start with two initial guesses of α namely x0 and x1. Ideally,
the guesses should bracket α. Then, compute subsequent guesses using the following iteration

Definition 16.4.1.

xn+1 = xn − f(xn) xn − xn−1

f(xn) − f(xn−1) ∀(n ≥ 1)

Note the similarity between the Newton Raphson method and the Secant method! (The derivative in
the Newton Raphson method is replaced with a discrete version of it)
Unfortunately, the Secant method converges more slowly than the Newton Raphson method, and thus
finds little practical use.
It is possible for the guesses to alternate between a few values, and not converge.
Also, just because the initial guesses bracket the root, that doesn’t mean the subsequent guesses will
too.
Normally, when we compute xn+1, we discard xn−1. But you can instead discard xn if you need to, with
the goal of having guesses that bracket the root. Although even an uninterrupted bracket fails when the
expressions of the form f(xn) − f(xn−1) are too large, and thus the brackets keep getting larger and
larger instead of smaller.
For an example of what can go wrong with the secant method consider the case of a vertical parabola
with vertex at 0, and initial guesses ±1.

12



fff

Figure 16.4.1: Secant Method

It is not clear to me whether the secant method will converge if our initial guesses bracket the root, we
always choose our subsequent guesses so that they always bracket the root, and f has different signs at
our guesses (including the initial guesses). Someone should probably investigate.

13



Lecture 17
February 28, Part B

17.1 Fixed Point Method
The Newton Raphson method and secant method are one-point and two-point iteration methods
respectively (an algorithm is said to be n-point iteration method, if for the iteration to begin we need n
initial guessed points). Now we will go over more general theory of one-point iteration methods. Conisder
the simple equation

x2 − 5 = 0 (17.1.1)
then a root of the equation (17.1.1), is α =

√
5, and consider the following iterative methods for solving

the above equation:

xn+1 = 5 + xn − x2
n (17.1.2)

xn+1 = 5
xn

(17.1.3)

xn+1 = 1 + xn − 1
5x2

n (17.1.4)

xn+1 = 1
2

(
xn + 5

xn

)
(17.1.5)

Then its easy to observe that for all the above sequences whenever the sequence {xn}n∈N converges to
some real number α, then α =

√
5. This can be easily seen by assuming {xn}n∈N converges to α, and

then taking limit as n tends to infinity. For example in equation (17.1.2) (assume that for some initial
guess the sequence converges), then we have

α = lim
n→∞

xn+1 = lim
n→∞

(
5 + xn − x2

n

)
= 5 + α − α2 ⇒ α =

√
5

Now observe that all the above iterative equations, have the general form

xn+1 = g(xn) (17.1.6)

for some appropriate continuous function on a suitable domain. For example in case of equation (17.1.2),
the function g(x) = 5 + x − x2. And assuming that xn converges to α, we get that

α = lim
n→∞

xn+1 = lim
n→∞

g(xn) = g
(

lim
n→∞

xn

)
= g(α)

Thus α is a solution to the equation g(x) = x, and hence we have α is a root of g.
The above idea motivates us to see that the problem of finding a root for the equation f(x) = 0, can be
converted into an equation g(x) = x, where we can take g(x) = x − f(x). Thus if α is a root of f , i.e.,
f(α) = 0, then we have

g(α) = α − f(α) = α

14



Now as we will see, if we are given some further informations about the functions we are working with,
then fixed point iteration methods are faster than bisection method and are even guaranteed to
converge to a root.

Remarks: Fixed point iteration method has a lot of applications in Chaos Theory.

Now let us look at some of the necessary conditions, we may need for the fixed point method to work!
The first question that arises naturally is, when does the equation g(x) = x has a solution?

17.1.1 Necessary Condition for Existence of a Fixed Point

Theorem 17.1.1. Let g : [a, b] → R, be a continuous function, and suppose g satisfies the
property

a ≤ x ≤ b ⇒ a ≤ g(x) ≤ b

then the equation x = g(x), has at least one solution α in the interval [a, b].

Proof. Define f(x) = x − g(x), then we have f is a continuous function on [a, b], and we further have

f(a) = a − g(a) ≤ 0 and f(b) = b − g(b) ≥ 0

and hence by Intermediate Value Theorem, we get that there exists a α ∈ [a, b], such that f(α) = 0,
but then we get g(α) = α. ■

Figure 17.1.1: geometrical interpretation of Theorem 17.1.1

Theorem 17.1.1, can be geometrically interpretated as if we have a function g : [a, b] → [a, b], i.e., the
graph of g is inside the square region [a, b] × [a, b], then the graph of g must intersect the diagonal of
the square, i.e., y = x line at some point, which precisely gives us that there exists a α ∈ [a, b], such
that g(α) = α.
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Definition 17.1.1. Now consider the following assumptions:
• g is differentiable on [a, b], and further g′ is continuous on [a, b].
• x ∈ [a, b] ⇒ g(x) ∈ [a, b].
• λ := max

a≤x≤b
|g′(x)| < 1.

Then with the above assumptions we can guarantee, that there exists an unique root.

17.1.2 Uniqueness of the Fixed Point

Theorem 17.1.2. Assume that g satisfies all the above conditions given in definition 17.1.1,
then g has an unique fixed point in [a, b].

Proof. Now the fact that g is differentiable on [a, b], tells us that g is continuous on [a, b], and then
second condition of our assumptions, along with theorem 17.1.1, gives us g has at least one fixed point
in [a, b].
Let w1, w2 ∈ [a, b] then from Mean Value Theorem1, we get that there exists a c in between w1 and
w2 such that

g(w1) − g(w2) = g′(c)(w1 − w2)

But then we get that
|g(w1) − g(w2)| = |g′(c)||w1 − w2| ≤ λ|w1 − w2| (17.1.7)

Now suppose there exists c1, c2 ∈ [a, b] such that g(c1) = c1 and g(c2) = c2, then we have

|c1 − c2| = |g(c1) − g(c2)|
(17.1.7)

≤ λ|c1 − c2|

and hence we get that
(1 − λ)|c1 − c2| ≤ 0 (17.1.8)

But note that from the third condition in our assumptions, we have 1 − λ > 0, and hence only way
equation (17.1.8), can hold is

|c1 − c2| ≤ 0 ⇒ |c1 − c2| = 0 ⇒ c1 = c2

Hence, g has an unique fixed point in [a, b]. ■

1Mean Value Theorem: Let f : [a, b] → R be differentiable on (a, b), then there exists a c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a)

16



Lecture 18
March 4

18.1 Fixed point methods
Instead of trying to find a root to an equation of the form f(x) = 0, we can try to find a root to an
equation of the form x−f(x) = x. Defining g(x) := x−f(x), we see that the task of finding a root of f
is equivalent to finding a fixed point of g (a fixed point of a function g is a real α such that g(α) = α).
We shall deal mainly with non-linear functions, as finding the roots/fixed points of linear functions can
be done by employing the techniques of linear algebra, which we have already covered.
Therefore, we now set for ourselves the task of finding fixed points α of a function g. But first, we recall
some theorems that we proved in previous lectures

Theorem 18.1.1.
If the following conditions obtain,

• g : [a, b] → [a, b].
• g is continuous on [a, b].

Then g has a (not necessarily unique) fixed point in [a, b]. ■

Theorem 18.1.2.
If the following conditions obtain,

• g : [a, b] → [a, b].
• g is continuous on [a, b].
• g′ exists in [a, b].
• g′ is continuous on [a, b].
• λ := maxx∈[a,b] |g′(x)| < 1.

Then g has a unique fixed point in [a, b]. ■

Note that we have the same problem here as when we did the bisection method; the problem of finding
a suitable interval ([a, b] in this case). But let us assume that you have found such an interval, and
proceed.
Under the assumptions of theorem 18.1.2, if we start with an initial guess x0 ∈ [a, b], and define
subsequent guesses using the recursion

Definition 18.1.1.
xn+1 = g(xn) ∀(n ≥ 0)

then if we denote the unique fixed point of g in [a, b] by α, we have

17



Theorem 18.1.3.
|α − xn| ≤ λn|α − x0|

Proof. Assuming the preconditions of theorem 18.1.2, g : [a, b] → [a, b]. Combining that with the fact
that x0 ∈ [a, b], it is easy to see by induction that xn ∈ [a, b] for all n ≥ 0.
Now, by definition 18.1.1, and the fact that g(α) = α, we have

α − xn+1 = g(α) − g(xn) = g′(cn)(α − xn)

for some cn ∈ (α, xn), by the mean value theorem. Since by the preconditions of theorem 18.1.2
λ := maxx∈[a,b] |g′(x)| < 1, we obtain from the above equation

|α − xn+1| ≤ λ|α − xn|

By induction, we get
|α − xn| ≤ λn|α − x0|

■

Corollary 18.1.3.1. Under the assumptions of theorem 18.1.2,

lim
n→∞

xn = α

Proof. By theorem 18.1.3, |α − xn| ≤ λn|α − x0|. Since λ < 1, we get

lim
n→∞

|α − xn| = 0

using the squeeze theorem (the L.H.S. of the squeeze is 0 ≤ |α − xn|, which follows from properties of
the |·| function). ■

Corollary 18.1.3.2. Under the assumptions of theorem 18.1.2,

|α − xn| ≤ λn

1 − λ
|x0 − x1|

Proof. Note that

|α − x0|
(1)
≤ |α − x1| + |x0 − x1|

(2)
≤ λ|α − x0| + |x0 − x1|

=⇒ (1 − λ)|α − x0| ≤ |x0 − x1|

(3)=⇒ |α − x0| ≤ |x0 − x1|
1 − λ

(4)

where inequality (1) is the triangle inequality, and inequality 2 follows from theorem 18.1.3. Implication
(3) is justified as λ < 1 and therefore we are not dividing by 0. But then

|α − xn|
(5)
≤ λn|α − x0|

(6)
≤ λn

1 − λ
|x0 − x1|

where inequality (5) follows from theorem 18.1.3, and inequality (6) follows from inequality (4) above.
■
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Now we come to what is probably the most important theorem in this lecture.

Theorem 18.1.4. Under the assumptions of theorem 18.1.2,

lim
n→∞

α − xn+1

α − xn
= g′(α)

Proof. Note that by the mean value theorem, for all n ≥ 0 we have α − xn+1 = g(α) − g(xn) =
g′(cn)(α − xn) for some cn ∈ (α, xn). Therefore,

lim
n→∞

α − xn+1

α − xn
= lim

n→∞
g′(cn)

But since xn → α, cn → α too, and then using the fact that g′ is continuous in [a, b], we get

lim
n→∞

g′(cn) = g′(α)

■

Definition 18.1.2. Suppose we have a sequence {yn} that converges to β. We say that {yn}
converges to β linearly, if for all n

β − yn+1 ≈ c(β − yn)p

with p = 1.
If p > 1, we say that the sequence {yn} converges to β super-linearly.

We are now ready to state the final theorem of this lecture.

Theorem 18.1.5. If we assume the preconditions of 18.1.2, and we additionally assume that
g′(α) ̸= 0, xn converges to α linearly.

Proof. Theorem 18.1.4 tells us that limn→∞
α−xn+1

α−xn
= g′(α). That implies, as long as g′(α) ̸= 0 and

therefore higher order terms do not dominate, that for large n,

α − xn+1 ≈ g′(α)(α − xn)

(The convergence is guaranteed both by theorem 18.1.1 and by the fact that g′(α) < 1, which follows
from the preconditions of 18.1.2). ■

We end by remarking that fixed point iterations are very easy to program owing to the simple nature of
their iterations.
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18.2 Introduction to Interpolation
18.2.1 What is Interpolation?
Let f(x) be a function on an interval [a, b]. The goal is to construct a function g(x) that approximates
f to within a given error. To do so, we must specify:

• The structure of the approximating functions
• The way of measuring error

And, We have 2 problems now:
• Problem I: The function f(x) is given (like f(x) = ex), can be evaluated at any point x, and

we seek a simple function g(x) (like g(x) = ax + b) that best approximates f . The simple part
constrains the possible accuracy.

• Problem II: Values are given at a set of points: (x0, f0), . . . , (xn, fn) with fj = f(xj) but f(x) is
not known. The amount and type of data constrains the possible accuracy and what approximations
may be constructed.

Our approach to approximation is known as interpolation. The process of finding the value of f(x)
corresponding to any value of x = xi between x0 and xn is called interpolation.

Definition 18.2.1 (Interpolation). The technique of estimating the value of a function for any
intermediate value of the independent variable.

If the function f is known explicitly, then the value of f(x) corresponding to any value of x can easily
be found. Conversely, if the form of f(x) is not known (as is the case in most of the applications), it is
very difficult to determine the exact form of f(x) with the help of tabulated set of values (xi, fi).

Figure 18.2.1

In such cases, f(x) is replaced by a simpler function ϕ(x) which assumes the same values as those of
f(x) at the tabulated set of points. Any other value may be calculated from ϕ(x) which is known as the
interpolating function or smoothing function.

Remark: If ϕ(x) is a polynomial, then it called the interpolating polynomial and the process
is called the polynomial interpolation. Similarly, when ϕ(x) is a finite trigonometric series, we
have trigonometric interpolation. But we shall confine ourselves to polynomial interpolation
only.
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Caution (interpolation vs. approximation): Note that interpolation is not exactly the same as
approximation - it is a strategy that one hopes will approximate the function. There is no exact
and unique solution. The actual function is NOT known and CANNOT be determined from the
tabular data. In the case of Problem II where data is given, interpolation is natural since it uses
precisely the data we are given.
For Problem I (where f is given), it is not obvious that interpolation is the right way to obtain a
small max-norm (or any other error). Compare, for instance, to a best-fit line that does not have
to pass through any points.

From the set {(x0, f0), . . . , (xn, fn)} with fj = f(xj), we would like to write,

f(x) ≈ ϕ(x) such that ϕ(xj) = fj ∀j ∈ {0, 1, . . . , n}

Example 18.2.1. Some examples of various kind of interpolation are following:
• Linear Interpolation (General construction idea)

Here, we choose a set of (n + 1) functions {ϕi}n
i=0 and assume that ϕ is linearly dependent

on ϕi’s.

ϕ(x) =
n∑

i=0
aiϕi(x)

(a) Polynomial Interpolation (ϕi(x) = xi)

Φ(x) =
n∑

i=0
aix

i

(b)

ϕ(x) =
n∑

r=0
areιrx =

n∑
r=0

ar cos(rx) + ι

n∑
r=0

ar sin(rx)

(c) Cubic Spline interpolation
∗ Here, we assume that ϕ(x) coincides with a cubic polynomial on every interval

[xi, xi+1], i = 0, 1, . . . , n
∗ Polynomials on different sub-intervals need not match.

• Non-Linear Interpolation
(a) Rational function interpolation

ϕ(x) = a0 + a1x + · · · + anxn

b0 + b1x + · · · + bmxm

Note that, total n + m + 2 parameters a0, a1, . . . , an, b0, b1, . . . , bn need to be deter-
mined here.

Remark: Interpolation is a "guess" of function in a "valid domain" given to us.

