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My take

I What do we do in mathematics?

I We do logical thinking.

I Given a set of statements, what are the statements we can
deduce is what bothers us most of the time.

I We learn to make these deductions systematically.

I The statements we start with or which we take for granted are
axioms.

I We think of some deductions as important or beautiful. We
call them as theorems.
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Logical deductions

I We need to be careful in making deductions.

I A statement seen: ”Smoking causes cancer”.

I Some one does not believe in it and tries to refute it by:
”Well, a friend of mine got cancer though no one in his family
smoked! ”

I There is no contradiction here! Non-smoking also may cause
cancer!

I Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.
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Applications

I We use Mathematics to know the real life.

I We do this by modeling what we see.

I We model: The space around us through geometry.

I Dynamics through calculus.

I Randomness through probability.

I So on.

I We see structural, logical similarities in many different
contexts.
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Amazing diversity of Applications

I Physics: Have a look at this famous essay: ”The
Unreasonable Effectiveness of Mathematics in the Natural
Sciences”, by E. Wigner.

I Computer Science, Biology, Chemistry, Statistics,
Economics,... Everywhere there are mathematical models.

I All our technology is built using mathematics.

I We are living in a digital world. We convert all the
information into digits. A sequence of 0’s and 1’s, The
information could be audio, image, video, currency,...

I Keeping the information safe is done using cryptology. That
also uses mathematics in a non-trivial way.
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I Mathematicians try to be precise.

I The setting should be clear. The statements should be clear,
the deductions should be clear and so on.
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A story from the internet

I Black sheep:

I An engineer, a physicist, and a mathematician were on a train
heading north, and had just crossed the border into Scotland.

I The engineer looked out of the window and said ”Look!
Scottish sheep are black!”

I The physicist said, ”No, no. Some Scottish sheep are black.”

I The mathematician looked irritated and said: ”All we can say
is that there is one field, containing at least one sheep, of
which at least one side is black, as of now.”
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Different areas in Mathematics

I To begin with people talk of ‘pure mathematics’ and ‘applied
mathematics’.

I Like for instance you may considering modeling COVID
situation as applied mathematics.

I In pure mathematics we have areas like algebra, analysis,
geometry, number theory, complex analysis, combinatorics and
so on.

I It is very important to understand that these are broad
classifications. There are no strict borders. More importantly
very often methods and results become useful in another area.
For instance, complex analysis is routinely used to do number
theory.

I In other words all these topics are deeply inter-connected.
Simply said, mathematics is one subject.

I You should learn basics of all the areas for now. Specialization
comes only at an advanced level. You should not bother
about it for now. Just have an open mind about all the areas.
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Challenge problem

I Fix n ∈ N and take S = {1, 2, . . . , n}.

I Let F be a collection of subsets with following two properties:

I (i) F 6= ∅ ; F 6= {∅}.
I (ii) If A ∈ F and B ∈ F then A

⋃
B ∈ F .

I Suppose M = ]F . Here ] denotes number of elements in a set.

I Show that there exists j ∈ S such that

]{A ∈ F : j ∈ A} ≥ M

2
.

I In other words, there exists an element j which is contained in
at least half the sets in F .
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I Take S = {1, 2, . . . , 10}.

I F1 = {∅, {1, 2}, {2, 3}, {1, 2, 3}}
I F2 = {A ⊆ S : 1 ∈ A}.
I F3 = {A ⊆ S : 1 /∈ A}.
I F4 = {A ⊆ S : ]A = 2}.
I Then F1,F2,F3 satisfy conditions (i), (ii). F4 does not

satisfy condition (iii).
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Continuation

I S = {1, 2, . . . , 10}.

I F1 = {∅, {1, 2}, {2, 3}, {1, 2, 3}}.
I ]F1 = 4; and we can take j = 2. There are three sets in F1

containing j .

I F2 = {A ⊆ S : 1 ∈ A}.
I ]F2 = 29; and we can take j = 1 and ]{A ∈ F2 : j ∈ A} = 29.

I F3 = {A ⊆ S : 1 /∈ A}.
I ]F1 = 29; and we can take j = 2 (or any number in S

different from 1) and ]{A ∈ F3 : j ∈ A} = 28.

I END OF LECTURE 1.
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different from 1) and ]{A ∈ F3 : j ∈ A} = 28.
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Lecture 2: Set theory and Russell’s paradox

I What is a set?

I Informal Definition: A set is a collection of well-defined
objects.

I Example: A = {2, 3, 4}. B = {a, b, c}.
I N = {1, 2, . . .} the set of natural numbers.

I Z = {. . . ,−2,−1, 0, 1, 2, . . .}-the set of integers.
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Why to have the phrase ‘well-defined’?

I The collection of students in this class. This is a set.

I The collection of tall students in this class. This is not
well-defined, unless we specify what exactly we mean by ‘tall’.

I The collection of ‘smart’ students in this class. This is also
not well-defined unless we are clear as to who is smart and
who is not.

I The main point here is that given an object we should be
clear as to whether it is an element of the set or not.

I This is a requirement so that we do not have any confusion.
Still the definition is only an informal one.
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Russell’s barber paradox

I There is a village with just one barber.

I The barber cuts hair of some villager if and only if the villager
does not cut it himself/herself.

I Does the barber cut his/her own hair or not?

I You see that either way you have a problem.

I Let us see some more paradoxes of similar type.
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Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????



Adjectives

I We classify the adjectives in English into two types.

I An adjective is autological if it applies to itself. Otherwise it is
heterological.

I For instance, ‘SHORT’ is a short word. So it is auto-logical,
whereas, ‘LONG’ is not a long word, so it is heterological.

I More auto-logical words: ENGLISH, NOUN,
UNHYPHENATED, AUTOLOGICAL, ...

I More hetero-logical words: JAPANESE, HYPHENATED,
MONOSYLLABIC, ...

I What about the adjective ‘HETEROLOGICAL? We again face
a problem.
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A catalogue of catalogues

I Our city has many libraries. Every library has a catalogue
listing all the books the library has.

I Now the catalogue itself is a book. So some librarians may
include it as a book the library has. Some other librarians may
disagree and may not include the catalogue as a book of the
library.

I There is a master librarian of the city, who maintains two
catalogues of catalogues.

I First Catalogue containing names of all catalogues which list
themselves and the Second Catalogue containing names of all
catalogues which do not list themselves.

I The First Catalogue can contain itself in its list or you may
drop it. Either way it is fine.

I There is a problem with the Second Catalogue. Should it list
itself or not?
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Russell’s paradox in set theory

I Let L be the set of all sets in the world.

I Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

I But L is a bit extraordinary as L itself is a member of itself.

I So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as
members. Extraordinary sets are those which contain
themselves as members.

I Let M be the set of all sets having two or more elements.
Then M is an extraordinary set.

I Let A be the set of all ordinary sets and let B be the set of all
extraordinary sets.

I Is A ordinary or extraordinary? Either way we have a problem!
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Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.
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Lecture 3: Sets and functions

I Informal Definition: A set is a collection of well-defined
objects.

I We continue with this definition though ideally speaking we
should be following ZFC axioms.

I We assume familiarity with

I N = {1, 2, . . .} the set of natural numbers.

I Z = {. . . ,−2,−1, 0, 1, 2, . . .}-the set of integers.
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Functions

I Given two non-empty sets A and B, a function f from A to B
is an association of some element f (x) in B, for every x in A.

I This is denoted by f : A→ B.

I You may also think of a function f as a subset of the
Cartesian product A× B = {(a, b) : a ∈ A, b ∈ B} having
certain properties.

I More precisely, G (f ) = {(x , f (x)) : x ∈ A} is a subset of
A× B, where every element x ∈ A appears with exactly one
element f (x) ∈ B.

I G (f ) is known as the graph of f .
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Vertical line test

I Clearly not all subsets G of A× B appear as graphs of f .

I Every element x ∈ A should appear. More over for every
element x there should be unique x ′ in B such that
(x , x ′) ∈ G .

I In other words, there should not be x ′, x ′′ in B with x ′ 6= x ′′,
such that both (x .x ′) and (x , x ′′) are in G .

I In the usual picture of graphs of functions on real line this is
known as vertical line test. A graph of a function can not be
touching a vertical line at more than one point.
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function as a machine

I You may think of a function f : A→ B as a machine.

I It takes any x ∈ A as input and spews out some element f (x)
in B as out put.

I Any element of A can be input.

I With one input there is only one output.

I Different inputs may give same output.

I Some elements of B may not be an output value for f .
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Domain, Co-domain and Range

I Terminology: Suppose f : A→ B is a function.

I Then A is known as the domain of f .

I B is known as the co-domain of f .

I The set {f (x) : x ∈ A} is known as the range of f .

I Note that the range of f is a subset of the co-domain.

