

Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester

Analysis -I

Home Assignment I

Due Date : 20 October 2021

Instructor: B V Rajarama Bhat

- (1) Write down your favorite mathematical puzzle along with its solution.
- (2) Write down your favorite theorem.
- (3) Write down an open problem which you would like to work on.
- (4) For $n \in \mathbb{N}$, take $A_n = \{1, 2, \dots, n\}$. Show that for $n > 1$, there exists a function $g : A_n \rightarrow A_n$, such that there does not exist any $f : A_n \rightarrow A_n$, satisfying $g = f \circ f$, that is, for $n > 1$, there exist functions on A_n without square roots.
- (5) Show that any subset of a countable set is countable.
- (6) Show that countable union of a countable set is countable, that is, if $\{A_i : i \in I\}$ is a family of countable sets, where the ‘indexing set’ I is also countable, then $\bigcup_{i \in I} A_i$ is countable.
- (7) Show that the set $P = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_0, a_1, \dots, a_n \in \mathbb{Z}, n \in \mathbb{N} \cup \{0\}\}$ of polynomials with integer coefficients is countable.
- (8) Use mathematical induction to prove the Binomial theorem: Let a, b be real numbers. Then

$$(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \quad \forall n \in \mathbb{N}.$$

- (9) Consider the set $\mathbb{Z}_5 := \{0, 1, 2, 3, 4\}$ with binary operations \oplus and \odot , which are addition and multiplication modulo 5, respectively. That is, $i \oplus j$ is the remainder, on dividing $i + j$ by 5. Similarly $i \odot j$ is the remainder, on dividing $i \cdot j$ by 5. Show that $(\mathbb{Z}_5, \oplus, \odot)$ satisfies all the algebraic axioms of real numbers, but it does not satisfy the order axioms for any subset \mathbb{P} of \mathbb{Z}_5 .
- (10) Consider the set $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, with following binary operations:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2;$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2), \quad (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2;$$

and zero element as $(0, 0)$ and ‘one’ as $(1, 1)$. Further, take the set of positive numbers as

$$\mathbb{P} = \{(x_1, y_1) : x_1 > 0, \text{ and } y_1 > 0\}.$$

Verify as to which of the axioms of real numbers are satisfied and which are not satisfied.