In the above case, the "valid domain" is [min
j

xj , max
j

xj ]

On the other hand "guessing" a function outside the domain is known as Extrapolation.
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Lecture 20
March 7, Part A

20.1 Interpolation
In numerical analysis, we are often provided with a table of values of a function f(x) with respect to
some argument x. Examples might be log tables, tables for various statistical distributions, non-analytic
integrals etc. This approach, although extremely convenient for practical purposes, has its limitations.
The most obvious one being that a table can only contain finitely many values of a function, from which
we need to estimate the intermediate values. This is one of the places where interpolation becomes
invaluable. It can also be used to develop polynomial approximations of transcendental or even non-
analytic functions.
Interpolation basically deals with approximating a function given its value at some support points. It
is used, as the name suggests, to approximate f(x∗), where x∗ lies between two of the given support
points. This gives rise to an "approximate function" which can be used to get a reasonable guess of what
f(x∗) should be. The function formed must satisfy all the support points.
The subject of interpolation has also given rise to one of the most impactful algorithms of the 20th

century, the Fast Fourier Transform.

20.2 Lagrange’s Interpolation Formula
Let Πn be the set if all polynomials with degree ≤ n. Thus, any P (x) ∈ Πn can be written in the form:

P (x) =
n∑

j=0
ajxj aj ∈ R ∀j = 1(1)n

Given (n+1) support points , the Lagrange interpolation gives a polynomial of degree n which satistfies
all the points. So, if (xi, fi) for i = 0(1)n be the support points (where fi are the values of the function
at xi), we will have:

P (xi) = fi ∀i = 0(1)n

Remark: The support points must have distinct abscissae. Otherwise, one or more support
points are either redundant or contradictory. So, we need:

xi ̸= xj ∀ i ̸= j

Throughout this lecture, we will assume that this conditions is met.

We will show that given these conditions, ∃!P ∈ Πn such that the interpolation condition is staisfied,
i.e, P (xi) = fi ∀i = 0(1)n. We first show the existence by construction of Lagrange Polynomials
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and then uniqueness.

Definition 20.2.1. Given (n+1) support points (xi, fi), i = 0(1)n with distinct abscissae, we
define the ith Lagrange Polynomials as follows:

Li(x) =
n∏

j=0
j ̸=i

x − xj

xi − xj

Then, taking P (x) =
∑n

i=0 fiLi(x), it is easy to see that

Li(xk) = δik =
{

1, if i = k

0, otherwise

∴ P (xk) =
n∑

i=0
fiLi(xk) =

n∑
i=0

fiδik = fk

i.e, it satisfies the interpolation condition. This proves the existence of P . ■

To prove the uniqueness, we assume two polynomials P1(x), P2(x) ∈ Πn which satisfy the interpolation
conditions. Then the polynomial:

P3(x) = P1(x) − P2(x) ∈ Πn

has at least n + 1 roots {xi : i = 0(1)n}, and is thus identically zero. Hence, P1(x) ≡ P2(x), and the
interpolating polynomial is unique. ■

This, in turn, shows that the Lagrange Polynomials are the only ones satisfying Li(xk) = δik, as it is a
special case of the Lagrange Interpolation.

Remark: As the polynomial is unique, we have different approaches for finding f(x∗):
1. Finding the coefficients of P (x) and then calculating P (x∗).
2. Finding the value of P (x∗) directly from the support points.

The two interpolation methods discussed in this lecture, Lagrange Interpolation and Neville In-
terpolation, are best suited to approach (2).
Approach (1) is more convenient when the interpolation needs to be done multiple times. This
is best done using Newton’s Divided difference method, as will be discussed later.

Example 20.2.1. Say the following support points have been provided. Find the interpolated
value at x∗ = 2.

xi 0 1 3
fi 1 3 2

Solution. We simply compute the values of the Individual Lagrange Polynomials at x∗ and then put
them together.

L0(x∗ = 2) = (x∗ − x1)(x∗ − x2)
(x0 − x1)(x0 − x2) = −1

3
Similarly,

L1(2) = 1 and L2(2) = 1
3
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Thus

P (x∗) =
2∑

i=0
fiLi(x∗) = −1

3 + 3 + 2
3 = 10

3

■
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Lecture 21
March 7, Part B

21.1 Neville’s Algorithm
An alternate approach to solving the interpolation problem would be to initially solve the problem for a
smaller set of support points and then use these to recurrently arrive at the final solution.

Definition 21.1.1. Suppose we are given a set of support points (xi, fi) for i = 0, 1, . . . , n. We
define by Pi0i1...ik

∈ Πk the polynomial such that

Pi0i1...ik
(xij

) = fij
, ∀j = 0, 1, . . . , k.

Theorem 21.1.1. The polynomials defined above obey the following recursion:

Pi(x) = fi, ∀i (k = 0 =⇒ deg(Pi) = 0 =⇒ Pi’s are constant) (21.1.1)

Pi0i1...ik
(x) =

(x − xi0)Pi1i2...ik
− (x − xik

)Pi0i1...ik−1(x)
xik

− xi0

(21.1.2)

Based on the above theorem (21.1.1), we can construct a symmetric table to represent the flow of
recursion as we calculate the final solution of the interpolation problem using solutions in intermediate
steps.
By uniqueness of interpolating polynomials, we can say that the polynomials that we get at each inter-
mediate step and the one that we get at the final step are all uniquely determined.

Table 21.1

k = 0 k = 1 k = 2 . . .
f0 = P0(x)

P01(x)
f1 = P1(x) P012(x) . . .

P12(x)
...

...
...

Pn,n−1(x)
fn = Pn(x)
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Example 21.1.2. Let’s verify the recursion for k = 1. We have

P01(x) = (x − x0)P1(x) − (x − x1)P0(x)
x1 − x0

.

Notice that here i0 = 0 and i1 = 1 with k = 1. So,

P01(x0) = −(x0 − x1)P0(x0)
x1 − x0

= f0 [∵ P0(x0) = f0].

and
P01(x1) = (x1 − x0)P1(x1)

x1 − x0
= f1 [∵ P1(x1) = f1].

So, we can see that the recursion works fine in this example. We can check further for k = 2
where we have

P012(x) = (x − x0)P12(x) − (x − x2)P01(x)
x2 − x0

.

Note that

P012(x1) = (x1 − x0)P12(x1) − (x1 − x2)P01(x1)
x2 − x0

= (x2 − x0)f1

x2 − x0
= f1[∵ P12(x1) = P01(x1) = f1].
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Lecture 21
March 7, Part B

21.2 Neville Interpolation
This is a more systematic way of implementing Lagrange Interpolation. Here, we make polynomials which
satisfy a subset of the support points, and use those to construct the final polynomial in a step by step
manner. As mentioned previously, we mainly use this method to find the interpolated value and not the
coefficients of the polynomial.

Definition 21.2.1. For a given set of support points (xi, fi),i = 0(1)n with distinct abscissae,
we define Neville polynomials of order k as

Pi0i1...ik
∈ Πk s.t. Pi0i1...ik

(xi) = fi ∀i ∈ {i0, i1, . . . , ik}

where iα, α = 0(1)n as distinct elements of {0, 1, 2, . . . , n}

We note that all these polynomials are unique, as shown in the previous section.
Thus, Pi(x) = fi ∀i = 0(1)n. These constant polynomials form the zeroth level Neville Polynomials.
The key idea in Neville’s Algorithm is a method to find Pi0i1...ik

(x) from Pi0i1...ik−1(x) and Pi1i2...ik
(x).

Thus, knowing the zeroth level P0, P1, . . . , Pn, we can find the first level P0,1, P1,2, . . . , Pn−1,n and so
on. Once we reach the nth level, we find the polynomial P0,1...,n which satisfies:

P0,1...,n ∈ Πn s.t. P0,1...,n(xi) = fi ∀i = 0(1)n

This is precisely the interpolating polynomial P (x) we are after!
Neville’s Algorithm could be summarised in the following table.

k = 0 1 . . . n-1 n
P0 = f0 P0,1 . . . P0,1,...,n−1 P0,1,...n

P1 = f1 P1,2 . . . P1,2,...,n

...
...

Pn−1 = fn−1 Pn−1,n

Pn = fn

Proposition 21.2.1. The corresponding recurrence relation for Neville Interpolation is:

Pi0i1...ik
(x) =

(x − xi0)Pi1i2...ik
(x) − (x − xik

)Pi0i1...ik−1(x)
xik

− xi0
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Proof. Let
G(x) :=

(x − xi0)Pi1i2...ik
(x) − (x − xik

)Pi0i1...ik−1(x)
xik

− xi0

As Pi1i2...ik
, Pi0i1...ik−1(x) ∈ Πk−1, we get G(x) ∈ Πk. Now,

G(xi0) =
−(xi0 − xik

)Pi0i1...ik−1(xi0)
xik

− xi0

= Pi0i1...ik−1(xi0) = fi0

Similarly, we have G(xik
) = fik

.
For α = 1(1)k − 1, we have

Pi1i2...ik
(xiα) = Pi0i1...ik−1(xiα) = fiα

=⇒ G(xiα
) = (x − xi0)fiα

− (x − xik
)fiα

xik
− xi0

= fiα
∀α = 1(1)k − 1

So, G(x) satisfies all the conditions of Pi0i1...ik
(x).

Noting that Pi0i1...ik
(x) is unique (from previous section), this completes the proof. ■

Remark: In theory, Neville Interpolation is just a reformulation of Lagrange Interpolation.
However, it cuts down the computations required significantly and is easier to implement. For
instance, the computation of the next level only requires knowledge of the previous level.

Example 21.2.2. We try to solve the same problem as before using Neville Interpolation. Given
data is

xi 0 1 3
fi 1 3 2

We need to find the interpolated value at x∗ = 2.

Solution. To begin with, we have
P0(2) = 1, P1(2) = 3, P2(2) = 2
From this, we have

P0,1(x∗ = 2) = (x∗ − x0)P1(x∗) − (x∗ − x1)P0(x∗)
x1 − x0

= (2 − 0)P1(2) − (2 − 1)P0(2)
1 − 0 = 5

(21.2.1)

Similarly, P1,2(2) = 5
2 and thus,

P0,1,2(x∗ = 2) = (x∗ − x0)P2(x∗) − (x∗ − x2)P0(x∗)
x2 − x0

= 10
3

As expected, this gives us the same answer as before.
k = 0 1 2

1 5 10
3

3 − 5
2

2
■
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Lecture 22
March 11, Part A

22.1 Another View-point to the Neville’s Algorithm
We will discuss slight variants of Neville’s algorithm, we first define

Ti+k,k = Pi,i+1....,i+k (22.1.1)

Theorem 22.1.1. The Ti,i+k as defined in equation (22.1.1), satisfies the following recurrence
relation:

Ti,0 := Pi(x) = fi, ∀ i = 0, 1, . . . , n

Ti,k := (x − xi−k)Ti,k−1 − (x − xi)Ti−1,k−1

xi − xi−k
, 1 ≤ k ≤ i, i ≥ 0

Precisely speaking the Ti,k is just looking at the Neville’s algorithm just from a different view-point,
which as it turns out is more efficient way of evaluating the recurrence relation than the one given earlier
in Neville’s algorithm.
The process of evaluating Ti,k is as follow:

• We evaluate Ti,k−1, i.e., we evaluate at the (k − 1)th level, then
• Using the values we obtained at the (k − 1)th level, we evaluate Ti,k, i.e., we evaluate at the kth

level using Theorem 22.2.1.

22.2 Newton’s Interpolation Formula: Divided Differences
We already know a way how to find the P ∈ Πn satisfying P (xi) = fi, ∀ i ∈ {0, 1, . . . , n}. Now if
we want to find the interpolating values for several arguments ξj ’s simulatenously, i.e., we are given a
support set (say) (xi, fi), and we want to evaluate P (ξj), then Newton’s method is to be preferred.
We write the interpolation polynomial in the form:

P (x) = P01...n(x) =
n∑

j=0
ai

(
j−1∏
k=0

(x − xk)
)

(22.2.1)

where an empty product is assumed to be equal to 1.
Now, we use Horner’s scheme to evaluate the polynomial at x = ξ, which basically a recursive way of
evaluating the equation (22.2.1),

P (ξ) = a0 + (ξ − x0) (a1 + (ξ − x1) (a2 + · · · + (ξ − xn−2) (an−1 + (ξ − xn−1)an) · · · )) (22.2.2)
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so we just need to compute the coefficients ai’s. This can be done in many ways, but the simplest way
would be to the solve the system:

f0 = P (x0) = a0

f1 = P (x1) = a0 + (x1 − x0)a1

...
fn = P (xn) = a0 + (xn − x0)a1 + · · · + (xn − xn−1) · · · (xn − x0)an

one after the other. Though this will give us the ai’s, once we solve the whole system of linear equations,
but at every step it involves one division and 2(k − 1) many multiplications (where k indicates that we
are at the kth equation, k ≥ 1)

kth step: ak =
fk −

∑k−1
j=0 aj

(∏j−1
i=0 (xi − x0)

)
∏k

i=0(xi − x0)

so total it involves n may divisions and n(n − 1) many multiplications. But there’s actually a more
efficient way of doing this which involves only n(n+1)

2 many divisions.

22.2.1 Relation between Divided Difference Coefficients
Note that Pi0...ik

∈ Πk and Pi0...ik−1 ∈ Πk−1, so Pi0...ik
− Pi0...ik−1 ∈ Πk, and not only so, since

Pi0...ik
(xij

) = Pi0...ik−1(xij
) = fij

, ∀ j = 0, 1, . . . , k − 1

hence, we get xi0 , . . . , xik−1 are all the k roots of the polynomial Pi0...ik
− Pi0...ik−1 , and hence, there

exists a constant say fi0...ik
∈ R, such that

Pi0...ik
(x) = Pi0...ik−1(x) + fi0...ik

k−1∏
j=0

(x − xij )

But then since, we know that Pi0 ≡ fi0 , by induction we get that

Pi0...ik
(x) =

k∑
j=0

fi0...ij

(
j−1∏
d=0

(x − xid
)
)

(22.2.3)

Definition 22.2.1. The representation of the polynomial Pi0...ik
given in equation (22.2.3), is

called the Newton’s representation and the coefficients fi0...ij
where j = 0, . . . , k, are called the

jth divided differences.

Theorem 22.2.1. The divided differences, satisfies the recurrence relation given by:

fi0...ik
=

fi1...ik
− fi0...ik−1

xik
− xi0

, k ≥ 1

Proof. From the definition of Pi0...ik
, we already know that we can express it as:

Pi0...ik
(x) =

(x − xi0)Pi1...ik
(x) − (x − xik

)Pi0...ik−1(x)
xik

− xi0

(22.2.4)

But then note that fi0...ik
is the leading coefficient of Pi0...,ik

∈ Πk and fi1...ik
and fi0...ik−1 are the

leading coefficients of the polynomials Pi1...ik
∈ Πk−1 and Pi0...ik−1 ∈ Πk−1. And hence comparing the

leading coefficients in either side of equation (22.2.4), we get the desired result. ■
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Thus using the Newton’s interpolation formula for divided difference, we can easily interpolate the
polynomial Pi0...ik

, once we are given the support points (xij
, fij

).
Now let us see how does the given arguments helps us to quickly compute the interpolated polynomial.
For this we consider the following example:

Example 22.2.2. Consider we want to interpolate P0123 ∈ Π3, given the support points (xi, fi).
k 0 1 2 3
x0 f0 · · ·
x1 f1 f01 · ·
x2 f2 f12 f012 ·
x3 f3 f23 f123 f0123

Then note that since we know (xi, fi), for i = 0, 1, 2, 3, we can easily compute f01, f12 and f23,
by using Theorem 22.2.1, which are in fact given by

f01 = f1 − f0

x1 − x0
, f12 = f2 − f1

x2 − x1
, f23 = f3 − f2

x3 − x2

Now from here we can compute f012 and f123, which are given by

f012 = f12 − f01

x2 − x0
and f123 = f23 − f12

x3 − x1

which finally gives us f0123,
f0123 = f123 − f012

x3 − x0

thus, as we can see, at the kth (k ≥ 1) level we required n − k + 1 many divisions (here n = 3),
and hence, in the whole process we required n(n+1)

2 divisions, like in this case we can easily see
it involved 6 divisions.
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Lecture 23
March 11, Part B

23.1 Summary of Newton’s divided differences

Definition 23.1.1. Given support points (x0, f0), (x1, f1), . . . , (xk, fk), we can define the poly-
nomial Φ(x) = Pi0i1...in

∈ Πn to be the unique n degree polynomial that satisfies Φ(xij
) = fij

for all 0 ≤ j ≤ n.