I Sometimes people call B, the co-domain as range of f . It is
better to avoid that kind of terminology as it can lead to
confusion.
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Students and Hostel rooms

I Think of A as students and B as the set of hostel rooms.

I Then think of a function f : A→ B as allotment of rooms. In
other words, student x gets room f (x).

I Note that to have a genuine function f it is necessary that all
students are allotted rooms. Nobody is left out.

I Same student can’t be allotted multiple rooms. In other words
if y = f (x) and z = f (x), then y = z .

I It is fine, if some rooms are vacant. In other words, there
could be y ∈ B such that y 6= f (x) for any x ∈ A.

I It is also fine if students are asked to share rooms. In other
words it is possible to have x , x ′ in A, such that f (x) = f (x ′).
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Injectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be injective or one to one if
a1, a2 are in A and a1 6= a2 then f (a1) 6= f (a2). In other
words, distinct elements are mapped to distinct elements.

I Equivalently, f is injective if f (a1) = f (a2) implies a1 = a2.

I In the language of machines this corresponds to outputs being
different for different inputs.

I While allotting rooms to students, injectivity or one-to-one
means there is no sharing of rooms.
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Surjectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be surjective or onto if the range
of f is same as the co-domain.

I Equivalently, f is surjective if for every b ∈ B there exists
a ∈ A such that f (a) = b.

I Thinking of machines, f is surjective if every element of B can
be produced using f .

I In the problem of allotting rooms to students it means that
the hostel is full. That is all the rooms have got allotted.
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the hostel is full. That is all the rooms have got allotted.



Bijections

I Give examples to show that an injective function need not be
surjective and a surjective function need not be injective.

I Definition: Let A,B be non-empty sets and let f : A→ B be
a function. Then f is said to be bijective if f is both injective
and surjective. In other words, it is both one to one and onto.

I Define f1 : Z→ Z by f1(n) = n + 1, ∀n ∈ Z. Then f1 is a
bijection.

I Define f2 : Z→ Z by f2(n) = −n, ∀n ∈ Z. Then f2 is a
bijection.

I Define f3 : Z→ Z by f3(n) = n2. Then f3 is neither injective
nor surjective.
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Compositions of functions

I Let A,B,C be non-empty sets. Let f : A→ B and g : B → C
be functions. Then a new function g ◦ f : A→ C is got by
taking

g ◦ f (a) = g(f (a)), ∀a ∈ A.

I g ◦ f is known as composition of g and f .

I The out put of machine f is taken as input for g .
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Inverse map

I Let A,B be non-empty sets and let f : A→ B be a bijection.
Then we see that for every b ∈ B there exists unique a ∈ A
such that f (a) = b. Then we call a as f −1(b).

I In other words, if f : A→ B is a bijection then there exists a
unique function f −1 : B → A such that

f ◦ f −1(b) = b, ∀b ∈ B

and
f −1 ◦ f (a) = a, ∀a ∈ A.

I So f ◦ f −1 is the identity map on B and f −1 ◦ f is the identity
map on A.

I The identity map is a completely lazy machine where the
output is same as the input.
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One sided inverses

I Example: Suppose A = {x , y} and B = {4, 5, 6}.

I Define f : A→ B by f (x) = 4 and f (y) = 6.

I Define g : B → A by g(4) = g(5) = x and g(6) = y .

I Then g ◦ f (x) = x and g ◦ f (y) = y .

I So g ◦ f is the identity map on A. However, f ◦ g is not the
identity map on B.
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Properties inferred from compositions

I Let A,B,C be non-empty sets and let f : A→ B and
g : B → C be functions.

I Theorem 3.1: Suppose g ◦ f is one to one then f is one to one.

I Proof: Take h = g ◦ f . Suppose f (a1) = f (a2) for some a1, a2
in A. Then by the definition of a function,
g(f (a1)) = g(f (a2)). In other words, h(a1) = h(a2). But h is
assumed to be one to one. Hence a1 = a2. This shows that f
is one to one.

I Theorem 3.2: Suppose g ◦ f is onto then g is onto.

I Proof: Exercise!
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Powers of functions

I Let A be a non-empty set and let f : A→ A be a function.

I Then f 2 : A→ A is defined as f 2(a) = f ◦ f (a) = f (f (a)).

I Similarly f 3(a) = (f ◦ f ◦ f )(a) = f (f (f (a))).

I More generally, we can define f n for any natural number n.

I Note that in general you can not define f 2 when f is a
function from one set to a different set.
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Conway’s problem

I Consider h : Z→ Z defined by

h(n) =


3k if n = 2k, k ∈ Z

3k + 1 if n = 4k + 1 k ∈ Z

3k − 1 if n = 4k − 1 k ∈ Z

I Here on the repeated action of h,

7→ 5→ 4→ 6→ 9→ 7.

I So we end up with a loop or a ‘cycle’.
I Show that h is a bijection.
I Challenge Problem 2: What happens if we start with 8? Do

we ever come back to 8, that is, is there a cycle starting at 8?
I END OF LECTURE 3.
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Lecture 4: Natural numbers: Well-ordering and induction

I We have assumed familiarity with

I N = {1, 2, . . .}, the set of natural numbers.

I If we are to construct it abstractly from set theory, we may
take 1 as the set {∅}, 2 as the set {∅, 1} = {∅, {∅}}, 3 as the
set {∅, 1, 2} = {∅, {∅}, {∅, {∅}}, so on.

I We order the natural numbers in the usual way:

1 < 2 < 3 < 4 < · · · .

I Let us look at a few basic properties of the set of natural
numbers and its subsets.
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Well-ordering principle

I Well-ordering principle: The set of natural numbers satisfies
well-ordering principle, that is, every non-empty subset of
natural numbers has a smallest element.

I In other words, if R is a non-empty subset of N then there
exists an element m ∈ R such that m ≤ k for all k ∈ R.

I Note that clearly the minimal element of R is unique, for if
both k, l are minimal then we have k ≤ l and l ≤ k , and this
means k = l .

I We also note that if n ∈ R, then the minimal element of R is
contained in {1, 2, . . . , n}

⋂
R. So the existence of minimum

here is essentially a statement about finite sets.
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Mathematical Induction

I Principle of mathematical induction: Let S be a subset of N
having following properties:

I (i) 1 ∈ S .

I (ii) If k ∈ S , then k + 1 ∈ S .

I Then S = N.
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Strong Mathematical Induction

I Principle of strong mathematical induction : Let T be a
subset of N with following properties:

I (a) 1 ∈ T .

I (b) If {1, 2, . . . , k} ⊆ T then {1, 2, . . . , k + 1} ⊆ T

I Then T = N.
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Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.
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Proof continued

I (2)⇒ (3). Assume induction principle.

I Now suppose T ⊆ N satisfies (a), (b).

I We want to show that T = N.
I Take S = {m ∈ N : {1, 2, . . . ,m} ⊆ T}.
I In view of (a), 1 ∈ T and hence 1 ∈ S .

I In view of (b), if m ∈ S then m + 1 ∈ S . Then by the principle
of induction S = N. This clearly implies T = N.
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Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.

I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.

I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the
minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.



Applications of Mathematical induction

I Suppose we have a property P defined for natural numbers,
where (i) 1 satisfies property P; (ii) If m ∈ N satisfies property
P then (m + 1) satisfies property P. Then property P is
satisfied by all natural numbers.

I This is clear from the principle of mathematical induction as
we can take R = {m ∈ N : m satisfies property P}.

I Example: Show that for all natural numbers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
, (P).

I Proof: Let S be the set of all natural numbers satisfying P.
I Clearly 1 ∈ S . If m ∈ S , then 1 + 2 + · · ·+ m = m(m+1)

2 .
I Now using induction hypothesis

1+2+· · ·+m+(m+1) =
m(m + 1)

2
+(m+1) =

(m + 1)(m + 2)

2
.

I Hence m + 1 ∈ S . Then by the principle of mathematical
induction S = N. In other words every natural number
satisfies P.
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A fake theorem

I ”Theorem”: If you take bag full of balls all of them would
have same color.

I ”Proof”:” We will prove this by induction.
I Let n be the number of balls in the bag.
I If n = 1, the claim is obvious. There is nothing to prove.
I Now assume the result for n = m and we will prove it for

n = m + 1.
I Suppose the bag has m + 1 balls. Remove one ball.
I Now there are m balls in the bag, and all of them have the

same color, say black, by the induction hypothesis.
I Now put the ball you have in hand in bag and remove some

other. Clearly the ball you have removed must be black color.
Consider the balls in the bag. Now there are only m of them,
also have to be of same color, same as the one ball we
removed.

I So all the m + 1 balls are black. Quite Easily Done!
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Pigeonhole principle

I Pigeonhole principle: Let m, n be natural numbers and m < n.
Let

f : {1, 2, . . . , n} → {1, 2, . . . ,m}

be a function. Then f can not be injective.

