

Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester

Analysis -I

Home Assignment V

Due Date : 29 Dec 2021

Instructor: B V Rajarama Bhat

Notation: In the following when intervals $[a, b]$ are considered it is assumed that $a, b \in \mathbb{R}$ and $a < b$.

- (1) Show that there is no continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) = c$ has exactly two solutions for every $c \in \mathbb{R}$.
- (2) Let $g : (1, 2) \rightarrow \mathbb{R}$ be a continuous function such that $\lim_{x \rightarrow 1^+} g(x) = 0$ and $\lim_{x \rightarrow 2^-} g(x) = 5$. Show that there exists $x_0 \in (1, 2)$ such that $g(x_0) = 1 + \sqrt{3}$.
- (3) Let $h : \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying

$$|h(x) - h(y)| \leq R|x - y|^2, \quad \forall x, y \in \mathbb{R}.$$

Show that h must be a constant function.

- (4) Let $f : (a, b) \rightarrow \mathbb{R}$ be a continuous function, differentiable at all points except possibly at $c \in (a, b)$. Suppose $\lim_{x \rightarrow c} f'(x) = L$ for some $L \in \mathbb{R}$, show that f is then differentiable at c and $f'(c) = L$.
- (5) Suppose $g : [a, \infty) \rightarrow \mathbb{R}$ is a differentiable function and $g'(x) \geq 0$ for all $x \in (a, \infty)$. Show that $g'(a) \geq 0$.
- (6) Suppose a_1, a_2, \dots, a_n are n -real numbers. Define $g : \mathbb{R} \rightarrow \mathbb{R}$ by

$$g(x) = \sum_{j=1}^n (x - a_j)^2.$$

Find the unique global minimum point for g .

- (7) Find points of relative extrema for the following functions. Identify the intervals in which it is increasing and the intervals where it is decreasing.
 - (i) $g_1(x) = |(x - 2)(x - 3)|, x \in \mathbb{R}$.
 - (ii) $g_2(x) = (|x| - 2)(|x| - 3), x \in \mathbb{R}$.
- (8) Give an example to show that an uniformly continuous function need not be differentiable. Give another example to show that a differentiable function need not be uniformly continuous.
- (9) Find first four terms in the Taylor expansion of the function $g(x) = \frac{1}{x}$ around the point $x_0 = 1$.
- (10) Find first three terms of the Taylor expansion of the function $g : [-2, 2] \rightarrow \mathbb{R}$ defined by

$$g(x) = \frac{2x}{(x - 3)(x + 5)},$$

around the points $x_0 = 0$ and $x_1 = 1$.