Remark: Φ and Pi0i1...in
are merely different ways to write the same polynomial; the second

form emphasizes the role of the support points in the definition of Φ.

Now, Φ can be written using a formula called the Newton’s divided differences representation, as
the following theorem states

Theorem 23.1.1.

Φ =
n∑

j=0
fi0...ij

j−1∏
k=0

(x − xik
)

where the f... are defined as follows.
Observe that we already know what the fik

’s have to be; they are the y-coordinates of the
corresponding support points. Then, given an integer k, we define

fi0...ik
:=

fi1...ik
− fi0...ik−1

xik
− xio

The above recursive definition lets us calculate all the f... used in Newton’s divided differences
representation of Φ = Pi0i1...in .

Example 23.1.2. We calculate some examples of the coefficients used in the formula in theorem
23.1.1

f01 = f1 − f0

x1 − x0
f12 = f2 − f1

x2 − x1
f123 = f23 − f12

x3 − x1
f4567 = f567 − f456

x7 − x4

23.2 Error Analysis
Suppose you have a function f that you can easily calculate at some, but not all values. Or perhaps
the function is only defined at some, but not all values. Instead of working with the function, you might
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decide to use a polynomial that coincides with it at certain values of x, where the value of f is known.
More specifically, suppose you have the set of points x0, x1, . . . xn, and you’re given a function f whose
values are f0.f1, . . . fn at x0, x1, . . . xn respectively.
Then, using the results of the above section we can construct a polynomial P such that

P (xi) = fi ∀(0 ≤ i ≤ n)

However unless we are exceptionally lucky, given any arbitrary x ̸= xi ∀(0 ≤ i ≤ n), we shall not have
P (x) = f(x). Our task then, is to estimate the error

f(x) − P (x)

for general x ∈ R.
We can supply a formula for the error f(x) − P (x) if f is differentiable sufficiently many times. But
before that we need to state a definition:

Definition 23.2.1. Given reals x0, x1, . . . , xk, we define I0[x0, x1, . . . , xk] to be the smallest
interval containing them

Theorem 23.2.1. Suppose that f is differentiable atleast n + 1 times in dom(f). Then given
a real x ∈ dom(f), the error ϵ(x) is given by

ϵ(x) = f(x) − P (x) =
(

f (n+1)(ξ)
(n + 1)!

) n∏
k=0

(x − xk)

for some ξ ∈ I0[x0, x1, . . . , xn, x]. Note that
∏n

k=0(x − xk) can also be abbreviated as ω(x).
Using that abbreviation, the above identity can be written as

ϵ(x) = f(x) − P (x) = ω(x)
(

f (n+1)(ξ)
(n + 1)!

)

Proof. If x = xi for any 0 ≤ i ≤ n, the result holds trivially. So we shall assume that x ̸= xi for all
0 ≤ i ≤ n.
Define F : dom(f) → R by F (x) := ϵ(x) − ϵ(x)

ω(x) ω(x). Note that

• The definition is valid because x ̸= xi for all 0 ≤ i ≤ n implies that ω(x) ̸= 0.
• F is 0 at x0, x1, . . . , xn and x. Therefore F has at least n + 2 zeroes.

• F is differentiable atleast n + 1 times, since F = f − P − ϵ(x)
ω(x) ω, and f is differentiable at least

n + 1 times, while the remaining terms are polynomials and thus differentiable arbitrarily many
times.

• The last bullet point also tells us that F, F (1), F (n) are all continuous (differentiability implies
continuity). This bullet point, and the last are necessary to justify our appeals to Rolle’s theorem
below.

Now, assume W.L.O.G. that x0 < x1 < · · · < xn. Let b be the index such that

xb < x < xb+1

(If x is not contained in (x0, xn), our analysis fails). Since F has at least n + 2 distinct zeroes in
I0[x0, x1, . . . , xn, x], by Rolle’s theorem, F (1) has at least n+1 zeroes in I0[x0, x1, . . . , xn, x]. Continuing
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this way, we see that F (n+1) has atleast one zero in I0[x0, x1, . . . , xn, x]. Denote the zero ξ. Then, we
have

0 = F (n+1)(ξ)

=⇒ 0 = dn+1

dxn+1

(
ϵ(x) − ϵ(x)

ω(x)ω(x)
)∣∣∣∣

x=ξ

=⇒ 0 = dn+1

dxn+1

(
f(x) − P (x) − ϵ(x)

ω(x)ω(x)
)∣∣∣∣

x=ξ

=⇒ 0 = f (n+1)(ξ) − ϵ(x)
ω(x) (n + 1)! (1)

since (P has degree at most n) =⇒ dn+1P
dxn+1 = 0 and dn+1ω

dxn+1 = (n + 1)!. Rewriting equation (1), we have

ϵ(x) = ω(x)
(

f (n+1)(ξ)
(n + 1)!

)
■

Note that if we want to use theorem 23.2.1, then we need to have some information about f(n+1)(ξ)
(n+1)! . For

although we know everything there is to know about ω, everything else is a bit of a mystery. So if we
want to be able to say anything meaningful about the error at x, we had better know something about
f(n+1)(ξ)

(n+1)! .

One example of a situation where we can say something meaningful about f(n+1)(ξ)
(n+1)! is when f = sin. In

that case, we have
∣∣f (n+1)(ξ)

∣∣ ≤ 1, which helps us bound ϵ(x),
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Lecture 24
March 14, Part A

24.1 Divided-Difference Scheme
We know that the interpolating polynomial Pi0i1...ik

is uniquely determined by its support points. So, it
is invariant of any permutation of the indices i0, i1, . . . , ik. Therefore we have the following result:

Theorem 24.1.1. The coefficients/divided-differences fi0i1...ik
are invariant of any permutations

of the indices i0, i1, . . . , ik.

Example 24.1.2. We take up an old example and form the divided-differences scheme for the
same:

k 0 1 2
x0 = 0 f0 = 1

f01 = 2
x1 = 1 f1 = 3 f012 = −5

6
f12 = −1

2
x2 = 3 f2 = 2

Here f01 = f1−f0
x1−x0

= 2, f12 = f2−f1
x2−x1

and f012 = f12−f01
x2−x0

= −5
6 .

So, we get our final interpolated polynomial as P012(x) = 1 + 2.(x − 0) − 5
6 (x − 0)(x − 1).

Remark: We will always want to choose such a permutation of the indices that satisfies

|ξ − xik
| ≥ |ξ − xik−1 |, ∀k = 1, 2, . . . , n.

which dampens the error during the evaluation of the Horner’s Scheme.

In accordance of the remark (24.1), we have an algorithm to choose the preferred sequence of indices.
For this, we assume that the support abscissae xi are in, say ascending, order. Then for each k > 0, we
can choose the index ik so that either ik = min{il|0 ≤ l < k} − 1 or ik − max{il|0 ≤ l < k} + 1. So,
instead of the descending-diagonal sequence of indices that we get from the divided-difference scheme,
here we get a zig-zag path.

Example 24.1.3. Continuing from Example 24.1.2, we can use the sequence i0 = 1, i1 = 2, i3 = 0
for interpolating the polynomial at ξ = 2. Then the corresponding Newton Representation is:

P120(x) = 3 − 1
2(x − 1) − 5

6(x − 1)(x − 3).
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24.2 An alternate notation
Sometimes, the support ordinates fi are the function values of a given function f(x), which we want
to approximate using interpolation. We might want to do this because sometimes, even if we know the
function, it might not have a nice closed form, making it difficult to evaluate the function at arbitrary
points. We can think of the divided differences as multivariate functions of the support abscissae xi. In
general, we use the following notation for this purpose:

f [xi0 , xi1 , . . . , xik
] = fi0,i1,...,ik

.

For instance, we have the following:

f [x0] = f(x0)

f [x0, x1] = f [x1]f [x0]
x1 − x0

= f(x1) − f(x0)
x1 − x0

f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

= f(x0)(x1 − x2) + f(x1)(x2 − x0) + f(x2)(x0 − x1)
(x1 − x0)(x2 − x1)(x0 − x2) .

By Theorem 24.1.1, we can see that the divided differences f [xi0 , xi1 , . . . , xik
] are invariant of permuta-

tions of the indices.

Theorem 24.2.1. If the given function f(x) is a polynomial of degree N , then
f [x0, x1, . . . , xk] = 0 for all k > N .

This is easy to see. Since, the interpolated polynomial is unique, the final polynomial must be identically
equal to f(x) ∈ ΠN . Therefore, the coefficent of xk in P01...k(x), which is given by f [x0, x1, . . . , xk],
must be equal to 0 for all k > N .

24.3 Error Term
We have by the Newton’s Interpolation formula that

P (x) ≡ P01...n(x) = f [x0] + f [x0, x1](x − x0) + . . . + f [x0, . . . , xn](x − x0) . . . (x − xn−1).

Suppose we introduce a (n + 2)nd support point (xn+1, fn+1) with xn+1 := x and fn+1 := f(x) and
x ̸= xi, ∀i = 0, 1, . . . , n. Then, by Newton’s Formula

f(x) = P01...(n+1)(x) = P01...n(x) + f [x0, . . . , xn, x]ω(x).

We can conclude from the error analysis from the previous chapter, since ω(x) ̸= 0, that

f [x0 . . . xn, x] = f (n+1)(ξ)
(n + 1)! for some ξ ∈ I[x0, . . . , xn, x].
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Lecture 25
March 14, Part B

25.1 Hermite Interpolation
Consider m + 1 distinct abcissae x0, . . . , xm, now suppose we are not just given the values fi, but we
are given the first ni − 1 derivatives of the function f , at the points xi’s, i.e., we are given ni ordinate
values f

(k)
i , where k ∈ {0, 1, . . . , ni − 1}, for each i ∈ {0, 1, . . . , m}. Let

n + 1 =
m∑

i=0
ni

We want to find a P ∈ Πn, where n is defined as above just that the Interpolation conditions:

P (k)(xi) = f
(k)
i , ∀ k = 0, 1, . . . , ni − 1 and ∀ i = 0, 1, . . . , n (25.1.1)

are satisfied.

Remark: The Neville’s Interpolation or Newton’s Interpolation are just special case of Hermite’s
interpolation with ni = 1, for each i ∈ {1, . . . , m}.

25.1.1 The Hermite Interpolation has an Unique Solution

Theorem 25.1.1. WLOG, assume we are given that

x0 < x1 < · · · < xm

are m + 1 abcissae, and we are further given real numbers fk
i , where k ∈ {0, 1, . . . , ni − 1} for

each i ∈ {0, 1, . . . , m}. Let

n + 1 =
m∑

i=0
ni

then there exists an unique P ∈ Πn satisfying equation (25.1.1).

Proof.

Uniqueness: Suppose there exists P1, P2 ∈ Πn such that P1, P2 satisfy the equation (25.1.1).
Now consider the difference polynomial

Q(x) = P1(x) − P2(x) ∈ Πn

but then we clearly have

Q(k)(xi) = 0, ∀ k ∈ {0, 1, . . . , ni − 1} and ∀ i ∈ {0, 1, . . . , m}
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thus from here we can conclude that xi is root of Q, with multiplicity ni, for each i ∈ {0, 1, . . . , m}.
But then we get that number of roots of Q is

m∑
i=0

ni = n + 1

but we have Q ∈ Πn, hence, we must have Q ≡ 0, since its degree is strictly less than n + 1.
Existence: Suppose we assume

P (x) = c0 + c1x + c2x2 + · · · + cnxn

then note that the equation (25.1.1) can be interpreted as a system of linear equations, (say)

AX = B (25.1.2)

where A is some (n + 1) × (n + 1) real valued matrix, and

B =
(

f0 f
(1)
0 · · · f

(n1−1)
0 · · · fm f

(1)
m · · · f

(nm−1)
m

)T

and X =
(
c0 c1 · · · cn

)T . Now we have already shown that if there exists a solution to equation
(25.1.2), then it must be unique. But then if we consider B = 0, then its obvious that X = 0 is a
solution to AX = B, and hence its in fact the unique solution to AX = 0. This tells us that the
kernel of the linear map TA : x 7→ Ax, is the zero subspace, ker(TA) = {0}.
Hence, A is non-singular. Thus we indeed have for all B ∈ Rn+1, there exists an unique X ∈ Rn+1

such that AX = B, which completes the proof.
■

25.1.2 Generalized Lagrange Polynomials and Explicit Construction of the Her-
mite Interpolation Polynomial

For each i ∈ {0, 1, . . . , m} and k ∈ {0, 1, . . . , ni − 1} construct Lik ∈ Πn such that

L
(σ)
ik (xj) = δijδkσ (25.1.3)

Definition 25.1.1. The polynomials Lik ∈ Πn defined as in equation (25.1.3) are called the
generalized Lagrange polynomials.

Now note that we can write P ∈ Πn satisfying equation (25.1.1) as:

P (x) =
m∑

i=0

ni−1∑
k=0

f
(k)
i Lik(x) (25.1.4)

This can be easily verified by computing the derivatives, we get

P (σ)(x) =
m∑

i=0

ni−1∑
k=0

f
(k)
i L

(σ)
ik (x)

and hence, we get that for σ ∈ {0, 1, . . . , nd − 1},

P (σ)(xd) =
m∑

i=0

ni−1∑
k=0

f
(k)
i L

(σ)
ik (xd)

=
m∑

i=0

ni−1∑
k=0

f
(k)
i δidδkσ

= f
(σ)
d
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thus from Theorem 25.1.1, we get that equation (25.1.4) is indeed true. Now lets see how we can in
fact construct the polynomials Lik recursively. We first construct a set of auxiliary polynomials, defined
by:

lik := (x − xi)k

k!

m∏
j=0
j ̸=i

(
x − xj

xi − xj

)nj

, ∀ 0 ≤ i ≤ m, ∀ 0 ≤ k ≤ ni − 1 (25.1.5)

Theorem 25.1.2. Lik satisfies the following recurrence relation:

Li,ni−1(x) = li,ni−1(x) ∀ i = 0, 1, . . . , m

Lik(x) = lik(x) −
ni−1∑

ν=k+1
l
(ν)
ik (xi)Liν(x) ∀ k ≤ ni − 2

Proof. We first show that

Li,ni−1(x) := li,ni−1(x), ∀ i = 0, 1, . . . , m

Note that from the definition of lik, we have xj is a root of li,ni−1, with multiplicity nj , if j ̸= i, and xi

is root of li,ni−1 with a multiplicity of ni − 1. Thus for any σ ∈ {0, 1, . . . , nd − 1}, with d ̸= i, we have
there exists at least one factor of (x − xd) in l

(σ)
i,ni−1(x) and hence l

(σ)
i,ni−1(xd) = 0. And if d = i, then

observe that l
(σ)
i,ni−1(xi) is non-zero if and only if σ = ni − 1, and in which case we have l

(ni−1)
i,ni−1 (xi) = 1.