I You may think of n as the number of pigeons and m as the
number of holes. When we put n pigeons in to m holes with
m < n, at least one hole would have more than one pigeon.

I In other words, if m hostel rooms are assigned to n students
with m < n, then some students have to share rooms.

I The pigeonhole principle can be proved using mathematical
induction.

I You may see the Appendix of the book of Bartle and Sherbert.

I END OF LECTURE 4.
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Lecture 5: Countable and Uncountable sets

I Definition 5.1 Let A,B be two non-empty sets. Then B is said
to be equipotent with A, if there exists a bijection f : A→ B.
Empty set is equipotent to only itself.

I Some say B has same cardinality as A if B is equipotent with
A.

I This means that B and A have ‘same number of elements’.
But currently we are not going to define ‘cardinality’ or
number of elements for infinite sets. For this reason we prefer
the terminology ‘equipotent’.

I We write A ∼ B if B is equipotent with A.
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Equivalence relation

I Theorem 5.2: Equipotency is an equivalence relation.

I Proof: Claim 1: For any set A, A ∼ A (Reflexivity).

I If A is non-empty, we just take the identity function
i : A→ A, defined by i(a) = a, ∀a ∈ A. If A is empty, A ∼ A
by definition. This proves the claim.

I Claim 2: If A ∼ B then B ∼ A (Symmetry).

I If f : A→ B is a bijection, then f −1 : B → A is a bijection.

I Indeed if f −1(x) = f −1(y), then applying f , x = y . This
shows that f −1 is injective.

I If a ∈ A, then a = f −1(b), where b = f (a). Hence f −1 is
surjective. Combining the two statements, f −1 is bijective.

I If A,B are empty then there is nothing to show.
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Proof Continued

I Claim 3: Suppose A ∼ B and B ∼ C , then A ∼ C
(Transitivity).

I Suppose f : A→ B is a bijection and g : B → C is a bijection.

I Then h := g ◦ f is a map from A to C .

I It is easy to see that h is a bijection.

I If A,B,C are empty, there is nothing to show.

I This completes the proof that equipotency (∼) is an
equivalence relation.
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Finite and infinite sets

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I From the pigeonhole principle, if A is equipotent with
{1, 2, . . . ,m} and with {1, 2, . . . , n} then m = n.

I This allows us to define the number of elements of a finite set
A as n, if A is equipotent with {1, 2, . . . n}. If A is empty then
the number of elements A is defined to be zero.

I Example 5.4: A = {a, b, c} and B = {x , y , z} have same
number of elements, namely 3, as both of them are
equipotent with {1, 2, 3}.

I Even for infinite sets A,B we may informally say that A and B
have same number of elements to mean that A and B are
equipotent, even though we have not defined number of
elements for infinite sets.
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Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.



Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.



Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.



Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.



A story

I Hilbert’s Hotel: Hilbert built a large hotel, which has a room
with room number n for every natural number n.

I Here are some great features of this hotel.

I Flexibility: Suppose one day the hotel is houseful and a new
guest arrives.

I The hotel manager need not send away the new guest.

I The manager instructs the guest who is in room number 1 to
move to room number 2, and the one in room number 2 to
move to 3 and so on.

I This way no old guest has been asked to vacate, still room
number 1 is free.

I The manager can ask the new guest to take room number 1.
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More guests

I What if there are two new guests?

I Well, either we can go through the previous procedure of
accommodating one new person twice, or we can simply ask
the present guest at room number n to go to room number
n + 2 so that two rooms are freed up.

I What if there are infinitely many new guests? Say present
guests are g1, g2, . . . and new guests are h1, h2, . . . ,.

I We can ask present guest gn in room number n to go to room
number 2n, so that all odd numbered rooms are freed up.

I Then new guest hn can go to room number number (2n − 1)
and we are done.
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Countably infinite sets

I Example 5.7: The set N+ = {0, 1, 2, . . .} is countable.

I Indeed the function g : N+ → N defined by

g(n) = n + 1, ∀n ∈ N+

is easily seen to be a bijection.

I Example 5.8: The set Z of integers is countable:

I Define h : Z→ N by

h(n) =

{
2n if n ≥ 1

−2n + 1 if n ≤ 0

I You may verify that h is a bijection.
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More or less

I There are more even numbers or more natural numbers?

I E = {2, 4, 6, 8, . . .}
I N = {1, 2, 3, . . .}.
I On first look, it seems there are more natural numbers than

even numbers.

I However, g : N→ E defined by g(n) = 2n is a bijection. So
there are as many even numbers as there are natural numbers.
Not less! Note more!

I Moral of the story: For infinite sets, a subset may have as
many elements as the full set.
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Disjoint union

I Consider the set of odd natural numbers H = {1, 3, 5, . . .}
and the set of even natural numbers E = {2, 4, 6, . . .}.

I Now H,E have same number of elements and their union N
also has same number of elements!

I In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.
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Cartesian product

I Theorem 5.9: N× N is countable.

I Proof: Here is Cantor’s argument.
I Look at N× N.
I

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·

...
...

...
...

. . .

I Zig-zag counting.
I We count the elements here as

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), . . .,
I This way we are able to exhaust all the elements of N× N,

without repeating any element twice.
I In other words we have a bijection between N and N× N. In

particular, N× N is countable.
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Explicit bijections

I Exercise 5.10.1: Define g : N× N→ N by

g(m, n) = 2m−1(2n − 1), (m, n) ∈ N× N.

I Show that g is a bijection.

I Exercise 5.10.2: Define h : N× N→ N by

h(m, n) = m + [
(m + n − 1)(m + n − 2)

2
], (m, n) ∈ N× N.

I Show that h is a bijection.

I Challenge Problem 3: Obtain another ‘explicit’ bijection
between N× N and N different from g , h, g̃ , h̃, where
g̃(m, n) = g(n,m), and h̃(m, n) = h(n,m), ∀m, n ∈ N× N.

I This problem is not very clearly stated. But we leave it at
that.
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Schroder-Bernstein theorem

I The pigeon hole principle suggests that if we have an injective
function f : A→ B, then B should be having ‘more’ elements
than A.

I What if there is an injective function from A to B and another
injective function from B to A?

I Theorem 5.11 (Schroder-Bernstein theorem): Let A,B be
non-empty sets. Suppose there exist injective functions
f : A→ B and g : B → A. Then there exists a bijective
function h : A→ B. Consequently A and B are equipotent.

I Exercise 5.12: Prove Schroder-Bernstein theorem. If you are
unable to prove it yourself, discuss with your friends. Still if
you can’t do it, get a proof from the internet and understand
it!

I END OF LECTURE 5
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Lecture 6: Uncountable sets

I To begin with we recall a few definitions from last lecture.

I Definition 5.1: Let A,B be two non-empty sets. Then B is
said to be equipotent with A, if there exists a bijection
f : A→ B. Empty set is equipotent to only itself.

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

I We saw that N,Z,N× N are all countable.

I Now it is time to see some uncountable sets.
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said to be infinite if it is not finite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

I We saw that N,Z,N× N are all countable.

I Now it is time to see some uncountable sets.
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Binary sequences

I Let B = {(w1,w2,w3, . . .) : wj ∈ {0, 1}}.

I Each wj is either 0 or 1. We call (w1,w2, . . .) as a binary
sequence.

I B is the set of all possible binary sequences. (Warning: This
notation is not standard.)

I Theorem 6.1: B is uncountable.

I The proof is by contradiction and the argument is known as
Cantor’s diagonal argument.

I Proof: Suppose that there exists a bijection f : N→ B. In
particular f is a surjection.

I Then for every i ∈ N, f (i) is a binary sequence.
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Proof Continued

I Suppose f (i) = (wi1,wi2,wi3, . . .)

I Each wij is either 0 or 1.

I Look at the infinite matrix:

w11 w12 w13 w14 · · ·
w21 w22 w23 w24 · · ·
w31 w32 w33 w34 · · ·
w41 w42 w43 w44 · · ·

...
...

...
...

. . .

I formed by writing down f (1), f (2), . . . as rows.

I Form a binary sequence using the diagonal entries:
(w11,w22,w33, . . .).

I We flip the entries to get a new binary sequence,
v = (v1, v2, v3, . . .) where vj = 1− wjj for every j ∈ N. Now
we claim that v is not in the range of f .
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Proof Continued

I v 6= f (1) as v = (v1, v2, . . .), f (1) = (w11,w12, . . .) and
v1 = 1− w11 6= w11. So the first entry does not match.

I v 6= f (2) as v = (v1, v2, . . .), f (2) = (w21,w22, . . .) and
v2 = 1− w22 6= w22. So the second entry does not match.

I In fact, for every i ∈ N, f (i) 6= v as vi 6= wii . Here i th entry
does not match.

I Therefore v is not in the range of f .

I Actually, we have shown that no function f : N→ B can be
surjective.

I In particular B is not countable.
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Power sets

I Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) = {B : B ⊆ A}.