Hence we have shown that
lσ
i,ni−1(xj) = δijδni−1,σ

But then since li,ni−1 ∈ Πn, from Theorem 25.1.1, we get that Li,ni−1(x) = li,ni−1(x), for each
i ∈ {0, . . . , m}.
Now to prove that other part of the recurrence relation we will use induction. Suppose Liν has the
desired properties from ν = ni − 1, ni − 2, . . . , k∗. Now fix j ∈ {0, 1, . . . , m} and consider the term

Jσ = l
(σ)
i,k∗−1(xj)︸ ︷︷ ︸

T1

−
ni−1∑
ν=k∗

l
(ν)
i,k∗−1(xi)L(σ)

iν (xj)︸ ︷︷ ︸
T2

where σ ∈ {0, 1, . . . , nj − 1}, then if j ̸= i, then both the terms T1 and T2 are zero, and so Jσ = 0,
in this case. Now if j = i, then note that for σ ≤ k∗ − 1, T2 does not contribute to the term Jσ, and
T1 = 1 if and only if σ = k∗ − 1, and is 0 otherwise. So, for σ ≤ k∗ − 1,

Jσ =
{

1 if σ = k∗ − 1
0 otherwise

On the other hand for σ > k∗ − 1, T2 will contribute to the term Jσ, when ν = σ, and hence in that
case we get

Jσ = l
(σ)
i,k∗−1(xi) − l

(σ)
i,k∗−1(xi) = 0

thus we in fact have Jσ = δijδk∗−1,σ, thus using Theorem 25.1.1 and induction, we get that

Lik(x) = lik(x) −
ni−1∑

ν=k+1
l
(ν)
ik (xi)Liν(x) ∀ k ≤ ni − 2

which completes the proof. ■
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Lecture 26
March 18

26.1 Algorithms for Hermite interpolation
Unfortunately Neville’s algorithm and Newton’s divided difference algorithm cannot be used to carry out
Hermite interpolation, as they assume the x-coordinates of the support points are all different. Our task
here then, is to develop algorithms that can be used to carry out Hermite interpolation. We begin by
introducing a technical tool that’ll help us with that task.

26.1.1 Virtual Abscissae
Suppose you are given m distinct reals x0 < x1 < · · · < xm, and for all 0 ≤ i ≤ m, at real xi you
are given the values f (0)(xi), f (1)(xi), . . . , f (ni−1)(xi), for some ni ∈ Z. Those reals and values are the
support points we shall work with. Define

Definition 26.1.1.

n =
(

m∑
i=0

ni

)
− 1

Now list the support points as follows:
1) First, list (x0, f (0)(x0)), (x0, f (1)(x0)), . . . , (x0, f (n0−1)(x0))

2) Then, append the list (x1, f (0)(x1)), (x1, f (1)(x1)), . . . , (x1, f (n1−1)(x1)) in that order to the pre-
existing list.

3) Then, append the list (x2, f (0)(x2)), (x2, f (1)(x2)), . . . , (x2, f (n2−1)(x2)) in that order to the pre-
existing list.

4) Continue this way until you...
.
.
.

m) Finally, append the list (xm, f (0)(xm)), (xm, f (1)(xm)), . . . , (xm, f (nm−1)(xm)) in that order to
the pre-existing list.

Since there are n + 1 support points in total, there must be n + 1 items in our final list. Number the
items in the list from 0 to n. Now we introduce two more definitions.
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Definition 26.1.2. Let ti be the be the x-coordinate of the i-th element in the list of support
points. Note that

t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn

Definition 26.1.3. Let sj be the number of times tj appears in the sequence t0, t1, . . . , tj .

At this point there is nothing this exposition would benefit more from than an example to illustrate the
definitions we have made so far. And so we supply one. And another one too!

Example 26.1.1. Suppose you are given the list of support points

(−49, 63), (1, 2), (1, 3), (5, −π), (22, 7)

Then, the sequence {ti} is
−49, 1, 1, 5, 22

and the sequence {si} is
1, 1, 2, 1, 1

Example 26.1.2. Suppose you are given list of support points

(1, 27), (2, 53), (2, 27), (3, 22), (4, 56), (4, 22), (4, 49), (273, 32)

Then, the sequence {ti} is
1, 2, 2, 3, 4, 4, 4, 273

and the sequence {si} is
1, 1, 2, 1, 1, 2, 3, 1

26.1.2 The problem of Hermite interpolation - rephrased.
Using the language of virtual abscissae defined in the previous section, we see that the problem of finding
a polynomial that interpolates the support points provided is precisely the problem of finding a polynomial
P01...n such that

P
(sj−1)
01...n (tj) = f (sj−1)(tj) ∀(0 ≤ j ≤ n) (26.1.1)

We have already proved (in a previous lecture) that there exists such a polynomial P01...n in Πn that is
unique in Πn. Write

P01...n(t) =
n∑

j=0
bj

tj

j!

Now, define

Definition 26.1.4.
Π(t) =

[
1, t, t2

2! , . . . , tn

n!

]
and

b =


b0
b1
b2
...

bn


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Note that Π(t)b = P01...n(t). Therefore, condition 26.1.1 can be replaced by the condition

Π(sj−1)(tj)b = f (sj−1)(tj) ∀(0 ≤ j ≤ n)

Denote the (n + 1) × (n + 1) matrix that is formed by letting the j-th row be Π(sj−1)(tj) by Vn, then

Vn =


Π(s0−1)(t0)
Π(s1−1)(t1)

...
Π(sn−1)(tn)


Then the condition on Π(t)b = P01...n(t) can be described using the language of linear algebra. More
specifically, the condition on P01...n(t) can be written


Π(s0−1)(t0)
Π(s1−1)(t1)

...
Π(sn−1)(tn)




b0
b1
b2
...

bn

 =


f (s0−1)(t0)
f (s1−1)(t1)
f (s2−1)(t2)

...
f (sn−1)(tn)

 (26.1.2)

Now, we prove an important theorem.

Theorem 26.1.3. The system of equations 26.1.2 is always solvable.

Proof. We proved (in an earlier lecture) that b is determined uniquely by the above condition, so if we
view Vn as a linear transformation from Rn+1 to Rn+1, Vn is injective. Then, by the Rank Nullity
theorem, Vn is also surjective, and thus Vn is invertible, and thus the system of equations 26.1.2 is
always solvable. ■

Since Vn is invertible, as we saw in the proof immediately above, we have reduced the problem of finding
P01...n(t) to a problem in linear algebra, and since there are many kinds of algorithms to invert many
kinds of matrices, we have practically obliterated the problem of Hermite interpolation.
As an aside, matrices of the form Vn are called Generalized Vandermonde Matrices. The Vander-
monde Matrix (without the adjective “general”) is the kind of Vn you get when sj = 1 for all 0 ≤ j ≤ n.
It can be factorized as follows

1 t0 t2
0 . . . tn

0
1 t1 t2

1 . . . tn
1

1 t2 t2
2 . . . tn

2
...

...
... . . . ...

1 tn t2
n . . . tn

n




1
0! 0 0 . . . 0
0 1

1! 0 . . . 0
0 0 1

2! . . . 0
...

...
... . . . ...

0 0 0 . . . 1
n!


(I shamelessly stole part of the latex for the above expression from Wikipedia). We conclude this section
with an example.
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Example 26.1.4. Suppose you’re told that the sequence {ti} is of the form

t0 = t1 = t2 < t3 = t4

Then, the Vandermonde Matrix V4 of this sequence is

1 t0
t2

0
2!

t3
0

3!
t4

0
4!

0 1 t1
t2

1
2!

t3
1

3!

0 0 1 t2
t2

2
2!

1 t3
t2

3
2!

t3
3

3!
t4

3
4!

0 1 t4
t2

4
2!

t3
4

3!



26.1.3 Generalizations of the techniques used in previous sections
Note that the definition of the sequence {sj} depends only on the definition of {tj}, and as long as
{tj} is non-decreasing, we can define and solve the systems of equations in the previous section like
we did there.
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Lecture 27
March 21, Part A

Now since, we have introduced the notion of Generalized Vandermonde Matrices, let us see how we
can prepare to use Neville’s algorithm, or Newton’s divided difference formula, for tackling Hermite
interpolation problems.

27.1 Neville Type Algorithm for Hermite Interpolation
We start off by associating each sequence

ti ≤ ti+1 ≤ · · · ≤ ti+k, 0 ≤ i ≤ i + k ≤ n

of virtual abscissae the solution Pi,...,i+k ∈ Πk of the partial Hermite interpolation problem, i.e, it
satisfies the equations

P
(sj−1)
i,i+1,...,i+k(tj) = f (sj−1)(tj), i ≤ j ≤ i + k (27.1.1)

where sj is the number of times tj , occurs in the subsequence ti, ti+1, . . . , tj .

Example 27.1.1. Suppose we are given that

x0 = 0, f
(0)
0 = −1, and f

(1)
0 = −2

x1 = 1, f
(0)
1 = 0, f

(1)
1 = 10, and f

(2)
1 = 40

Then our virtual abscissae {tj}’s are simply:

t0 = t1 := x0 = 0 and
t2 = t3 = t4 := x1 = 1

Now suppose we consider the subsequence t1, t2, t3, i.e., i = 1 and k = 2, then we get

s1 = 1, s2 = 1, and s3 = 2

and thus the corresponding partial Hermite interpolation polynomial will be P123 ∈ Π2, satisfying

P
(s1−1)
123 (t1) = P123(0) = f

(0)
0 = −1

P
(s2−1)
123 (t2) = P123(1) = f

(0)
1 = 0

P
(s3−1)
123 (t3) = P ′

123(1) = f
(1)
1 = 10

Using the above notations we have the following analogs to the Neville’s formulae:
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Theorem 27.1.2. The polynomials Pi,i+1,...,i+k ∈ Πk follows the following recursive relation:

• If ti = ti+1 = · · · = ti+k = xl for some l, then

Pi,i+1,...,i+k(x) =
k∑

r=0

f
(r)
l

r! (x − xl)r (27.1.2)

• And if ti < ti+k, then we have

Pi,i+1....,i+k(x) = (x − ti)Pi+1,...,i+k(x) − (x − ti+k)Pi,...,i+k−1(x)
ti+k − ti

(27.1.3)

27.2 Generalized Divided Differences
Analogous to the defintion of coefficients of divided differences, we now define the coefficients of gener-
alized divided differences.

Definition 27.2.1. The coefficients of generalized divided differences, denoted by

f [ti, ti+1, . . . , ti+k]

as the coefficient of xk in the polynomial Pi,i+1,...,i+k ∈ Πk as defined above according to
equation (27.1.1).

Now that we have discussed about the generalized Neville’s formulae, we can easily derive the formulae
for Newton’s generalized divided differences as follows:

Theorem 27.2.1. The coefficients of generalized divided differences satisfies the following re-
currence relations:

• If ti = ti+1 = · · · = ti+k = xl for some l, then

f [ti, ti+1, . . . , ti+k] = 1
k!f

(k)
l (27.2.1)

• And ti < ti+k, we have

f [ti, ti+1, . . . , ti+k] = f [i + 1, . . . , i + k] − f [i, . . . , i + k − 1]
ti+k − ti

(27.2.2)

Proof. The proof follows directly from comparing the coefficients of xk in the two cases in the equation
(27.1.2) and equation (27.1.3) given in Theorem 27.1.2. ■

45



Lecture 28
March 21, Part B

28.1 More interpolation algorithms for virtual abscissae
We present a version of Newton’s divided differences that works for virtual abscissae.

28.1.1 Newton’s divided differences for virtual abscissae
Note that the previous version of Newton’s divided differences we presented relies on the abscissae of the
support points being pairwise different. When working with virtual abscissae, we have no such guarantee.
Instead, we have to rely on alternate definitions, which we present immediately below.

Definition 28.1.1. Suppose you are given virtual abscissae t0 ≤ t1 ≤ · · · ≤ tn, and the
corresponding values of a function f and the derivatives of f at the virtual abscissae. Then, we
define the base cases

f [ti] = f(ti)

and we define

f [ti . . . ti+k] =


f [ti+1 . . . ti+k] − f [ti . . . ti+k−1]

ti+k − ti
if ti+k − ti ̸= 0

f (k)(xi)
k! if ti+k − ti = 0

Now, we present an example
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Example 28.1.1. Suppose you are given the support points (0, −1), (0, −2), (1, 0), (1, 10), (1, 40).
Then, the virtual abscissae are t0 = t1 < t2 = t3 = t4 with t0 = 0 and t1 = 1, and you know
that

f (0)(0) = −1, f (1)(0) = −2, f (0)(1) = 0, f (1)(1) = 10, f (2)(1) = 40

Then, the tableau for constructing the interpolating polynomial using Newton’s divided differences
is

ti

k 0 1 2 3 4

t0 −1
−2

t1 −1 3
1 6

t2 0 9 5
10 11

t3 0 20
10

t4 0

Next, we present a theorem that will let you calculate the interpolation polynomial for the support points
you are given.

Theorem 28.1.2. Just like in the case of the original Newton’s divided differences method, the
interpolating polynomial P01...n is given by

P01...n(t) =
n∑

j=0
f [t0 . . . tj ]

j−1∏
k=0

(t − tk)

Proof. The statement is obviously true for n = 0. Then, note that

P01...n − P01...(n−1) = f [t0, . . . , tn]xn + a degree n − 1 polynomial

Also, we know that P01...n − P01...(n−1) has the roots t0, t1, . . . , tn−1. Therefore,

P01...n − P01...(n−1) = f [t0, . . . , tn]
j−1∏
k=0

(t − tk)

By recursion, we are done. ■

Remark: This proof badly needs more explaining, but until the person doing the lecture before
this one pushes their notes, I can’t do anything about that.

28.2 Spline interpolation
28.2.1 Introduction
Given an interval [a, b], consider an arbitrary partition

∆: a = x0 < x1 · · · < xn

on [a, b]. The xi are called knots. Then we define spline functions as below.
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Definition 28.2.1. A spline function S∆ on [a, b] with the partition ∆ is a function from [a, b]
to R such that

S∆|(xi−1,xi) is a polynomial ∀(1 ≤ i ≤ n)

Definition 28.2.2. If in the above definition the restrictions S∆|(xi−1,xi) all belong to Π3, then
S∆ is said to be a cubic spline.

However, the above definition of cubic splines is hard to work with, so we shall impose more stringent
conditions on our cubic splines.

Definition 28.2.3. A spline function on S∆ on [a, b] with the partition ∆ is a cubic spline if
• S∆|[xi−1,xi] ∈ Π3 for all 1 ≤ i ≤ n. Note that we are now dealing with closed intervals

instead of open.
• S∆ is continuously differentiable at least twice in [a, b].

We shall assume these facts of the cubic splines we work with; now, and in the future.

28.2.2 The uniqueness of splines passing through n + 1 support points
Now suppose you’re given n + 1 ordinates Y = {y0, y1, . . . , yn}. We can impose n + 1 conditions on the
spline function S∆, namely

S∆(xi) = yi ∀(0 ≤ i ≤ n)

The set of conditions is denoted S∆(Y ; ·), and the n + 1 conditions can be written

S∆(Y ; xi) = yi ∀(0 ≤ i ≤ n) (28.2.1)

But S∆ is not a single polynomial function; it is piecewise polynomial. So we can’t use the unique-
ness/existence theorems developed in previous lectures. We have to develop specialized theorems to deal
with spline functions.
In order for our cubic splines satisfying conditions 28.2.1 to be unique, we need to impose additional
conditions on them, but there are multiple choices of uniqueness conditions we can use. We list three of
them:

1) S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0.