I In other words, the power set of A is the set of all subsets of
A.

I If A = ∅, then P(A) = {∅}.
I If A = {1}, then P(A) = {∅, {1}}.
I If A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.
I If A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
I Exercise: If A is a finite set with n elements, show that P(A)

has 2n elements.

I We guess that P(A) should be having ‘more’ elements than A.
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Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.



Proof continued

I Recall: D = {a ∈ A : a /∈ f (a)}.
I Assume that D is in the range of f .

I So D = f (a0) for some a0 ∈ A.

I Now either a0 ∈ D or a0 /∈ D.

I If a0 ∈ D, then by the definition of D,

a0 /∈ f (a0).

I But f (a0) = D. Hence a0 /∈ D. This contradicts a0 ∈ D.

I On the other hand, if a0 is not in D, as D = f (a0), a0 is not
in f (a0). Then by the definition of D, a0 is in D. Once again
we have a contradiction.

I Therefore our assumption that D is in the range of f must be
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Remarks

I The proof of the previous theorem is reminiscent of Russel’s
paradox. However, here there is no paradox. The conclusion
that D is not in the range of f resolves everything.

I Consider the case A = N.

I Show that the power set of N is equipotent with the set B of
binary sequences.

I If C is a subset of N, map it to the binary sequence
c = (c1, c2, . . .), where cj = 1 if j ∈ C and cj = 0 if j /∈ C .

I In other words, c(j) := cj , is just the ‘indicator function’ of
the set C .

I Now go back and see that the proof of last theorem and that
of uncountability of B use the same idea!
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Bigger and bigger infinities

I We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

I Now by the previous theorem P(P(N)) is even bigger than
P(N).

I We can go on.

I So there are bigger and bigger infinities.
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Spaces of functions

I Let A,B be non-empty sets. Let BA denote the set of all
functions from A to B.

I For n ∈ N, if A = {1, 2, . . . , n} and B = {0, 1}, then observe
that BA has 2n elements.

I More generally, if A,B are non-empty finite sets, A has n
elements and B has m elements, then BA has mn elements.

I Observe that for any non-empty set A, if B = {0, 1} then BA

is equipotent with the power set of A.

I Observe that BN is same as the space of sequences with
elements from B. In particular, if B = {0, 1}, then BN is
same as the space of binary sequences.
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Lecture 7: Real Numbers

I God created the integers, all else is the work of man.
-Kronecker.

I You must be familiar with real numbers, which include natural
numbers, integers, rational numbers and also irrational
numbers such as

√
2, π, and e.

I Here we are going to assume that there exists a set called real
numbers, denoted by R, having a list of properties to be
specified.

I One may construct real numbers out of natural numbers, step
by step by constructing integers, rational numbers and so on.

I For instance, we construct positive rational numbers out of
N× N, by identifying (a, b) with (a′, b′) if ab′ = a′b. (Think
of (a, b) as a

b .) However, we will not take such an approach.

I If you wish, you may see the construction of real numbers in
due course once you are fully familiar with various properties
of real numbers.
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Algebraic axioms for real numbers

I The set R of real numbers has two binary operations, ‘+’
(addition) and ‘.’ (multiplication), with following properties:

I (You may recall that a binary operation on a non-empty set A
is a function from A× A to A.)

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.
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Addition Axioms continued

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.

I Note that we have explicitly assumed that 1 6= 0.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

I This axiom binds addition and multiplication.
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Consequences

I Theorem 7.1 : (i) (Uniqueness of 0). If e ∈ R satisfies
a+ e = e + a = a for all a ∈ R, then e = 0. (ii) (uniqueness of
1). If f ∈ R satisfies a.f = f .a = a for all a ∈ R, then f = 1.

I Proof: (i) Take a = 0. Then we get 0 + e = e + 0 = 0. But
by A3, 0 + e = e + 0 = e. Hence e = 0. (ii)Take a = 1 and
we get 1.f = f .1 = 1 and also 1.f = f .1 = f . Hence f = 1.

I Theorem 7.2 (Cancellation property of addition): For
a, b, c ∈ R, if a + b = a + c then b = c .

I Proof: Given a + b = a + c .
I Hence (−a) + (a + b) = (−a) + (a + c).
I By associativity of addition A2,

((−a) + a) + b = ((−a) + a) + c .
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Consequences -2

I Theorem 7.4 (Cancellation property of multiplication): For
a, b, c ∈ R with a 6= 0, if a.b = a.c then b = c .

I The proof is similar to the proof of Theorem 7.2. This time
multiply by a−1 from the left.

I Corollary 7.5 (Uniqueness of multiplicative inverse): For
a ∈ R, if a.b = 1, then b = a−1.

I Proof: Clear from Theorem 7.4.
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Consequences -3

I Theorem 7.6: (i) (−0) = 0; 1−1 = 1. (ii) For a ∈ R a.0 = 0.
(iii) For a, b ∈ R, if a.b = 0 then either a = 0 or b = 0.

I Proof: (i) follows easily from previous results, as 0 + 0 = 0
and 1.1 = 1.

I (ii) For a ∈ R, by distributivity, a.0 = a.(0 + 0) = a.0 + a.0.
In other words, a.0 + 0 = a.0 + a.0. Hence by cancellation
property 0 = a.0.

I (iii) Given a, b ∈ R and a.b = 0.

I Now suppose a 6= 0, then a−1 exists and we get

a−1.(a.b) = a−1.0 = 0.

Hence by associativity of multiplication, (a−1.a).b = 0, or
1.b = 0, which implies b = 0. So either a = 0 or b = 0.
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Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.



Integers, rational numbers and irrational numbers

I Z is also thought of as a subset of R: 0 ∈ Z is identified with
0 of R and −n for n ∈ N is just the additive inverse of n.

I Definition 7.7: A real number a is said to be a rational
number if it is of the form a

b for some integers a, b with b 6= 0.
A real number which is not rational is said to be irrational.

I To show existence of irrational numbers we would need more
axioms.

I END OF LECTURE 7.
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Lecture 8: Real Numbers : Order axioms

I We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

-Distributivity.

I These axioms are known as algebraic axioms. They determine
the ‘algebraic structure’ of real numbers.
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Order axioms: Positive elements

I Here we have a bunch of three axioms as described below.

I The set R has a subset P called the set of positive real
numbers satisfying following axioms:

I O1. If a, b ∈ P then a + b ∈ P. [ The set of positive real
numbers is closed under addition.]

I O2. If a, b ∈ P then a.b ∈ P. [ The set of positive real
numbers is closed under multiplication.]

I O3. If a ∈ R, then exactly one of the following three
properties is true:
(i) a ∈ P;
(ii) −a ∈ P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

I Any element of P is said to be positive.
I Warning: The notation P for positive real numbers is not

standard. You may see R+, (0,∞) as some of the alternative
notations for the set of positive real numbers.
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Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.

I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom
M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.

I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.
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Inequalities

I Notation: For real numbers, a, b, we write a < b or b > a if
b − a ∈ P. We write a ≤ b or b ≥ a if b − a ∈ P

⋃
{0}.

I In particular, a > 0 iff a ∈ P. Similarly a ≥ 0 iff a ∈ P
⋃
{0}.

I Now order axioms under this notation, becomes:
(1) O1. : If a > 0 and b > 0 then a + b > 0.
(2) O2. : If a > 0 and b > 0 then ab > 0.
(3) O3.: If a ∈ R then exactly one of the following holds: (i)
a > 0; (ii) a < 0; (iii) a = 0.

I Here after we may not use the notation P at all!

I We may call a real number a as negative if −a is positive.
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Simple inequalities

I Theorem 8.2: Suppose a, b, c , d are real numbers. Then
(i) If a < b, then a + c < b + c .
(ii) If a ≤ b, then a + c ≤ b + c .
(iii) If a < b and c < d , then a + c < b + d .
(iv) If a < b and c > 0, then ac < bc.
(v) If a < b and c < 0, then a > b.
(vi) If a < b and c = 0, then ac = bc = 0.
(vii) If a < 0 and b > 0, then ab < 0.
(viii) If a < 0 and b < 0, then ab > 0.

I Proof. Exercise.

I Often we show two real numbers a, b are equal by showing
a ≤ b and b ≤ a. The equality follows by trichotomy property.
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More inequalities

I Inequalities play a crucial role in whole of Analysis.

I Notation. For any real number a, a2 is defined a.a. More
generally, for any a ∈ R and n ∈ N, an is defined as
a.a.a . . . .a (n times ).

I Theorem 8.3: If a, b are positive real numbers, then a2 < b2 if
and only if a < b.

I Proof. Suppose a < b. Now b2 − a2 = (b + a)(b − a). As,
both (b + a) and (b − a) are positive, b2 − a2 is positive. In
other words, a2 < b2.