2) S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0, 1, and 2.

3) S′
∆(Y ; a) = y′

0, and S′
∆(Y ; b) = y′

n, where y′
0 and y′

n are fixed values given to you.
Any one of the three conditions above is sufficient to guarantee the uniqueness of the spline passing
through the support points (xi, yi) for all 0 ≤ i ≤ n.
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Lecture 29
March 25, Part A

29.1 Theoretical Foundations for Cubic Spline Interpolation
Let ∆ = {a = x0 < x1 < · < xn = b} be a partition of the interval [a, b].

Definition 29.1.1. A cubic spline function S∆ on ∆ is real function S∆ : [a, b] → R, with the
properties:

1. S∆ ∈ C2[a, b], i.e., S∆ is twice continuously differentiable on [a, b].
2. S∆|[xi,xi+1] ∈ Π3, i.e., coincides on every subinterval [xi, xi+1] with a polynomial of degree

at most three, for all i = 0, 1, . . . , n − 1.

We further define an interpolating spline function as follows:

Definition 29.1.2. For a finite sequence Y := (y0, y1, . . . , yn) of n+1 real numbers, we denote
by

S∆(Y ; ·)

as an interpolating spline function S∆ with S∆(Y ; xi) = yi for all i ∈ {0, 1, . . . , n}.

and we have already discussed in Lecture 28, that such a interpolating spline function is unique if any
one of the three following condition is satisfied:

(a) S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0.

(b) S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0, 1, and 2.

(c) S′
∆(Y ; a) = y′

0, and S′
∆(Y ; b) = y′

n, where y′
0 and y′

n are any fixed real numbers.
Let m ∈ N and we shall now consider the following sets

Km[a, b] := {f : [a, b] → R | f (m−1) is absolutely continuous on [a, b] and f (m) ∈ L2[a, b]} (29.1.1)

and we define

Km
p [a, b] := {f ∈ Km[a, b] | f (k)(a) = f (k)(b), ∀ k = 0, 1, . . . , m − 1} (29.1.2)

So particularly for m = 2, we have f ∈ K2
p [a, b], if

• f (0) and f (1) are absolutely continuous and f (2) exists.

• f (2) ∈ L2[a, b], i.e.,
∫ b

a
|f (2)(x)|2 dx exists and is finite.

• And finally f (0)(a) = f (0)(b) and f (1)(a) = f (1)(b).
note that the first two conditions are enough for f ∈ K2[a, b].
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29.1.1 Holladay’s Identity
Then note that S∆ ∈ K3[a, b], and further if S

(k)
∆ (a) = S

(k)
∆ (b) for k = 0, 1, 2 then S∆ ∈ K3

p [a, b].
Also note that for all f ∈ K2[a, b], we can define the following semi-norm

∥f∥2 :=
∫ b

a

|f(x)|2 dx (29.1.3)

Now with all that definitions in mind, we are ready to define the following identity due to Holladay,

Theorem 29.1.1. (Holladay’s Identity) Let f ∈ K2[a, b] and let

∆ = {a = x0 < x1 < · · · < xn = b}

be a partition of the interval [a, b], and if S∆ is a spline function with knots at xi ∈ ∆, then

∥f − S∆∥2 = ∥f∥2 − ∥S∆∥2 − 2
[

(f ′(x) − S′
∆(x))S(2)

∆ (x)
∣∣∣b
a

−
n∑

i=1
(f(x) − S∆(x))S(3)

∆ (x)
∣∣∣x−

i

x+
i−1

]

Proof. We have

∥f − S∆∥2 =
∫ b

a

∣∣∣f (2)(x) − S
(2)
∆ (x)

∣∣∣2 dx

=
∫ b

a

∣∣∣f (2)(x)
∣∣∣2 dx − 2

∫ b

a

f (2)(x)S(2)
∆ (x) dx +

∫ b

a

∣∣∣S(2)
∆ (x)

∣∣∣2 dx

=
∫ b

a

∣∣∣f (2)(x)
∣∣∣2 dx −

∫ b

a

∣∣∣S(2)
∆ (x)

∣∣∣2 dx − 2
∫ b

a

(
f (2)(x) − S

(2)
∆ (x)

)
S

(2)
∆ (x) dx

= ∥f∥2 − ∥S∆∥2 − 2
∫ b

a

(
f (2)(x) − S

(2)
∆ (x)

)
S

(2)
∆ (x) dx

Now observe that using intergration by parts we can write∫ xi

xi−1

(
f (2)(x) − S

(2)
∆ (x)

)
S

(2)
∆ (x) dx =

(
f (1)(x) − S

(1)
∆ (x)

)
S

(2)
∆ (x)

∣∣∣xi

xi−1
−
∫ xi

xi−1

(
f (1)(x) − S

(1)
∆ (x)

)
S

(3)
∆ (x) dx

which can be further broken down as∫ xi

xi−1

(
f (1)(x) − S

(1)
∆ (x)

)
S

(3)
∆ (x) dx = (f(x) − S∆(x)) S

(3)
∆ (x)

∣∣∣x−
i

x+
i−1

−
∫ xi

xi−1

(f(x) − S∆(x)) S
(4)
∆ (x) dx

(1)= (f(x) − S∆(x)) S
(3)
∆ (x)

∣∣∣x−
i

x+
i−1

where (1), follows from the fact that S∆|(xi−1,xi) ∈ Π3, and hence S
(4)
∆ ≡ 0 on (xi−1, xi), and combining

the two results we got from intergration by parts we get that∫ b

a

(
f (2)(x) − S

(2)
∆ (x)

)
S

(2)
∆ (x) dx =

n∑
i=1

∫ xi

xi−1

(
f (2)(x) − S

(2)
∆ (x)

)
S

(2)
∆ (x) dx

=
n∑

i=1
(f(x) − S∆(x)) S

(3)
∆ (x)

∣∣∣xi

xi−1
−

n∑
i=1

(f(x) − S∆(x)) S
(3)
∆ (x)

∣∣∣x−
i

x+
i−1

= (f(x) − S∆(x))S(3)
∆ (x)

∣∣∣b
a

−
n∑

i=1
(f(x) − S∆(x)) S

(3)
∆ (x)

∣∣∣x−
i

x+
i−1

which completes the proof of Theorem 29.1.1. ■
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29.1.2 Minimum Semi-norm Property of Spline Functions

Theorem 29.1.2. Let ∆ = {a = x0 < x1 < · · · < xn = b} be a partition of the interval
[a, b] and let f ∈ K2[a, b]. And suppose we are given the values Y = (y0, y1, . . . , yn) such that
f(xi) = yi, ∀ i ∈ {0, 1, . . . , n}. Then

0 ≤ ∥f − S∆(Y ; ·)∥2 = ∥f∥2 − ∥S∆(Y ; ·)∥2

holds for every spline function S∆(Y ; ·) provided one of the following conditions is true:
(a) S

(2)
∆ (a) = S

(2)
∆ (b) = 0.

(b) f ∈ K2
p [a, b] and S∆(Y ; ·) ∈ K2

p [a, b].
(c) S′

∆(Y ; a) = f ′(a) and S′
∆(Y ; b) = f ′(b).

Proof. First note that from the definition of spline interpolation function S∆(Y ; ·), we have

lim
x→x−

k

f(x) = f(xk) = yk = lim
x→x−

k

S∆(Y ; x)

and
lim

x→x+
k

f(x) = f(xk) = yk = lim
x→x+

k

S∆(Y ; x)

for any k ∈ {0, 1, . . . , n}. Thus the term
n∑

i=1
(f(x) − S∆(Y ; x)) S

(3)
∆ (Y ; x)

∣∣∣x−
i

x+
i−1

= 0

and hence using Holladay’s identity (Theorem 29.1.1), we get

∥f − S∆(Y ; ·)∥2 = ∥f∥2 − ∥S∆(Y ; ·)∥2 − 2 (f ′(x) − S′
∆(Y ; x)) S

(2)
∆ (Y ; x)

∣∣∣b
a

(29.1.4)

But then its easy to observe that for any of the three conditions (a), (b) or (c), the term

(f ′(x) − S′
∆(Y ; x)) S

(2)
∆ (Y ; x)

∣∣∣b
a

= 0

Thus we have
∥f − S∆(Y ; ·)∥2 = ∥f∥2 − ∥S∆(Y ; ·)∥2 (29.1.5)

but it trivially follows from the definition of semi-norm, that ∥f − S∆(Y ; )∥ ≥ 0, which completes our
proof. ■

But why is the spline Interpolation, so important? We end this chapter with the following geometric
interpretation of the spline interpolation.

29.1.3 Geometric Interpretation of Cubic Spline Functions

Definition 29.1.3. Let f ∈ K2[a, b], then the curvature of f at the point x ∈ [a, b], denoted
by κx is defined by

κx = f (2)(x)
(1 + f ′(x)2) 3

2

Now suppose we have |f ′(x)| ≪ 1, i.e., |f ′(x)| is very small compared to 1, then in that case we have

κx ≈ f (2)(x)
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But observe that the term
∥f∥2 =

∫ b

a

|f (2)(x)|2 dx

is kind of measure for the total curvature of the function f in the interval [a, b], but from Theorem
29.1.2, we have already shown that if the spline function satisfies certain conditions, then it minimizes
the term ∥f∥2. So we can say that a spline function is the "smoothest" function to interpolate the given
support points (xi, yi).
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Lecture 30
March 25, Part B

30.1 Uniqueness of Spline Function
We now prove that under the hypothesis of Theorem 29.1.2, in each of the three cases there exists an
unique spline function.
We restate the Theorem 29.1.2 as follows:

Theorem 30.1.1. Let ∆ = {a = x0 < x1 < · · · < xn = b} be a partition of the interval
[a, b] and let f ∈ K2[a, b]. And suppose we are given the values Y = (y0, y1, . . . , yn) such that
f(xi) = yi, ∀ i ∈ {0, 1, . . . , n}. Then

0 ≤ ∥f − S∆(Y ; ·)∥2 = ∥f∥2 − ∥S∆(Y ; ·)∥2

holds for every spline function S∆(Y ; ·) provided one of the following conditions is true:
(a) S

(2)
∆ (a) = S

(2)
∆ (b) = 0.

(b) f ∈ K2
p [a, b] and S∆(Y ; ·) ∈ K2

p [a, b].
(c) S′

∆(Y ; a) = f ′(a) and S′
∆(Y ; b) = f ′(b).

Furthermore in each of the cases the spline function S∆(Y ; ·) is uniquely determined.

Proof. In the proof of Theorem 29.1.2, we already shown that the spline function minimizes the
semi-norm if any of the conditions (a), (b) or (c) is met. So now we only need to check the uniqueness.
Suppose there exists two spline functions S∆(Y ; ·) and S̃∆(Y ; ·) satisfying the hypothesis. But then since
S∆(Y ; ·), S̃∆(Y ; ·) ∈ K2[a, b], so we can use S̃∆(Y ; ·) to play the role of f ∈ K2[a, b]. But then from
the semi-norm minimizing property of spline function (Theorem 29.1.2), we get that

∥S̃∆(Y ; ·) − S∆(Y ; ·)∥2 = ∥S̃∆(Y ; ·)∥2 − ∥S∆(Y ; ·)∥2 ≥ 0 (30.1.1)

But then we can switch the roles of S̃∆(Y ; ·) and S∆(Y ; ·), i.e., in this time we can take S∆(Y ; ·) to
play the role of the f ∈ K2[a, b], then we get

∥S̃∆(Y ; ·) − S∆(Y ; ·)∥2 = ∥S∆(Y ; ·) − S̃∆(Y ; ·)∥2

= ∥S∆(Y ; ·)∥2 − ∥S̃∆(Y ; ·)∥2

(30.1.1)
≤ 0

Thus we get
∥S̃∆(Y ; ·) − S∆(Y ; ·)∥2 = 0

which gives us ∫ b

a

∣∣∣S̃(2)
∆ (Y ; ·) − S

(2)
∆ (Y ; ·)

∣∣∣2 dx = 0 (30.1.2)
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but then since S̃∆(Y ; ·) ∈ C2[a, b] and S∆(Y ; ·) ∈ C2[a, b], we get that equation (30.1.2) holds if and
only if

S̃
(2)
∆ (Y ; ·) ≡ S

(2)
∆ (Y ; ·) (30.1.3)

but then twice intergrating both sides of equation (30.1.3), we get that

S̃∆(Y ; ·) ≡ S∆(Y ; ·) + cx + d

but then we can easily compute c and d using the fact that S̃∆(Y ; a) = S∆(Y ; a) and S̃∆(Y ; b) =
S∆(Y ; b). This gives us c = d = 0, and hence we have

S̃∆(Y ; ·) ≡ S∆(Y ; ·)

which completes the proof of the uniqueness. ■

We end this chapter, with some remarks on the three conditions (a), (b) and (c) in Theorem 30.1.1.

Remark:
(i) The spline function arising from condition (a), is regarded as natural spline function, as it

does not have any other dependency on the function f , which we are trying to interpolate.
(ii) On the other hand (b), is restricted to only functions f ∈ K2

p [a, b].
(iii) And finally, (c) kind of restricts the range of the function f , since we are fixing the values

f ′(a) = y′
0 and f ′(b) = y′

n, where y′
0 = S′

∆(Y ; x0) and y′
n = S′

∆(Y ; xn).
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Lecture 31
March 28

31.1 Constructing an interpolating cubic spline
We want to construct an interpolating cubic spline from [a, b] to R that takes the value yi at xi for n+1
given support points (x0, y0), (x1, y1), . . . , (xn, yn), with x0 < x1 < · · · < xn.
We begin by listing all the inputs we are given:

• The interval [a, b].
• The partition ∆ = {a = x0 < x1 < · · · < xn = b}.
• The set Y = {y0, y1, . . . , yn}.

We define

Definition 31.1.1.
Ij = [xj−1, xj ] ∀(1 ≤ j ≤ n)

and
hj = xj − xj−1 ∀(1 ≤ j ≤ n)

31.1.1 Brief description of the following subsections, and one new definition
We have not yet constructed the interpolating cubic spline, but we shall show that it is determined
completely by the values of its second derivatives at the knots (the xi).
To that end, define

Definition 31.1.2.
Mi = S′′

∆(Y ; xi) ∀(1 ≤ j ≤ n)

Next, we shall find relationships between the Mi, that almost completely determine them given Y ; just
a few more conditions, and we’d be done. Then, if we impose any one of the three boundary conditions
from the end of the notes for lecture 28 (which are actually relations between the Mi), we shall have
obtained a set of conditions that uniquely determine our interpolating cubic spline.
Then, we shall observe that the conditions on the Mi are linear equations, and we shall use linear algebra
to find a set of M0, M1, . . . , Mn that make the interpolating polynomial pass through the support points
(if such a set exists).
In what follows, we denote the cubic spline we wish to find by S∆(Y ; x). Then, as a reminder, note that
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the interpolating conditions on S∆(Y ; x) are

S∆(Y ; xi) = yi ∀(0 ≤ i ≤ n)

31.1.2 The interpolating cubic spline is determined entirely by its second
derivatives at the knots

Note that since we are working with the abstract form of our cubic spline (that we have not yet con-
structed), we cannot actually compute the Mi. Nevertheless, we can work with them without knowing
their values to show that they completely characterize the cubic spline.
In what follows, fix an arbitrary interval Ik+1. We state a theorem.