I Conversely, suppose a2 < b2. Hence
(b2 − a2) = (b + a)(b − a) is positive. As a, b are assumed to
be positive, (b + a) is positive. Now from Theorem 8.1 it is
clear that for the product (b + a)(b − a) to be positive, we
also need (b − a) positive.
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Modulus

I For any real number a, the modulus of a, denoted by |a|, is
defined by

|a| =

{
a if a ≥ 0;
−a if a < 0.

I Note that |a| ≥ 0 for every real number a and |a| = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a, b ∈ R.

I Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then

|a + b| ≤ |a|+ |b|.
I Proof: If a or b is zero, it is easily seen that |a+ b| = |a|+ |b|.
I If both a, b are positive, then a + b is also positive, and we

get |a + b| = a + b = |a|+ |b|.
I Now if a is positive and b is negative, say b = −|b|, with

0 < |b| ≤ a, we get
|a + b| = |a− |b|| = a− |b| ≤ a = |a| ≤ |a|+ |b|.

I Similarly if a is positive and b is negative with 0 < a ≤ |b|, we
get |a + b| = |a− |b|| = |b| − a ≤ |b| ≤ |a|+ |b|. Other cases
are similar.
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Why is this triangle inequality?

I Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b − a|.

I The triangle inequality tells us that for any three points a, b, c
in R,

dist(a, b) ≤ dist(a, c) + dist(c, b).

I Now it should be clear as to why this is called triangle
inequality.

I You will see that this notion of distance has far reaching
applications in Analysis.
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No smallest or largest positive elements

I Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number α, such that α ≤ a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number β, such
that a ≤ β for every positive real number a.

I Proof: Suppose α is a positive real number. Then we claim
0 < α

2 < α.

I It is easy to see that 2−1 = 1
2 is positive (Otherwise 1 = 2.2−1

would be negative). Hence α
2 = α.12 is positive.

I So α− α
2 = α

2 is also positive.

I This means that 0 < α
2 < α. Hence no real number α can be

the smallest positive element.

I (ii) If β is any positive element, then β < β + 1. This proves
the second statement.

I END OF LECTURE 8.
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Lecture 9: Real Numbers : Completeness Axiom

I We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

-Distributivity.

I These axioms are known as algebraic axioms. They determine
the ‘algebraic structure’ of real numbers.
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Order axioms: Positive elements

I Here we have a bunch of three axioms as described below.

I The set R has a subset P called the set of positive real
numbers satisfying following axioms:

I O1. If a, b ∈ P then a + b ∈ P. [ The set of positive real
numbers is closed under addition.]

I O2. If a, b ∈ P then a.b ∈ P. [ The set of positive real
numbers is closed under multiplication.]

I O3. If a ∈ R, then exactly one of the following three
properties is true:
(i) a ∈ P;
(ii) −a ∈ P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

I Any element of P is said to be positive.
I Notation: For real numbers, a, b, we write a < b or b > a if

b − a ∈ P. We write a ≤ b or b ≥ a if b − a ∈ P
⋃
{0}.

I In particular, a > 0 iff a ∈ P. Similarly a ≥ 0 iff a ∈ P
⋃
{0}.
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Boundedness

I Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists u ∈ R such that

x ≤ u, ∀x ∈ S .

In such a case, u is said to be an upper bound of S .

I Definition 9.2: A non-empty subset S of R is said to be
bounded below if there exists v ∈ R such that

v ≤ x , ∀x ∈ S .

In such a case, v is said to be a lower bound of S .

I Definition 9.3: A non-empty subset S of R is said to be
bounded if it is both bounded above and bounded below.
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Examples

I Example 9.4: Consider the set S = {1, 2, 3}. Then 4 is an
upper bound for S . 5 is also an upper bound for S . −1 is a
lower bound for S . 1

2 is also a lower bound for S . Since S
admits both lower and upper bounds, it is a bounded subset
of R.

I Example 9.5: The set P of positive real numbers is bounded
below with 0 as a lower bound, as 0 < x for every x ∈ P.

I Suppose u ∈ R is an upper bound for P. Then

x ≤ u

for every real number x ∈ P. In particular 1 ≤ u. Hence
u − 1 ∈ P

⋃
{0}. As 1 ∈ P, we see that u = (u − 1) + 1 is also

positive. Hence u is a positive element such that x ≤ u for
every x ∈ P. Clearly this is not possible as u + 1 is also
positive, and we get u + 1 ≤ u, implying 1 ≤ 0. In other
words, P is bounded below, but not bounded above.

I Example 9.6: It is easily seen that R is neither bounded below
nor bounded above.
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Upper bound vs lower bound

I Remark: Note that if u is an upper bound of S , then u + v is
an upper bound of S , for every v ∈ P.

I Proposition 9.7: A non-empty subset S of R is bounded above
by u if and only if

−S := {−x : x ∈ S}

is bounded below by −u.
I Proof: Exercise.
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Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .



Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .



Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .



Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .



Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .



Greatest lower bound

I Definition 9.10: Let S be a non-empty subset of R, which is
bounded below. Then v0 ∈ R is said to be a greatest lower
bound (or infimum) of S if

I (i) v0 is a lower bound of S ;

I (ii) If v is a lower bound of S , then v ≤ v0.

I Remark: Greatest lower bound, when it exists is unique, for if
v0, v1 are two least upper bounds, then by (i), (ii) applied to
both v0, v1, we get v0 ≤ v1 and v1 ≤ v0, and hence v0 = v1.

I Example 9.11: Suppose

T1 = {x ∈ R : x ≥ 1};

T2 = {x ∈ R : x > 1}.

It is clear that 1 is the greatest lower bound for both T1 and
T2. In particular, if v0 is a greatest lower bound for S , then v0
may or may not be in S .
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Equivalence

I Proposition 9.12: Let S be a non-empty subset of R. Then
the following are equivalent:
(a) S is bounded above and u0 ∈ R is the least upper bound
of S .
(b) −S is bounded below and −u0 ∈ R is the greatest lower
bound of −S .



Completeness axiom of R.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I We have already noted that least upper bound when it exists
is unique.

I Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

I Proof: Suppose T ⊂ R is non-empty and is bounded below.
Then by consider −T which is bounded above and appeal to
the completeness axiom. If u0 is the least upper bound of
−T , we know that −u0 is the greatest lower bound of T .
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Notation

I Notation: If S is a non-empty subset of R, we write

sup(S) =

{
Least upper bound of S if S is bounded above;

∞ otherwise.

inf(S) =

{
Greatest lower bound of S if S is bounded below;

−∞ otherwise.

I Note that notationally:
sup(S) = − inf(−S), inf(S) = − sup(−S)

I However, keep in mind that −∞,∞ are not real numbers.
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A Characterization

I Theorem 9.14: Let S be a non-empty subset of R and let
u0 ∈ R. Then u0 = sup(S) if and only if
(i) u0 is an upper bound of S ;
(ii) For every ε > 0, there exists xε ∈ S such that u0 − ε < xε.

I Proof: Suppose u0 = sup(S). Consider any ε > 0. Now if
every x ∈ S satisfies x ≤ u0− ε, then u0− ε is an upper bound
for S . This contradicts the fact that u0 is the least upper
bound. Hence there exists some xε in S , such that u0− ε < xε.

I Conversely suppose u0 satisfies (i) and (ii). Now if u0 is not
the least upper bound of S , then there exists an upper bound
u of S such that u < u0. Take ε = u0 − u.

I As u is an upper bound of S , every x ∈ S satisfies
x ≤ u = u0 − ε. This violates (ii). So u0 must be the least
upper bound of S .
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Consequences of of completeness property

I Theorem 9.15: N is not bounded above.

I Note that we know that N has no largest element. But this
does not leave out the possibility of existence of a real number
u, such that n ≤ u for all n ∈ N.

I Proof: Suppose N is bounded above.

I Then by the least upper bound property, N has a least upper
bound, say u0.
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Continuation of proof

I Take ε = 1
2 .

I Then by Theorem 9.14, there exists a natural number x such
that u0 − 1

2 < x .

I Adding 1, we get u0 + 1
2 < x + 1.

I In particular, u0 < x + 1.

I As x is a natural number x + 1 is also a natural number.

I Then u0 < x + 1 is a contradiction, as u0 is an upper bound
for the set of natural numbers.

I Hence N can’t be bounded above.
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A corollary

I Corollary 9.16: Suppose x is a natural number. Then there
exists a natural number n such that x < n.

I Proof: Let x ∈ R. If n ≤ x for every natural number n, then
N is bounded above by x . Since N is not bounded above,
there exists a natural number n such that x < n.
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I Proof: Let x ∈ R. If n ≤ x for every natural number n, then
N is bounded above by x . Since N is not bounded above,
there exists a natural number n such that x < n.



Archimedean property

I Theorem 9.17 (Archimedean property): Suppose ε ∈ R and
ε > 0. Then given any y ∈ R there exists n ∈ N such that

y < n.ε.

I Proof: Take x = y
ε .

I By the previous Corollary, there exists a natural number n
such that x < n.

I That is, y
ε < n or y < nε.
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Continuation

I Recall: Archimedean property: Suppose ε ∈ R and ε > 0.
Then given any x ∈ R there exists n ∈ N such that

x < n.ε.

I We say even ocean is made up of small drops of water.

I However big the x is, we can exceed that by taking a large
multiple of ε is the statement in Archimedean property.

I Even a long journey we can finish by taking small steps.

I Long proofs of theorems are also made up of small,
understandable steps!
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Lecture 10: Existence of irrational numbers

I We now have all the required axioms.

I A1-A4, axioms for addition; M1-M4, axioms for multiplication
and D-distributivity axiom.

I O1-O3, axioms of order, and

I C- Completeness axiom.
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Recall: Completeness axiom

I Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists u ∈ R such that

x ≤ u, ∀x ∈ S .

In such a case, u is said to be an upper bound of S .

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I If S is non-empty and bounded above, its least upper bound is
unique and is denoted by sup(S).
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A Lemma

I Lemma 10.1: Let ε be a positive real number. Then there
exists a natural number n such that

0 <
1

n
< ε.

I Proof: This inequality is equivalent to

0 < 1 < n.ε.

I Now the result is a special case of Archimedean property with
x = 1.
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Squares of integers

I An integer n ∈ Z is said to be an even number if it is a
multiple of 2, that is, it is of the form 2k for some integer k.

I The set of even integers is: {. . . ,−4,−2, 0, 2, 4, 6, . . .}.
I An integer n ∈ Z is said to be an odd number if it is not an

even number. Odd integers are all of the form 2k + 1 for
some integer k, and conversely all integers of the form 2k + 1
with k ∈ Z are all odd.

I The set of odd integers is: {. . . ,−5,−3,−1, 1, 3, 5, . . .}.
I Proposition 10.1: Square of an even integer is even and

square of an odd integer is odd.

I Proof. Exercise.
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Square root of 2

I Theorem 10.2: There is no rational number x such that
x2 = 2.

I Proof: The proof is by contradiction.

I Suppose x is a rational number such that x2 = 2.

I As x is a rational number, x = p
q , for some integers, p, q with

q 6= 0.

I Without loss of generality, we may assume that p, q are
relatively prime (they have no common factor bigger than 1).
This is possible, because, if p = rp1 and q = rq1, with r > 1,
we can write x = p1

q1
.
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Continuation

I We have x = p
q , where p, q ∈ Z and are relatively prime.

I As x2 = 2, we get p2

q2
= 2 or p2 = 2q2.

I In particular, p2 is even.

I Since squares of odd numbers are odd, p also must be even.
Say, p = 2k , with k ∈ Z.

I Then we get 4k2 = 2q2 or 2k2 = q2.

I In particular, q2 is even and hence q is also even.

I Consequently, both p and q are even. This is a contradiction,
as we have taken p, q to be relatively prime.

I This completes the proof.
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Square root of 2 as a real number

I Theorem 10.3: There exists unique positive real number s
such that s2 = 2.

I Proof: Consider the set S defined by

S = {x ∈ R : x > 0, x2 < 2}.

I Then S is non-empty as 1 ∈ S .

I We have seen earlier that for positive real numbers a, b:

I a < b if and only if a2 < b2.

I If x ∈ S , then x2 < 2 < 4 = 22.

I As x2 < 22, we get x < 2. Therefore S is bounded above by 2.
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Continuation

I Now, as S is non-empty and bounded above, by the
completeness of axiom of real numbers, S has a least upper
bound.

I Let s be the least upper bound of S .

I Claim: s2 = 2.

I Suppose s2 < 2.

I We want to choose a natural number n such that

(s +
1

n
)2 < 2.

I (s + 1
n )2 = s2 + 2s

n + 1
n2
.

I Since n2 ≥ n, 1
n2
≤ 1

n .

I Hence, (s + 1
n )2 ≤ s2 + 2s

n + 1
n .
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Continuation

I Since both s2 < 2 and s2 > 2 are not possible, the only
possibility is s2 = 2, by the trichotomy property.

I So we have shown the existence of a positive real number s
such that s2 = 2.

I If 0 < t < s, we have 0 < t2 < s2 = 2, and if s < t, we get
2 = s2 < t2. Hence s is the unique positive real number such
that s2 = 2.

I We denote s, by
√

2.

I It is easily seen that −
√

2 is the only other real number whose
square 2.
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Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.
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Intervals

I Notation: For any two real numbers a, b with a < b, we write

(a, b) := {x ∈ R : a < x < b}.

[a, b) := {x ∈ R : a ≤ x < b}.

(a, b] := {x ∈ R : a < x ≤ b}.

[a, b] := {x ∈ R : a ≤ x ≤ b}.

(a,∞) := {x ∈ R : a < x}.

[a,∞) := {x ∈ R : a ≤ x}.

(−∞, a) := {x ∈ R : x < a}.

(−∞, a] := {x ∈ R : x ≤ a}.

I We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.
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The density of rational and irrational numbers

I Lemma 10.8: For any rational number x 6= 0, x
√

2 is an
irrational number.

I Proof: It is easily seen that if x
√

2 is rational, then so is
√

2.
But we have already proved that

√
2 is not rational.

I Theorem 10.9: Suppose a, b are real numbers such that a < b.
(i) Then there exists a rational number r such that a < r < b.
(ii) There exists an irrational number s such that a < s < b.

I Proof: (i) Case I: a = 0: We know that there exists n ∈ N
such that 0 < 1

n < b. Since 1
n is rational, we are done.
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Continuation

I Case II: a > 0. Now as (b − a) > 0, we can find n ∈ N such
that 0 < 1

n < (b − a), or 1 < nb − na, that is, na + 1 < nb.

I Take m = [na] + 1. So m ∈ N.

I Then m − 1 ≤ na < m. Which implies, on dividing by n,
a < m

n .

I And also, m
n −

1
n ≤ a

I or m
n < a + 1

n < a + (b − a) = b.

I So we have a < m
n < b.

I Case III: a < 0. The result for this case can be derived from
Case I and Case II (Exercise).
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Lecture 11: Real Numbers: Nested intervals property and
Uncountability

I Consider R the set of real numbers.

I We draw the set as ‘Real line’:

I

I

I

I

I This is only a visual aid for us. We are not connecting axioms
of geometry with axioms of real line.
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Nested Intervals

I A sequence of intervals I1, I2, I3, . . . is said to be nested if
In ⊇ In+1 for every n ∈ N, that is,

I1 ⊇ I2 ⊇ I3 ⊇ · · · .

I Example 11.1: Take In = (− 1
n ,

1
n ), then

(−1, 1) ⊃ (−1

2
,

1

2
) ⊃ (−1

3
,

1

3
) · · · .

I Claim:
⋂

n∈N(− 1
n ,

1
n ) = {0}.

I Proof: Clearly 0 ∈ (− 1
n ,

1
n ) for every n ∈ N, and hence

0 ∈
⋂∞

n=1(− 1
n ,

1
n ).

I Now if x ∈ R and x > 0, there exists m ∈ N, such that
0 < 1

m < x .
I Hence x /∈ (− 1

m ,
1
m ).

I Consequently x /∈
⋂

n∈N(− 1
n ,

1
n ).

I Similarly, if x ∈ R and x < 0, then x /∈
⋂

n∈N(− 1
n ,

1
n ).

I This completes the proof.
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Another Example

I Example 11.2: Take Jn = (0, 1n ) for n ∈ N.

I Then Jn is a nested family of intervals:

J1 ⊃ J2 ⊃ J3 ⊃ · · · .

I Clearly ⋂
n∈N

Jn = ∅.

I So intersection of a nested family of intervals can be empty.
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One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.

I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.
I Considering previous examples, the following theorem can be

a bit of a surprise.
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Nested intervals property

I Theorem 11.3 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

I Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

I Proof: Suppose I1, I2, . . . is a nested sequence of intervals,
where In = [an, bn], for some an, bn ∈ R, with an < bn for
every n.

I We want to show that
⋂

n∈N In =
⋂

n∈N[an, bn] 6= ∅.
I As In ⊇ In+1, we have [an, bn] ⊇ [an+1, bn+1] for every n.

I This means that an ≤ an+1 < bn+1 ≤ bn for every n.
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Continuation

I Since for every n, I1 ⊇ In, we get a1 ≤ an ≤ bn ≤ b1.

I In particular A := {an : n ∈ N} is bounded by b1.
I By completeness axiom, A has a least upper bound. Take

u = sup(A).
I We claim that u ∈

⋂
n∈N In.