Theorem 31.1.1.

S′′
∆(Y ; x)|Ik+1 = Mk

(
xk+1 − x

hk+1

)
+ Mk+1

(
x − xk

hk+1

)

Proof. By the definition of a cubic spline, S′′
∆(Y ; x)|Ik+1 ∈ Π1, is a linear function. But we also know

that we must have (by the definition of the Mi, see Definition 31.1.2)

S′′
∆(Y ; xk)|Ik+1 = Mk

and
S′′

∆(Y ; xk+1)|Ik+1 = Mk+1

Linear functions are completely determined by their values at two distinct locations, and it is easy to
verify that the formula given for S′′

∆(Y ; x)|Ik+1 does satisfy the two equations above. ■

Theorem 31.1.2.

S∆(Y ; x)|Ik+1 = Mk
(xk+1 − x)3

6hk+1
+ Mk+1

(x − xk)3

6hk+1
+ Ak(x − xk) + Bk

where

Bk = yk −
Mkh2

k+1
6

Ak = yk+1 − yk

hk+1
− hk+1

6 (Mk+1 − Mk)

Proof. Use theorem 31.1.1 and integrate twice to obtain the formula

S∆(Y ; x)|Ik+1 = Mk
(xk+1 − x)3

6hk+1
+ Mk+1

(x − xk)3

6hk+1
+ c1x + c2

for some constants c1, c2. Now, by choosing Ak and Bk properly, we can have c1x+c2 = Ak(x−xk)+Bk.
To see that Ak and Bk have the forms mentioned in the statement of the theorem, note that by the
interpolation conditions given to us

S∆(Y ; xk)|Ik+1 = yk

S∆(Y ; xk+1)|Ik+1 = yk+1
=⇒

Mk

h2
k+1
6 + Bk = yk

Mk+1
h2

k+1
6 + Akhk+1 + Bk = yk+1

Solving for Ak and Bk gives us the desired result. ■
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Remark: The above theorem says that the interpolating cubic spline’s restrictions to the intervals
Ij can be calculated in terms of the Mi. Since the spline is defined by its behaviour on the
restrictions to the Ij , that completely determines the spline.

Now, let us try to find constants αk, βk, γk, δk such that S∆(Y ; x)|Ik+1 = αk(x − xk)3 + βk(x − xk)2 +
γk(x − xk) + δk

Theorem 31.1.3.

S∆(Y ; x)|Ik+1 = αk(x − xk)3 + βk(x − xk)2 + γk(x − xk) + δk

where

δk = yk

γk = yk+1 − yk

hk+1
− hk+1

6 (2Mk + Mk+1)

βk = Mk

2

αk = Mk+1 − Mk

6hk+1

Proof. Use theorem 31.1.2, and differentiate, plug in support points, solve, repeat. ■

31.1.3 Relations between the Mi

Since we haven’t constructed the interpolating cubic spline S∆(Y ; x), we cannot compute its Mi. But
there exist relations between them, relations in the form of linear equations, that we can solve to determine
the Mi. Unfortunately there are (n + 1) Mi to determine (namely M0, M1, . . . , Mn), and in this section
we shall only be able to derive n − 1 linear equations involving the Mi.
That is where the boundary conditions described at the end of the notes for lecture 28 come in. They
reduce the degrees of freedom by an additional 2, so that we get a system of equations in the Mi that
we can solve uniquely (assuming the matrix formed by them is non-singular). The boundary conditions
shall be described in greater detail in the next sub-section.

Theorem 31.1.4.

hk

6 Mk−1 + hk + hk+1

3 Mk + hk+1

6 Mk+1 = yk+1 − yk

hk+1
− yk − yk−1

hk

for all 1 ≤ k ≤ n − 1.

Proof. Recall that we had imposed the condition that our cubic splines be at least twice continuously
differentiable in lecture 28.
Then, since S∆(Y ; x) is a cubic spline, we must have

lim
x→x−

S′
∆(Y ; x) = lim

x→x+
S′

∆(Y ; x)

Using theorem 31.1.3, and doing a lot of boring and uninspired algebra gives us the result. ■

Remark: The above theorem gives us n − 1 linear equations in n + 1 variables. We are short 2
equations. Which brings us to the next sub-section.
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31.1.4 Boundary conditions
We recall the three boundary conditions mentioned at the end of lecture 28.

1) S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0.

2) S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0, 1, and 2.

3) S′
∆(Y ; a) = y′

0, and S′
∆(Y ; b) = y′

n, where y′
0 and y′

n are fixed values given to you.
When used in conjunction with the interpolation conditions, any one of the three conditions above is
sufficient to guarantee the existence of n + 1 linear equations in the n + 1 variables M0, M1, . . . , Mn.
We shall prove that below.

Theorem 31.1.5. Given the interpolation conditions, and the boundary condition 1), there are
a total of n + 1 linear equations in the n + 1 variables M0, M1, . . . , Mn.

Proof. Theorem 31.1.4 gives us n − 1 linear equations in M0, M1, . . . , Mn. Boundary condition 1) says
that

S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0 =⇒ M0 = Mn = 0 =⇒ M0 = 0 and Mn = 0

and therefore gives us two more linear equations in M0, M1, . . . , Mn. We now have n+1 linear equations
in the n + 1 variables M0, M1, . . . , Mn. ■

Theorem 31.1.6. Given the interpolation conditions, and the boundary condition 2), there are
a total of n + 1 linear equations in the n + 1 variables M0, M1, . . . , Mn.

Proof. Boundary condition 2) says that

S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0, 1, and 2

• Implications of S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0:

S
(0)
∆ (Y ; a) = S

(0)
∆ (Y ; b) =⇒ y0 = yn

• Implications of S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 2:

S
(2)
∆ (Y ; a) = S

(2)
∆ (Y ; b) =⇒ M0 = Mn

• Implications of S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 1:

S
(1)
∆ (Y ; a) = S

(1)
∆ (Y ; b)

(1)=⇒ − M0h1

2 + y1 − y0

h1
− h1(M1 − M0)

6 = Mnhn

2 + yn − yn−1

2 − hn(Mn − Mn−1)
6

(2)=⇒ hn

6 Mn−1 + hn + h1

3 Mn + h1

6 M1 = y1 − yn

h1
− yn − yn−1

hn

where implication (1) follows from, e.g., theorem 31.1.3, and implication (2) follows from the facts
that y0 = yn and M0 = Mn as we proved above.

We now have n + 1 linear equations in the n + 1 variables M0, M1, . . . , Mn, namely
• The n − 1 linear equations theorem 31.1.4 give us.
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• The linear equation M0 = Mn the case k = 2 gives us.
• The linear equation

hn

6 Mn−1 + hn + h1

3 Mn + h1

6 M1 = y1 − yn

h1
− yn − yn−1

hn

the case k = 1 gives us.
■

Theorem 31.1.7. Given the interpolation conditions, and the boundary condition 3), there are
a total of n + 1 linear equations in the n + 1 variables M0, M1, . . . , Mn.

Proof. Left as an exercise to the reader. ■

31.1.5 Using linear algebra to construct the interpolating spline
We first introduce some new notation.

Definition 31.1.3.
µk = hk

hk+1 + hk
∀(1 ≤ k ≤ n − 1)

λk = hk+1

hk+1 + hk
∀(1 ≤ k ≤ n − 1)

dk = 6
hk+1 + hk

(
−yk + yk+1

hk+1
− yk − yk−1

hk

)
∀(1 ≤ k ≤ n − 1)

Now, suppose we have decided to impose boundary condition 1) on the interpolating spline; that is, the
condition

S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0
In addition, define µn = λ0 = 0, and d0 = dn = 0. Then the n + 1 conditions on M0, M1, . . . , Mn

can be written as follows after multiplying all the conditions except M0 = 0 and Mn = 0 by the factor
6

hk+1+hk 

2 λ0

µ1 2 λ1

µ2 2 λ2

. . . . . . . . .
. . . . . . λn−1

µn 2


︸ ︷︷ ︸

A



M0

M1

M2

...

...
Mn


︸ ︷︷ ︸

M

=



d0

d1

d2

...

...
dn


︸ ︷︷ ︸

d

Empty entries denote zeroes. Matrices of the form of A are called tridiagonal matrices, or banded
matrices. There exist efficient algorithms specifically designed to compute the inverses of tridiagonal
matrices (if they exist). Note that A depends only on the partition ∆, not on Y . If the matrix A is
invertible, then the we can precompute A−1 and solve for the equation

AM = d

by computing M = A−1d. Finally, note that by their definitions,
0 < µk, λk < 1 ∀(1 ≤ k ≤ n − 1)

We shall discuss the invertibility of A in greater detail in the notes for the next lecture.
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Lecture 32
April 1, Part A

(This part is labelled lecture 32, part B on quadrature is 33)

32.1 Definitions from Lecture 31 recapped
Recall the following definitions for the spline function S∆(Y ; x), with ∆ = {x0, . . . , xn} a partition of
[a, b] and Y = {y0, . . . , yn} a set of support points and the boundary values y′

0, y′
n.

Definition 32.1.1.

• hk+1 = xk+1 − xk ∀ k ∈ {0, . . . , n − 1}

• Moments of the spline Mk = S′′
∆(Y ; xk) ∀ k ∈ {0, . . . , n}

• λk = hk+1

hk + hk+1
∀ k ∈ {1, . . . , n − 1}

• µk = 1 − λk = hk

hk + hk+1
∀ k ∈ {1, . . . , n − 1}

• dk = 6
hk + hk+1

(
yk+1 − yk

hk+1
− yk − yk−1

hk

)
∀ k ∈ {1, . . . , n − 1}

• The three boundary conditions imposed on splines, in terms of moments:
Case (a): S′′

∆(Y ; a) = M0 = 0 = Mn = S′′
∆(Y ; b)

Case (b): S′′
∆(Y ; a) = S′′

∆(Y ; b) =⇒ M0 = Mn

S′
∆(Y ; a) = S′

∆(Y ; b) =⇒ hn

6 Mn−1+hn + h1

3 Mn+h1

6 M1 = y1 − yn

h1
−yn − yn−1

hn

Case (c): S′
∆(Y ; a) = y′

0 =⇒ h1

3 M0 + h1

6 M1 = y1 − y0

h1
− y′

0

S′
∆(Y ; b) = y′

n =⇒ hn

6 Mn−1 + hn

3 Mn = y′
n − yn − yn−1

hn

We also have from the definition of the spline function that,

hk

hk + hk+1
Mk−1 + 2Mk + hk+1

hk + hk+1
Mk+1 = 6

hk + hk+1

(
yk+1 − yk

hk+1
− yk − yk−1

hk

)
(32.1)

for k ∈ {1, . . . , n − 1}
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32.2 Finding the moments of the spline
Using the definitions 32.1.1, (32.1) becomes

µkMk−1 + 2Mk + λkMk+1 = dk

for k ∈ {1, . . . , n − 1}.
We define λ, µ, d separately for each of the three boundary conditions as follows,

Case (a): λ0 = d0 = 0, µn = dn = 0

Case (b): λn = h1

hn + h1
, µn = hn

hn + h1
, dn = 6

hn + h1

(
y1 − yn

h1
− yn − yn−1

hn

)
Case (c): λ0 = 1, d0 = 6

h1

(
y1 − y0

h1
− y′

0

)
, µn = 1, dn = 6

hn

(
y′

n − yn − yn−1

hn

)
Including these equations in (32.1) we get the following matrix equations for the moments of the spline,

2 λ0 0 · · · 0 0
µ1 2 λ1 · · · 0 0
0 µ2 2 · · · 0 0
...

... . . . . . . . . . ...
0 0 0 · · · 2 λn−1
0 0 0 · · · µn 2





M0
M1
M2

...
Mn−1
Mn


=



d0
d1
d2
...

dn−1
dn


(32.2)



2 λ1 0 · · · 0 µ1
µ2 2 λ2 · · · 0 0
0 µ3 2 · · · 0 0
...

... . . . . . . . . . ...
0 0 0 · · · 2 λn−1

λn 0 0 · · · µn 2





M1
M2
M3

...
Mn−1
Mn


=



d1
d2
d3
...

dn−1
dn


(32.3)

where, (32.2) holds for cases (a) and (c), and (32.3) holds for case (b) where M0 = Mn by periodicity.

Remark: The coefficients λk, µk, dk are all well-defined for all k in all three cases. Further, they
depend only on the xi and not on the support points yi and the boundary values y′

0, y′
n. We also

have for all k,
λk ≥ 0, µk ≥ 0, λk + µk = 1

32.3 Existence of moments of the spline
We now prove the following existence and uniqueness theorem.

Theorem 32.3.1. The systems (32.2) and (32.3) have unique solutions for all partitions ∆ of
[a, b].

Proof. Let A be the coefficient matrix of (32.2). If z, w ∈ Rn+1 be such that Az = w and |zr| =
maxk |zk|, then

wr = µrzr−1 + 2zr + λrzr+1

=⇒ |wr| ≥ 2|zr| − µr|zr−1| − λr|zr+1| (Triangle inequality, λk ≥ 0, µk ≥ 0)
=⇒ max

k
|wk| ≥ (2 − µr − λr)|zr| (Definition of zr)

=⇒ max
k

|wk| ≥ |zr| (λk + µk = 1)
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Hence, Az = w =⇒ maxk |zk| ≤ maxk |wk|

Let B be the coefficient matrix of (32.3). If z, w ∈ Rn be such that Bz = w and we define z0 =
zn, w0 = wn, we get the same equations as for A by using the periodicity.
Hence, Bz = w =⇒ maxk |zk| ≤ maxk |wk|.
Now, let C denote the coefficient matrix of (32.2) or (32.3). If C is singular, there is some vector z ̸= 0
such that Cz = 0. But then maxk |zk| ≤ 0 which is a contradiction.
Hence, C is non-singular, and the systems both have unique solutions. ■

62



Lecture 34
April 1, Part B

34.1 Quadrature
We have a function f about we don’t know much and we want to calculate the integral I =

∫ b

a
f(x)dx,

where a, b, f(x) are given. Out of the many ways of solving this problem, a series of them can be classified
into a series of formulae called the Newton-Cotes Formulae, some of which are:

• Trapezoidal Rule
• Simpson’s Rule (Most popular for "smooth" functions f and when b − a is finite.)
• Milne’s Rule

34.1.1 Simpson’s Rule
The defining feature of a Newton-Cotes formulation is that we have uniform partitioning ∆u of b − a
into (say) n sub-intervals. Let h = b−a

n be the length of each sub-interval. Then our partition can
be specified by the two numbers (n, h). Let x0 = a, xn = b and xi = x0 + ih, 0 ≤ i ≤ n. Define
Ij = [xj−1, xj ], j = 1, . . . , n be the jth sub-interval.
Now we create an interpolating polynomial Pn(x) ∈ Πn such that P (xi) = f(xi) = fi, ∀i = 0, . . . , n.
We shall use this polynomial to approximate the integral. Note that xk − xi = (k − i)h. So, we have
the condition that xk = xi =⇒ k = i.

Recall that the Lagrange Interpolation gives us the polynomial Pn(x) =
n∑

i=0
fiLi such that Li(x) =

n∏
k=0(k ̸=i)

.