I Fix n ∈ N.
I Since u is an upper bound for A, and an ∈ A,

an ≤ u, (i)

I We have
a1 ≤ a2 ≤ · · · ≤ an ≤ bn

Hence am ≤ bn for 1 ≤ m ≤ n.
I For m ≥ n, Im ⊆ In, and hence an ≤ am < bm ≤ bn. In

particular, am ≤ bn.
I Combining the last two conclusions, we have

am ≤ bn, ∀m (ii)
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Continuation

I From (ii), bn is an upper bound for A. Since u is the least
upper bound, we get

u ≤ bn, (iii).

I From (i) and (iii), an ≤ u ≤ bn. In other words, u ∈ In. Since
this is true for every n, u ∈

⋂
n∈N In.

I In particular,
⋂

n∈N In is non-empty.
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The intersection is an interval

I Consider the intervals In = [an, bn] of previous theorem.

I Similar arguments show that B = {bn : n ∈ N} is bounded
below and taking v = inf(B),

I v ∈
⋂

n∈N In.
I We have am ≤ bn for all m, n.
I This implies u ≤ bn for all n, as bn is an upper bound for A

and u is the least upper bound.
I This in turn implies u is a lower bound for B and since v is

the greatest lower bound we get

u ≤ v .

I In fact, as an ≤ u ≤ v ≤ bn for every n, we can see that

[u, v ] ⊆
⋂
n∈N

In.

I Here if u = v , then [u, v ] is to be understood as the singleton
{u}.
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The Singleton

I Theorem 11.4: Let I1, I2, . . . be a nested sequence of intervals,
with In = [an, bn], for some an, bn ∈ R. Suppose
inf{bn − an : n ∈ N} = 0. Then

⋂
n∈N In is a singleton set.

I Proof: Suppose u = sup{an : n ∈ N} and v = inf{bn : n ∈ N}.
I We want to show u = v .

I Suppose not. Since an ≤ u ≤ v ≤ bn for every n.

I Hence bn − an ≥ (v − u) for every n.

I In particular v − u is a lower bound for {bn − an : n ∈ N}
Therefore (v − u) ≤ 0.

I Since we already have u ≤ v , we get v − u = 0, that is, u = v .
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Uncountability of R

I Theorem 11.5: The set R is uncountable.

I Proof: Fix a, b ∈ R with a < b.

I We will show that [a, b] is uncountable.

I This would complete the proof as subsets of countable sets
are countable, R can not be countable.

I Suppose [a, b] is countable.

I Let {x1, x2, . . .} be an enumeration of [a, b]. (This just means
that n 7→ xn is a bijective function from N to [a, b].)
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Continuation

I Now x1 ∈ [a, b]. Clearly we can choose a closed sub-interval
I1 = [a1, b1] of [a, b] such that x1 /∈ I1.

I Next, in a similar fashion, we can choose a sub-interval
I2 = [a2, b2] of I1, such that x2 /∈ I2. (If x2 /∈ I1, we can simply
choose I2 = I1.

I Then we can choose a sub-interval I3 = [a3, b3] of I2 such that
x3 /∈ I3.

I Continuing this way, we have a nested sequence of closed and
bounded intervals:

[a, b] ⊇ I1 ⊇ I2 ⊇ · · · ,
I with xn /∈ In for every n ∈ R.
I By nested intervals property of R,⋂

n∈N
In

is non-empty. Take u ∈
⋂

n∈N In.
I Then clearly u ∈ [a, b].
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Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.



Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.



Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.



Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.



Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?

I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Bernoulli’s inequality

I Theorem 12.1 (Bernoulli’s inequality): If x ∈ R with x > −1,
then

(1 + x)n ≥ 1 + nx , ∀n ∈ N.

I Proof: This we prove by induction on n.
I For n = 1, clearly the equality holds.
I Assume the result for n = m, so we have (1 + x)m ≥ 1 + mx .
I Note that as x > −1, 1 + x > 0.
I Now using the induction hypothesis,

(1 + x)m+1 = (1 + x)m.(1 + x)
≥ (1 + mx)(1 + x)
= 1 + x + mx + mx2

≥ 1 + (m + 1)x

as mx2 ≥ 0.
I Hence the inequality is true for n = m + 1.
I This completes the proof by Mathematical Induction.
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Binary system

I We divide the interval [0, 1) into two parts, [0, 1/2) and [12 , 1),
and then sub-divide them into two more equal pieces and so
on.

I We have [0, 1) = [0, 12)
⋃

[12 , 1)

I If x ∈ [0, 12), the first binary digit b1 of x is 0. If x ∈ [12 , 1),
the first binary digit b1 of x is 1.

I Here we have made a choice to put the mid-point with the
right interval. We can opt to the mid-point with the left
interval. This option we will explore later on.

I Consider the case where b1 = 0. Now x ∈ [0, 12). To
determine the second digit, divide [0, 12) into two parts.

I If x ∈ [0, 14), the second binary digit b2 of x is 0. If x ∈ [14 ,
1
2)

the second binary digit b2 of x is 1.

I On the other hand if b1 = 1, that is, x ∈ [12 , 1), the second
binary digit b2 is 0 if x ∈ [12 ,

3
4) and b2 = 1 if x ∈ [34 , 1).
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Binary expansion: Continuation

I Continuing this way, if b1, b2, . . . , bn are the first n-binary
digits of x , then

b1
2

+
b2
22
· · ·+ bn

2n
≤ x <

b1
21

+
b2
22
· · ·+ (bn + 1)

2n
.

I In other words, taking

I1 = [
b1
21
,

(b1 + 1)

21
].

I2 = [
b1
21

+
b2
22
,

b1
21

+
(b2 + 1)

22
]

In = [
b1
21

+
b2
22

+ · · ·+ bn
2n
,

b1
21

+
b2
22

+ · · ·+ (bn + 1)

2n
], ∀n,

I we get a nested family of closed and bounded intervals:

I1 ⊃ I2 ⊃ I2 · · ·
I satisfying x ∈ In for every n.
I Hence x ∈

⋂
n∈N In.
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Continuation

I By Bernoulli’s inequality (taking x = 1) 2n = (1 + 1)n ≥ 1 +n.

I In particular, for ε > 0, there exists n ∈ N, such that
0 < 1

2n <
1

n+1 < ε.

I Consequently, inf{ (bn+1)
2n − bn

2n : n ∈ N} = inf{ 1
2n : n ∈ N} = 0.

I Then by Theorem 11.5,
⋂

n∈N In is singleton.

I Hence
⋂

n∈N In = {x}.
I This shows that the binary digits of x , determines x .

I In other words, two different real numbers x , y would have
different binary expansions.
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Second Option in Binary expansion

I Now we explore the Second Option.

I We divide the interval (0, 1] as (0, 12 ]
⋃

(12 , 1].

I Then (0, 12 ] as (0, 1
22

]
⋃

( 1
22
, 12 ] and (12 , 1] as (12 ,

3
22

]
⋃

( 3
22
, 1].

I This way we get a possibly new binary expansion, say the
digits are c1, c2, . . ., satisfying

c1
21

+
c2
22
· · ·+ cn

2n
≤ x ≤ c1

21
+

c2
22
· · ·+ cn + 1

2n
.

I The two expansions are different only if x is one of the end
points in these divisions, that is, if x = m

2k
for some natural

numbers m, k. Here without loss of generality we may take m
to be odd.

I In other words in (0, 1), only numbers of the form m
2k

, with
natural numbers m, k have two binary expansions.

I For instance, 1
2 is expressed as 0.10000000 . . . using the first

option and as 0.0111111111 . . . through the second option.
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Binary expansion continued

I Suppose x ∈ (0, 1) is expressed using binary expansion, under
either option, and b1, b2, . . . , bn are the first n binary digits.

I Then

b1
2

+
b2
22

+ · · ·+ bn
2n
≤ x ≤ b1

2
+

b2
22

+ · · ·+ bn + 1

2n

I From the proof of the nested intervals property, we see that

x = sup{b1
2

+
b2
22

+ · · ·+ bn
2n

: n ∈ N}.

I Note that

1
2 = sup{12 + 0 + · · ·+ 0(n − 1 times ) : n ∈ N}

= sup{0 + 1
22

+ 1
23

+ · · ·+ 1
2n : n ∈ N}.

I Similarly 1 = sup{12 + 1
22

+ · · · 1
2n : n ∈ N}.
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Ternary and decimal expansions

I Similar to binary expansion we can have expansion with ‘base’
M, for any M ∈ {2, 3, 4, . . .}, where we use only the digits
{0, 1, 2, . . . , (M − 1)}.

I Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.

I If x = 0.d1d2 · · · is the decimal expansion of x , then, each
dj ∈ {0, 1, 2, . . . , 9} and

x = sup{d1
10

+
d2

102
+ · · ·+ dn

10n
: n ∈ N}.

I Here x ∈ (0, 1) has two decimal expansions if and only if
x = m

10k
for some natural numbers m, k.