Let t = x−a
h for any x ∈ [a, b]. Here, we shall scale/convert the variable x using the dimensionless

variable t. Using this, we get xi − xk = h(i − k). So, we can write

Li(x) =
n∏

k=0(k ̸=i)

(x − xk)
(xi − xk)

=
n∏

k=0(k ̸=i)

t − k

i − k
= Φi(t).
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Therefore, we can finally write

b∫
a

Pn(x)dx =
n∑

i=0
fi

b∫
a

Li(x)dx

=
n∑

i=0
hfi

n∫
i=0

Φi(t)dt

= h

n∑
i=0

fiαi

where αi =
n∫

t=0
Φi(t)dt. Note that the weights αi depend only on n and do depend on a, b.

Example 34.1.1. Suppose we are given n = 2, the support ordinates f0, f1, f2 and limits a =
0, b = 2. What is our approximation to I?
By Lagrange Interpolation, we first get P2(x) ∈ Π2. Then, using Simpson’s Rule, We get

2∫
0

P2(x)dx = h

3 [f0 + 4f1 + f2]

= 1
3 [f0 + 4f1 + f2] (h = 1).

34.1.2 Trapezoidal Rule
34.1.3 Error

The error is given by
b∫

a

Pn(x)cdx −
b∫

a

f(x)dx.

This error term for the Trapezoidal Rule is given by h3

12 f (2)(ξ) for some ξ ∈ [a, b]. The same for
Simpson’s Rule is given by h5

90 f (4)f(ξ) for some ξ ∈ [a, b].
Apply the rules in a composite form:-
Trapezoidal Rule

h
2[f(x0)+f(x1)] . We apply the Trapezoidal Rule to every interval Ii = [xi, xi+1] for i = 0, . . . , n − 1 to get
Ii = h

2 [f(xi) + f(xi+1)]. Therefore, the total integral becomes

T (h) =
n−1∑
i=0

Ii

= h[f(a)
2 + f(a + h) + f(a + 2h) + . . . + f(b − h) + f(b)

2 ]

34.2 Approximation (Composite) for Simpson’s Rule
Trapezoidal Rule is an O(2) method while Simpson’s Rule is an O(4) method.
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Lecture 35
April 4, Part A

We have already seen that we can find the integration
∫ b

a
f(x) dx using Lagrange’s interpolation. Now

we try to find additional integration rules using Hermite interpolation. For this we take the simple
example when P ∈ Π3 such that

P (i)(a) = f (i)(a) and P (i)(b) = f (i)(b), ∀ i = 0, 1 (35.0.1)

For simplicity we take a = 0, b = 1. Thus recall from Lecture 25, that the Hermite interpolation gives

P (x) =
1∑

i=0

1∑
k=0

f
(k)
i Lik(x)

we get that

L01(x) = x(x − 1)2 and L00(x) = (x − 1)2 + 2x(x − 1)2

L11(x) = x2(x − 1) and L00(x) = x2 − 2x2(x − 1)

and hence, we get that

P (x) = f(0)[(x − 1)2 + 2x(x − 1)2] + f ′(0)x(x − 1)2 + f(1)[x2 − 2x2(x − 1)] + f ′(1)x2(x − 1)

and hence we get that ∫ 1

0
P (x) dx = 1

2(f(0) + f(1)) + 1
12(f ′(0) − f ′(1))

but then for general a and b, we can take P (t) = f(a + ht) where h := b − a, and then∫ b

a

f(x) dx = h

∫ 1

0
f(a + ht) dt

≈
∫ 1

0
P (t) dt

= h

2 (f(a) + f(b)) + h2

12(f ′(a) − f ′(b))

Now, when are computing the integral using different quadrature rule (integration rules) such as the
above Hermite interpolation one, we don’t apply the formula on the whole interval, instead we apply it
on subintervals into which the interval [a, b] has been divided. The full integration is then approximated
by the sum of the approximations to the subintervals. We are here approximating the integrals locally,
and then extending it, this gives rise to a composite rule. We now look at the composite rules in various
cases quadrature rules.
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35.1 Composition of Errors in Trapezoidal and Simpson’s Rule
35.1.1 Trapezoidal Rule
In this case we assume that the quadrature rule on an interval [xi, xi+1] is given by

Ii = h

2 (f(xi) + f(xi+1)) (35.1.1)

where [xi, xi+1] are the subintervals formed by the partition xi = a + ih, ∀ i = 0, 1, . . . , N , where
h := b−a

N . Thus for the entire interval we get the approximation

T (h) :=
N−1∑
i=0

Ii

= h

(
f(a)

2 + f(a + h) + f(a + 2h) + · · · + f(b − h) + f(b)
2

)
Assuming that f ∈ C2[a, b], it can be shown that (using Peano’s Error formula which is stated in the
next section) the error denoted by εi is

εi := Ii −
∫ xi+1

xi

f(x) dx = h3

12f (2)(ξi) (35.1.2)

for some ξi ∈ (xi, xi+1). Thus summing all these individual error terms we get that

T (h) −
∫ b

a

f(x) dx =
N−1∑
i=0

(
Ii −

∫ xi+1

xi

f(x) dx

)

= h3

12

N−1∑
i=0

f (2)(ξi)

= h2

12(b − a)
(

1
N

N−1∑
i=0

f (2)(ξi)
)

(1)= h2

12(b − a)f (2)(ξ)

where (1) follows from the fact that

min
i

f (2)(ξi) ≤ 1
N

N−1∑
i=0

f (2)(ξi) ≤ max
i

f (2)(ξi)

and since f ∈ C2[a, b] hence by Intermediate Value Property, there exists a ξ ∈ [mini ξi, maxi ξi]
such that

f (2)(ξ) = 1
N

N−1∑
i=0

f (2)(ξi)

Hence we have shown that

T (h) −
∫ b

a

f(x) dx = h2

12(b − a)f (2)(ξ), for some ξ ∈ (a, b) (35.1.3)

Thus we get that as h tends to 0, the approximation error approaches zero as fast as h2, so the Trapezoidal
rule is a method of order 2. So what have shown is the following
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Theorem 35.1.1. The approximation error in the Trapezoidal rule approaches 0 as fast as h2,
i.e., the Trapezoidal rule is a method of order 2, and in general for the partition

∆ = {x0 = a < x1 = a + h < · · · < xN−1 = b − h < xN = b}

the error term is given by

εT := T (h) −
∫ b

a

f(x) dx = h2

12(b − a)f (2)(ξ), for some ξ ∈ (a, b)

where h = b−a
N .

35.1.2 Simpson’s Rule
Recall that in Simpson’s rule, the integration rule on the interval [a, b] is given by the Lagrange inter-
polate P ∈ Π2 with nodes at x0 = a, x1 = a + h and x2 = b, where h = b − a∫ b

a

f(x) dx ≈
∫ b

a

P (x) dx = h

3 (f0 + 4f1 + f2)

where fi = f(xi) for i = 0, 1, 2.

Now we assume that the number of nodes in the partition of the interval [a, b] is even, i.e., let

∆ = {x0 = a < x1 = a + h < · · · < xN = b}

where N is even. Now we apply Simpson’s rule on each of the subintervals [x2i, x2i+2], with nodes at
x2i, x2i+1 and x2i+2, then we get that

Ii = h

3 [f(x2i) + 4f(x2i+1) + f(x2i+2)], ∀ i = 0, 1, . . . ,
N

2 − 1

Summing all these N
2 approximations we define

S(h) := h

3 (f(a) + 4f(a + h) + 2f(a + 2h) + · · · + 2f(b − 2h) + 4f(b − h) + f(b)) (35.1.4)

now we assume that f ∈ C4[a, b], then it can be shown (using Peano’s Error formula which is stated
in the next section) the error denoted by εi is

εi := Ii −
∫ x2i+2

x2i

f(x) dx = h5

90f (4)(ξi) (35.1.5)

for some ξi ∈ (x2i, x2i+2). Thus like in the case of Trapezoidal rule, in we sum up all these error terms
and with similar arguments we get that

S(h) −
∫ b

a

f(x) dx = h4

180(b − a)f (4)(ξ), for some ξ ∈ (a, b) (35.1.6)

Thus we conclude this section with the following theorem:
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Theorem 35.1.2. The approximation error in the Simpson’s rule approaches 0 as fast as h4,
i.e., the Simpson’s rule is a method of order 4, and in general for the partition

∆ = {x0 = a < x1 = a + h < · · · < xN−1 = b − h < xN = b}

with N even, the error term is given by

εS := S(h) −
∫ b

a

f(x) dx = h4

180(b − a)f (4)(ξ), for some ξ ∈ (a, b)

where h = b−a
N .

35.2 Peano’s Error Representations
Observe that all the integration rules (quadrature rules), we have used so far are of the form

Ĩ(f) :=
n∑

j=0

mj∑
k=0

akjf (j)(xkj) (35.2.1)

For a given integration rule Ĩ as in equation (35.2.1), we define the integration error as

R(f) := Ĩ(f) −
∫ b

a

f(x) dx (35.2.2)

Remark: Observe that R : V → R is a linear functional, i.e.,

R(αf + βg) = αR(f) + βR(g), ∀ f, g ∈ V, and α, β ∈ R

where V is a suitable vector space over the field R, for example V = Cn[a, b] or V = Πn.

Now we state the following result which is due to Peano:

Theorem 35.2.1. (Peano’s Error Formula). Suppose I be an integration rule such that
the corresponding integration error satisfies the condition that R(P ) = 0 for all P ∈ Πn,
i.e., every polynomial whose degree is at most n, is integrated exactly. Then for all functions
f ∈ Cn+1[a, b], we have

R(f) =
∫ b

a

f (n+1)(t)K(t) dt

where

K(t) := 1
n!Rx[(x − t)n

+], (x − t)n
+ :=

{
(x − t)n if x ≥ t

0 otherwise

and Rx[(x − t)n
+] denotes the integration error of (x − t)n

+ when considered as a function of x.
The function K(t) is called the Peano kernel of the linear functional R.

We first give an application of the Peano’s error formula, in the case of Simpson’s rule. Note that∫ b

a

f(x) dx =
∫ 1

−1
f(t) dt = b − a

2

∫ 1

−1
f

((
b − a

2

)
t + b + a

2

)
dt = b − a

a

∫ 1

−1
g(t) dt
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where g(t) = f
((

b−a
2
)

t + b+a
2
)
. Thus the task of approximating the integral

∫ b

a
f(x) dx is equaivalent

to approximating the integral
∫ 1

−1 g(x) dx, thus WLOG, we may assume that the nodes of the Lagrange
interpolate for the Simpson’s rule to be −1, 0, 1.
First of all we need to show that R(P ) = 0 for all P ∈ Π3. So we let P be any polynomial in Π3, and
consider the Lagrange interpolate polynomial Q ∈ Π2 defined by

Q(−1) = P (−1), Q(0) = P (0) and Q(1) = P (1)

and set
S(x) := P (x) − Q(x)

Then note that x = −1, 0, 1 are roots of S and since S ∈ Π3, we must have S(x) = ax(x2 − 1) for some
constant a ∈ R. Thus we get that S is an odd function and hence we get that∫ 1

−1
S(x) dx = 0

and hence we get

R(S) = 1
3(S(−1) + 4S(0) + S(1)) −

∫ 1

−1
S(x) dx = 0

Now we have Q ∈ Π2, thus we must have Q(x) = px2 + qx + r for some constants p, q, r ∈ R, and
hence we get that

R(Q) = 1
3(Q(−1) + Q(0) + Q(1)) −

∫ 1

−1
Q(x) dx

= 1
3((p − q + r) + 4r + (p + q + r)) −

∫ 1

−1
(px2 + qx + r) dx

= 1
3(2p + 6r) −

(
p

x3

3 + q
x2

2 + rx

) ∣∣∣∣∣
1

−1

= 2
3(p + 3r) − 2

3(p + 3r)

= 0

and finally since R is a linear functional we get that

R(P ) = R(S) + R(Q) = 0

but since P was arbitrary we get that R(P ) = 0 for all P ∈ Π3. The the Simpson’s rule indeed satisfies
the hypothesis of Peano’s Theorem 35.2.1, for n = 3.
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Lecture 36
April 4, Part B

36.1 Proof of Peano’s result
Check Stoer and Bulirsch.

36.2 Gaussian Integration
36.2.1 Motivation and Introduction
The Newton-Cotes formulae we have seen so far are derived assuming that the size of each interval in
the partition we are numerically integrating over is the same. This shall not be the case with Gaussian
integration. In addition, Gaussian integration is deeper connections to other areas of numerical analysis,
and even analysis in general.
But enough motivation! Let’s get to the meat of this topic, and begin by laying out our task. Suppose you
have been given a function f to integrate on an interval [a, b]. Then if you’re using Gaussian integration
to accomplish that you integrate

Definition 36.2.1.
I(f) =

∫ b

a

ω(x)f(x) dx

where ω is a weight function that you have chosen, that satisfies

ω ≥ 0

The function ω must satisfy some conditions, which we will list after stating a definition used to frame
them.

Definition 36.2.2. For all integers k ≥ 0,

µk =
∫ b

a

xkω(x) dx

The conditions ω must satisfy are
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Definition 36.2.3.
• ω must be measurable on [a, b].
• µk must exist and be finite for all k ∈ Z, such that k ≥ 0.
• For any polynomial s, if s ≥ 0 on [a, b], then∫ b

a

s(x)ω(x) dx = 0 =⇒ s = 0 on [a, b]

Remark: By choosing ω = 1, we recover the Newton-Cotes formulae we have discussed so far.

One advantage of Gaussian integration is that it lets you “divide intervals in uneven sizes”, and deal with
intervals of infinite length. In particular, in the discussion above, a and b might be ±∞.

Example 36.2.1. Let c be any non-zero real. Then, the integral∫ ∞

−∞
c dx

does not exist, but the Gaussian integral of c over (−∞, ∞) obtained by choosing ω(x) = e−x2 ,
namely ∫ ∞

−∞
e−x2

c dx

does exist.

The above example immediately raises the question: How do we choose the weight function ω to use?
Some kinds of weight functions that are commonly used are

• Legendre polynomials
• Laguerre polynomials
• Hermite polynomials
• Tchebyshev polynomials

The classes of polynomials listed above form orthogonal classes of polynomials, and the next subsection
is dedicated to defining the basic notions required to explain what that means.

36.2.2 Orthogonal Polynomials

Definition 36.2.4. We define, for all integers n ≥ 0,

Πn = {p ∈ R[x] : deg(p) ≤ n}

and
Πn = {p ∈ Πn : p is monic }

Note that Πn is a vector space.

We introduce some more definitions. In the following definitions, ω is a weight function on a fixed interval
[a, b] satisfying the conditions in 36.2.3.

71



Definition 36.2.5. Now fix an integer n ≥ 0.
Since Πn is a vector space, we can give it an inner product, which we do by defining the inner
product ⟨·, ·⟩ by

⟨f, g⟩ =
∫ b

a

ω(x)f(x)g(x) dx

for all f, g ∈ Πn.

and one more definition before the definition of orthogonal polynomials:

Definition 36.2.6.

L2[a, b]ω = {⟨f, f⟩ =
∫ b

a

ω(x) (f(x))2 dx exists and is finite }

for all f ∈ Πn.

and finally, the definition of orthogonal polynomials

Definition 36.2.7. If p, q ∈ Πn for some integer n, we say that p and q are orthogonal if

⟨p, q⟩ = 0

We are done with the notes for Part B of the NC lecture on April 4.
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Lecture 37
April 11, Part A

Let’s recall some definition from the previous lecture.