I Alternatively x has two decimal expansions if and only if its
decimal expansion is of the form 0.d1d2 . . . dn000000 . . . or it
is of the form 0.d1d2 . . . dn999999 . . . for some dj ’s.

I In such cases, we say that x has a terminating decimal
expansion. (It ends either with a sequence of 0’s or with a
sequence of 9’s.)
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Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12



Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12



Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12



Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12



13. Countable sets in infinite sets

I Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S ,
such that T is equipotent to N.

I Proof: As S is infinite, it is non-empty. So there exists some
x1 ∈ S .

I Now consider S\{x1}. If S\{x1} is empty, then S = {x1} and
this would mean that S is finite. Therefore S\{x1} is
non-empty. Choose any x2 ∈ S\{x1}.

I Now we can see that S\{x1, x2} is non-empty.

I For every n, after choosing distinct elements x1, x2, . . . , xn in
S , we can choose xn+1 ∈ S\{x1, x2, . . . , xn} in S .

I Then by mathematical induction we have a sequence
{x1, x2, . . .} of distinct elements in S . Clearly
T = {xn : n ∈ N} is equipotent with N.
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Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂

F ) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .



Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂

F ) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .



Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂
F ) are

disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .



Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂
F ) are

disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .



Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂
F ) are

disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃
F is equipotent with N, and hence it

is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .



Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂
F ) are

disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃
F is equipotent with N, and hence it

is equipotent with T .

I Conclude that S
⋃

F is equipotent with S .



Countable sets in Uncountable sets

I Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S

⋃
C is equipotent with S .

I Proof: Like before, it suffices to prove the result when C is
disjoint from S .

I By Theorem 13.1, there exists a countably infinite subset T of
S .

I Clearly T
⋃

C is equipotent with T .

I If f : T → T
⋃

C is a bijection, f̃ : S → S
⋃
C defined by

(f̃ )(x) =

{
f (x) x ∈ T ;
x x ∈ S\T

is seen to be a bijection from S to S
⋃
C and this completes

the proof.

I Corollary 13.4: If S is an uncountable set and T ⊂ S is
countable then S is equipotent with S\T .
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[0, 1) and binary sequences

I Theorem 13.5: The set of real numbers in [0, 1) is in bijection
with binary sequences.

I Proof: Let B be the set of binary sequences:

B = {(w1,w2, . . . , ) : wj ∈ {0, 1}, j ∈ N}.
I Let B0 be the set of binary sequences which terminate with

sequence of just 1’s.
I Clearly B0 is an infinite set. Since B0 is countable union of

finite sets (Why?) it is countably infinite. Take A = B\B0.
I Consider the map f : [0, 1)→ A defined by

f (x) = (b1, b2, b3, . . .),

where 0.b1b2b3 . . . is the binary expansion of x , using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

I Now B = A
⋃
B0. A is uncountable and B0 is countable.

Hence B is equipotent with A.
I Consequently [0, 1) and B are equipotent.
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Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.
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More problems

I Show that R× R is equipotent with R. More generally, show
that Rn is equipotent with R for any n ∈ N.

I Show that [0, 1]× [0, 1] is equipotent with R.
I Show that the space of real valued functions on N :

F = {f |f : N→ R}

is equipotent with R.
I END OF LECTURE 13
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14. Direct and inverse images of functions

I Notation: Let X ,Y be non-empty sets and let f : X → Y be
a function. The for A ⊆ X , f (A) is defined as:

I
f (A) := {f (x) : x ∈ A}.

I Example 14.1: Suppose X = {1, 2, 3} and Y = {u, v ,w} and
f : X → Y is defined by f (1) = f (2) = u and f (3) = v .

I Then f ({1, 2}) = {u} and f ({3}) = {v}.
I Here we have slight abuse of notation as we are defining f (A)

for subsets of X and not elements of X , where as, normally
when we write f (x), x is an element of X . However, this
notation is standard.

I Note that for any element x of X , f ({x}) = {f (x)}, which is
the singleton set containing f (x) and is different from the
element f (x). This distinction between elements and singleton
sets should always be maintained to avoid confusion.
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I
f (A) := {f (x) : x ∈ A}.

I Example 14.1: Suppose X = {1, 2, 3} and Y = {u, v ,w} and
f : X → Y is defined by f (1) = f (2) = u and f (3) = v .

I Then f ({1, 2}) = {u} and f ({3}) = {v}.
I Here we have slight abuse of notation as we are defining f (A)

for subsets of X and not elements of X , where as, normally
when we write f (x), x is an element of X . However, this
notation is standard.
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the singleton set containing f (x) and is different from the
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Basic properties

I Proposition 14.2: Let f : X → Y be a function. Then,

I (i) f (∅) = ∅.
I (ii) In general, f (X ) 6= Y .
I (iii) In general, for A,B ⊆ X ,

f (A
⋂

B) 6= f (A)
⋂

f (B).

I (iv) For any two subsets A,B of X ,

f (A
⋃

B) = f (A)
⋃

f (B).

I More generally, for arbitrary family {Ai : i ∈ I} of subsets of
X ,

f (
⋃
i∈I

Ai ) =
⋃
i∈I

f (Ai ).

I (v) In general, for A ⊆ X

f (Ac) 6= (f (A))c .
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Examples

I Example 14.3: Suppose f : R→ R is defined by
f (x) = x2, ∀x ∈ R.

I Take A = (−∞, 0] and B = [0,∞). Then

I A
⋂
B = {0}.

I f (A)
⋂
f (B) = [0,∞)

⋂
[0,∞) = [0,∞), where as,

I f (A
⋂
B) = f ({0}) = {0}.

I Hence f (A
⋂
B) 6= f (A)

⋂
f (B).
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Continuation

I The prof of Proposition 14.2 is an exercise.

I For instance, if y ∈ f (A
⋃
B), then y = f (x) for some

x ∈ A
⋃
B. Here either x ∈ A or x ∈ B (or both). If x ∈ A,

we get y ∈ f (A). If x ∈ B, we get y ∈ f (B). Consequently,
we get y ∈ f (A)

⋃
f (B). This shows that

f (A
⋃
B) ⊆ f (A)

⋃
f (B).

I Similarly, you can show f (A)
⋃

f (B) ⊆ f (A
⋃

B) and
conclude that f (A

⋃
B) = f (A)

⋃
f (B).
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Characterizations

I Theorem 14.4: Let X ,Y be non-empty sets and let
f : X → Y be a function.

I (a) f (X ) = Y if and only if f is surjective.

I (b) f (A
⋂

B) = f (A)
⋂
f (B) for all subsets A,B of X if and

only if f is injective.

I (c) f (Ac) = (f (A))c for all subsets A of X if and only if f is a
bijection.

I Proof: (a) follows from the definition of surjectivity. (b) and
(c) are interesting exercises.
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Inverse images

I Notation: Let X ,Y be non-empty sets and let f : X → Y be
a function. Then for any subset V of Y ,

f −1(V ) := {x ∈ X : f (x) ∈ V }.

I For instance, for f : {1, 2, 3} → {u, v ,w} defined by
f (1) = f (2) = u and f (3) = v ,

f −1({u}) = {1, 2}, f −1({w}) = ∅.

I Here also there is some abuse of notation as we writing f −1

even when f is not invertible. But we are defining f −1 for
subsets of Y and not for elements of Y .

I For the example, g : R→ R, defined by g(x) = x2, ∀x ∈ R,
we see that g−1({0}) = {0} and g−1([0,∞)) = R.
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Basic properties of inverse images

I Theorem 14.5: Let X ,Y be non-empty sets and let
f : X → Y be a function. Then following properties hold.

I (i) f −1(∅) = ∅;
I (ii) f −1(Y ) = X ;

I (iii) f −1(V
⋂

W ) = f −1(V )
⋂
f −1(W ) for subsets V ,W of

Y . More generally, for any arbitrary collection {Vi : i ∈ I} of
subsets of Y ,

f −1(
⋂
i∈I

Vi ) =
⋂
i∈I

f −1(Vi ).

I (iv) f −1(V
⋃
W ) = f −1(V )

⋃
f −1(W ) for subsets V ,W of

Y . More generally, for any arbitrary collection {Vi : i ∈ I} of
subsets of Y ,

f −1(
⋃
i∈I

Vi ) =
⋃
i∈I

f −1(Vi ).

I (v) f −1(V c) = (f −1(V ))c for every subset V of Y .
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Continuation

I It is indeed amazing that the inverse image f −1 respects all
set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.

I The proof of Theorem 14.5 is also as an exercise.
I Theorem 14.6: Let X ,Y be non-empty sets and let

f : X → Y be a function.
I (a) For any subset A of X ,

f −1(f (A)) ⊇ A

and the equality may not hold.
I (b) For any subset V of Y ,

f (f −1(V )) ⊆ V

and the equality may not hold.
I Proof: Exercise.
I END OF LECTURE 14.
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I It is indeed amazing that the inverse image f −1 respects all
set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.
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