Definition 37.0.8.
•

I(f) =
∫ b

a

ω(x)f(x) dx

where ω is a weight function that you have chosen, that satisfying ω ≥ 0
• For all integers k ≥ 0,

µk =
∫ b

a

xkω(x) dx

For the above two,
– ω must be measurable on [a, b].
– µk must exist and be finite for all k ∈ Z, such that k ≥ 0.
– For any polynomial s, if s ≥ 0 on [a, b], then∫ b

a

s(x)ω(x) dx = 0 =⇒ s = 0 on [a, b]

• ∀ integers n ≥ 0,

Πn = {p ∈ R[x] : deg(p) ≤ n} and Πn = {p ∈ Πn : p is monic }

Note that Πn is a vector space. Also, Πn ⊂ Πn

• Fix an integer n ≥ 0. We can define an inner product ⟨·, ·⟩ on Πn by

⟨f, g⟩ =
∫ b

a

ω(x)f(x)g(x) dx

for all f, g ∈ Πn.
•

L2[a, b]ω = {⟨f, f⟩ =
∫ b

a

ω(x) (f(x))2 dx exists and is finite }

for all f ∈ Πn.
• If p, q ∈ Πn for some integer n, we say that p and q are orthogonal if ⟨p, q⟩ = 0
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37.1 Gram-Schmidt Orthogonalization on polynomials
For the vector space of all polynomials with at most degree n, Πn, we can apply Gram-Schmidt Orthog-
onalization to the basis, {1, x, . . . , xn} w.r.t the inner product defined above and obtain an orthogonal
basis, {p0(x), p1(x), . . . , pn(x)} with deg(pr) = r ∀ r.

We can compute the orthogonal polynomials as follows:
Let uk(x) = xk, ∀ k ∈ {0, 1, . . . , n}

• p0 = u0
• pk = uk −

∑k−1
j=0

⟨uk,pj⟩
⟨pj ,pj⟩ pj for k ∈ {1, . . . , n}

Recursively, we can write the above as,
• p0 = u0 ,i.e., p0(x) = 1 ∀ x ∈ [a, b]
• pk(x) =

(
x − ⟨xpk−1,pk−1⟩

⟨pk−1,pk−1⟩

)
pk−1 − ⟨xpk−1,pk−1⟩

⟨pk−2,pk−2⟩ pk−2(x) for k ∈ {1, 2, . . . , n}

Note that, here we take p−1 = 0

Example 37.1.1. Let’s explicitly compute p0, p1, p2 with a = −1, b = 1. Note that, we care
only about the roots of the polynomials, so we will save ourselves the trouble of normalizing the
polynomials. We start with the usual basis, u0(x) = 1, u1(x) = x, u2(x) = x2

We take, p0 = u0. Now, taking out the p0−component from u1 we left with

p1(x) = u1(x) − ⟨u1, p0⟩
⟨p0, p0⟩

p0(x) = x

Since,
⟨u1, p0⟩ =

∫ 1

−1
x dx = 0

To find, p2, we similarly take out the p0 and p1−components from u2 to get,

p2(x) = u2(x) − ⟨u2, p0⟩
⟨p0, p0⟩

p0(x) − ⟨u2, p1⟩
⟨p1, p1⟩

p1(x) = x2 − 1
3

We now state and prove an important theorem.

Theorem 37.1.2. Each pn has n distinct zeros inside the open interval (a, b)

Proof. Since, pn is orthogonal to Πn−1, for any polynomial q with deg(q) < n, we must have

⟨q, pn⟩ =
b∫

a

q(x)pn(x) dx = 0

Let pn have exactly m distinct real zeros of odd multiplicities inside (a, b). Call them, α1, α2, . . . , αm.
Define a polynomial,

q(x) := (x − α1) · · · (x − αm)

74



Then q(x)pn(x) has all real zeros of even multiplicities, and hence does not change sign over (a, b). So,

b∫
a

q(x)pn(x) dx ̸= 0

By the construction of pn(x) this forces deg(q) ≥ n. But m ≤ n and hence m = n.
So, pn has exactly distinct roots (with odd multiplicities). Since pn has degree n, all the zeroes are real
and distinct and inside (a, b). ■
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Lecture 38
April 11, Part B

38.1 Basic Properties of Orthogonal Polynomials
Now that we have shown that there exists polynomials pj ∈ Π̄j , for j = 0, 1, 2, . . . , such that

(pi, pj) = 0, for i ̸= j

Thus we have {p1, . . . , pk} is an orthonormal basis for the inner product space Πk, with inner product
defined by the weight functions

(f, g) :=
∫ b

a

w(x)f(x)g(x) dx , f, g ∈ Πj

Thus any polynomial p ∈ Πk is clearly representable as a linear combination of the orthogonal polynomials
pi, i ≤ k, which in fact gives us the following lemma:

Lemma 38.1.1. (p, pn) = 0, for all p ∈ Πn−1.

Proof. We have {p0, . . . , pn−1} is an orthonormal basis for Πn−1, and hence there exists scalars
a0, a1, . . . , an−1 ∈ R such that

p(x) =
n−1∑
i=0

aipi(x)

and thus by linearity of inner product we get

(p, pn) =
(

n−1∑
i=0

aipi, p

)

=
n−1∑
i=0

ai(pi, p)

= 0

■

Theorem 38.1.2. The roots of the polynomial pn are real and simple.

Proof. We the consider the roots of pn which are of odd multiplicities, i.e., we consider the roots where
pn changes sign. WLOG let them be x1, . . . , xl, where l ≤ n, and we define the polynomial q(x) by

q(x) =
l∏

j=1
(x − xj) ∈ Π̄l (38.1.1)
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But then observe that the polynomial pn(x)q(x) does not change sign (as all the roots are of even
multiplicities now). Thus we must have

(pn, q) =
∫ b

a

w(x)pn(x)q(x) dx ̸= 0

but then deg(q) = l cannot be strictly less than n, as otherwise we would have (pn, q) = 0 (from Lemma
38.1.1), thus it must be the case that l = n. But then all the roots of pn have multiplicity 1, and thus
we get that roots of pn are real and simple. ■

We need this lecture by giving a glimpse of what we will do in the next lecture.

38.2 Glimpse of Exact Integration using Gaussian Integration
Consider x1, x2, . . . , xn be the roots of the orthogonal polynomial pn. We consider the following matrix:

A :=


p0(x1) p0(x2) · · · p0(xn)
p1(x1) p1(x2) · · · p1(xn)

...
... . . . ...

pn−1(x1) pn−1(x1) · · · pn−1(xn)

 (38.2.1)

we will show that the following matrix is in fact nonsingular, thus we can consider the system of linear
equations

n∑
i=1

pk(xi)wi =
{

(p0, p0) =
∫ b

a
w(x) dx if k = 0

0 if k = 1, . . . , n − 1
(38.2.2)

then as we will see, we get wi > 0 for i = 1, . . . , n and in fact we have∫ b

a

w(x)p(x) dx =
n∑

i=1
wip(xi) (38.2.3)

holds for all polynomial p ∈ Π2n−1.
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Lecture 39
April 18

39.1 Exactly integrating polynomials using Gaussian integration
39.1.1 Basic definitions and setup
Recall that in previous lectures we have proved that given

• an interval [a, b].
• and a weight function ω on [a, b].

there exist polynomials p0, p1, p2, . . . , pn ∈ Πn, such that
• pi ∈ Πi for 0 ≤ i ≤ n.
• The collection of polynomials p0, p1, . . . , pk form an orthonormal basis for Πk, for all 0 ≤ k ≤ n.
• pn has n simple roots.
• The pi can be calculated using a recursive relation.

Let x1, x2, . . . , xn be the n roots of pn. Then, define the matrix A by

Definition 39.1.1.

[A]ki = pk(xi) ∀(0 ≤ k ≤ n − 1, 1 ≤ i ≤ n)

Then, we want to solve the system of equations given by
p0(x1) p0(x2) . . . p0(xn)
p1(x1) p1(x2) . . . p1(xn)

...
...

...
...

pn−1 pn(x2) . . . pn−1(xn)


︸ ︷︷ ︸

A


ω1

ω2

...
ωn

 =


⟨p0, p0⟩

0
...
0

 (39.1.1)

To clarify, the column vector on the right has ⟨p0, p0⟩ in it’s first row, and 0 in all the other rows. The
reason we want to solve the above set of equations is that, if we know the values of the wi, we can
exactly integrate ω times any polynomial of degree at most 2n − 1 over the interval [a, b].
To solve the system of equations, we first show that

Theorem 39.1.1. The matrix A is invertible.
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Proof. We shall show that for any vector c, Ac = 0 =⇒ c = 0. That shall be enough to prove that A
is invertible. Let c = (c1, c2, . . . , cn)T be a any vector such that Ac = 0. Now, Ac = 0 =⇒ cT A = 0.
Expanding the last equality into a system of equations, we obtain that

n−1∑
i=0

cipi(xk) = 0 ∀(1 ≤ k ≤ n)

Therefore the polynomial Q defined by Q(x) =
∑n−1

i=0 cipi(x) has the roots x1, x2, . . . , xn.
We have already proved that u ̸= v =⇒ xu ̸= xv; it is simply the statement that pn has n simple roots.
Therefore, Q has at least n roots, namely x1, x2, . . . , xn. But from the definition of Q, namely Q(x) =∑n−1

i=0 cipi(x), and the fact that pi ∈ Πi for 0 ≤ i ≤ n, we know that the degree of Q is at most n − 1.
Therefore, Q must be identically 0, which implies that cj = 0 for all 1 ≤ j ≤ k. ■

Corollary 39.1.1.1. The solution to the system of equations 39.1.1 is unique. ■

39.1.2 The exact integration
Next, we come to the most important theorem about Gaussian integration:

Theorem 39.1.2. Let p ∈ Π2n−1. Then,∫ b

a

ω(x)p(x) dx =
n∑

i=1
ωip(xi)

where the wi are the solutions to the system of equations 39.1.1.

Proof. Use the Euclidean algorithm to write p as

p = pnq + r

where q ∈ Πn−1. Then it must also be the case that r ∈ Πn−1. Write

q(x) =
n−1∑
i=0

αipi(x) and r(x) =
n−1∑
i=0

βipi(x)

Then, note that ∫ b

a

ω(x)p(x) dx =
∫ b

a

ω(x)pn(x)q(x) dx︸ ︷︷ ︸
Term 1

+
∫ b

a

ω(x)r(x) dx︸ ︷︷ ︸
Term 2

Since q(x) =
∑n−1

i=0 αipi(x) and p0, p1, . . . , pn form an orthonormal basis for Πn, it follows that Term 1
is 0. As for Term 2, note that∫ b

a

ω(x)r(x) dx = ⟨p0, p⟩ =
n−1∑
i=0

βi⟨p0, pk⟩ = β0⟨p0, p0⟩

since p0, p1, . . . , pn form an orthonormal basis for Πn. Therefore,
∫ b

a
ω(x)p(x) dx = β0⟨p0, p0⟩.
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Next, we shall show that
∑n

i=1 ωip(xi) = β0⟨p0, p0⟩. That shall finish the proof. To that end, note that
n∑

i=1
ωip(xi) =

n∑
i=1

ωi(pn(xi)q(xi) + r(xi))

(1)=
n∑

i=1
ωir(xi)

=
n∑

i=1

n−1∑
k=0

ωiβkpk(xi)

(2)=
n−1∑
k=0

n∑
i=1

ωiβkpk(xi)

=
n−1∑
k=0

βk

n∑
i=1

ωipk(xi)

(3)= β0⟨p0, p0⟩

where equality (1) follows from the fact that x1, x2, . . . , xn are roots of pn, equality (2) from interchanging
the sums, and equality (3) from the fact that the ωi satisfy the system of equations 39.1.1. ■

We now state and prove another important theorem

Theorem 39.1.3. The wi in the system of equations 39.1.1 are all greater than 0.

Proof. Define, for all integers j such that 1 ≤ j ≤ n,

pj(x) =
n∏

k=1
k ̸=j

(x − xk)2

Note that pj ∈ Π2n−2 ∈ Π2n−1 for all 1 ≤ j ≤ n, which implies, by theorem 39.1.2, that

∫ b

a

ω(x)pj(x) dx =
n∑

i=1
ωipj(xi) =

n∑
i=1

ωi

 n∏
k=1
k ̸=j

(xi − xk)2



But since
n∏

k=1
k ̸=j

(xi −xk)2 for all i ̸= j, it follows that
∑n

i=1 ωi

 n∏
k=1
k ̸=j

(xi − xk)2

 = ωj

 n∏
k=1
k ̸=j

(xj − xk)2

.

Therefore, we have ∫ b

a

ω(x)pj(x) dx = ωj

 n∏
k=1
k ̸=j

(xj − xk)2


Now, recall that any weight function on an interval [a, b] must satisfy the condition that for any polynomial
s, if s ≥ 0 on [a, b], then ∫ b

a

s(x)ω(x) dx = 0 =⇒ s = 0 on [a, b]

Now, for all 1 ≤ j ≤ n, pj ≥ 0 on [a, b], but pj ̸= 0 on [a, b], so since ω ≥ 0 on [a, b], we have∫ b

a

ω(x)pj(x) dx > 0
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Also, by elementary considerations  n∏
k=1
k ̸=j

(xj − xk)2

 > 0

Therefore, since ∫ b

a

ω(x)pj(x) dx = ωj

 n∏
k=1
k ̸=j

(xj − xk)2


it follows that ωj > 0 for all 1 ≤ j ≤ n. ■

Next we show that theorem 39.1.2 does not hold for some polynomials in Π2n.

Theorem 39.1.4. There exists a polynomial p ∈ Π2n such that there exists no collection
ω1, ω2, . . . , ωn such that ∫ b

a

ω(x)p(x) dx =
n∑

i=1
ωip(xi)

Proof. Define p(x) =
∏n

k=1(x − xk)2. Then recall that any weight function on an interval [a, b] must
satisfy the condition that for any polynomial s, if s ≥ 0 on [a, b], then∫ b

a

s(x)ω(x) dx = 0 =⇒ s = 0 on [a, b]

Now, for all 1 ≤ j ≤ n, p ≥ 0 on [a, b], but p ̸= 0 on [a, b], so since ω ≥ 0 on [a, b], we have∫ b

a

ω(x)p(x) dx > 0

However, p(xj) =
∏n

k=1(xj − xk)2 = 0 for all 1 ≤ j ≤ n, so
∑n

i=1 ωip(xi) = 0. Therefore,∫ b

a

ω(x)p(x) dx > 0 =
n∑

i=1
ωip(xi)

and we are done. ■

Next, we state a converse to theorem 39.1.2.

Theorem 39.1.5. If there exists a collection of pairs (ω1, x1), (ω2, x2), . . . , (ωn, xn) such that∫ b

a

ω(x)p(x) dx =
n∑

i=1
ωip(xi)

for all p ∈ Π2n−1, then the xi are the roots of pn, and the wi are the solutions to the system of
equations 39.1.1.

Proof. See Stoer and Bulirsch. ■
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39.1.3 Choosing the right weight function and orthonormal basis
Now, we list some types of intervals and the weight functions plus the systems of orthogonal bases best
used with them. Through a combination of using scaling and shift transformations, most intervals you
encounter can be transformed into a type of interval that is listed below:

Interval [a, b] Weight function ω(x) Orthonormal basis (the pi)
[−1, +1] 1 Legendre Polynomials
[0, ∞) e−x Laguerre Polynomials

(−D, +D) e−x2 Hermite Polynomials
[−1, +1] (1 − x2)− 1

2 Tchebyshev Polynomials
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