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Lecture 10: Existence of irrational numbers

I We now have all the required axioms.

I A1-A4, axioms for addition; M1-M4, axioms for multiplication
and D-distributivity axiom.

I O1-O3, axioms of order, and

I C- Completeness axiom.
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Recall: Completeness axiom

I Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists u ∈ R such that

x ≤ u, ∀x ∈ S .

In such a case, u is said to be an upper bound of S .

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I If S is non-empty and bounded above, its least upper bound is
unique and is denoted by sup(S).
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A Lemma

I Lemma 10.1: Let ε be a positive real number. Then there
exists a natural number n such that

0 <
1

n
< ε.

I Proof: This inequality is equivalent to

0 < 1 < n.ε.

I Now the result is a special case of Archimedean property with
x = 1.
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Squares of integers

I An integer n ∈ Z is said to be an even number if it is a
multiple of 2, that is, it is of the form 2k for some integer k.

I The set of even integers is: {. . . ,−4,−2, 0, 2, 4, 6, . . .}.
I An integer n ∈ Z is said to be an odd number if it is not an

even number. Odd integers are all of the form 2k + 1 for
some integer k, and conversely all integers of the form 2k + 1
with k ∈ Z are all odd.

I The set of odd integers is: {. . . ,−5,−3,−1, 1, 3, 5, . . .}.
I Proposition 10.1: Square of an even integer is even and

square of an odd integer is odd.

I Proof. Exercise.
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Square root of 2

I Theorem 10.2: There is no rational number x such that
x2 = 2.

I Proof: The proof is by contradiction.

I Suppose x is a rational number such that x2 = 2.

I As x is a rational number, x = p
q , for some integers, p, q with

q 6= 0.

I Without loss of generality, we may assume that p, q are
relatively prime (they have no common factor bigger than 1).
This is possible, because, if p = rp1 and q = rq1, with r > 1,
we can write x = p1

q1
.
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Continuation

I We have x = p
q , where p, q ∈ Z and are relatively prime.

I As x2 = 2, we get p2

q2
= 2 or p2 = 2q2.

I In particular, p2 is even.

I Since squares of odd numbers are odd, p also must be even.
Say, p = 2k , with k ∈ Z.

I Then we get 4k2 = 2q2 or 2k2 = q2.

I In particular, q2 is even and hence q is also even.

I Consequently, both p and q are even. This is a contradiction,
as we have taken p, q to be relatively prime.

I This completes the proof.
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Square root of 2 as a real number

I Theorem 10.3: There exists unique positive real number s
such that s2 = 2.

I Proof: Consider the set S defined by

S = {x ∈ R : x > 0, x2 < 2}.

I Then S is non-empty as 1 ∈ S .

I We have seen earlier that for positive real numbers a, b:

I a < b if and only if a2 < b2.

I If x ∈ S , then x2 < 2 < 4 = 22.

I As x2 < 22, we get x < 2. Therefore S is bounded above by 2.
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Continuation

I Now, as S is non-empty and bounded above, by the
completeness of axiom of real numbers, S has a least upper
bound.

I Let s be the least upper bound of S .

I Claim: s2 = 2.

I Suppose s2 < 2.

I We want to choose a natural number n such that

(s +
1

n
)2 < 2.

I (s + 1
n )2 = s2 + 2s

n + 1
n2
.

I Since n2 ≥ n, 1
n2
≤ 1

n .

I Hence, (s + 1
n )2 ≤ s2 + 2s

n + 1
n .
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I We want n, such that
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I or
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n
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2− s2

2s + 1
.

I Since 2−s2
2s+1 > 0, by a direct application of Lemma 10.1, there

exists n ∈ N such that
I 0 < 1

n <
2−s2
2s+1 .

I Choosing such an n, clearly we have

(s +
1

n
)2 < 2.

I Hence, s + 1
n ∈ S . This is clearly a contradiction as s is an

upper bound for S .
I Therefore, s2 < 2 is not true.
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I Since both s2 < 2 and s2 > 2 are not possible, the only
possibility is s2 = 2, by the trichotomy property.

I So we have shown the existence of a positive real number s
such that s2 = 2.

I If 0 < t < s, we have 0 < t2 < s2 = 2, and if s < t, we get
2 = s2 < t2. Hence s is the unique positive real number such
that s2 = 2.

I We denote s, by
√

2.

I It is easily seen that −
√

2 is the only other real number whose
square 2.
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Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.



Intervals

I Notation: For any two real numbers a, b with a < b, we write

(a, b) := {x ∈ R : a < x < b}.

[a, b) := {x ∈ R : a ≤ x < b}.

(a, b] := {x ∈ R : a < x ≤ b}.

[a, b] := {x ∈ R : a ≤ x ≤ b}.

(a,∞) := {x ∈ R : a < x}.

[a,∞) := {x ∈ R : a ≤ x}.

(−∞, a) := {x ∈ R : x < a}.

(−∞, a] := {x ∈ R : x ≤ a}.

I We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.



Intervals

I Notation: For any two real numbers a, b with a < b, we write

(a, b) := {x ∈ R : a < x < b}.

[a, b) := {x ∈ R : a ≤ x < b}.

(a, b] := {x ∈ R : a < x ≤ b}.

[a, b] := {x ∈ R : a ≤ x ≤ b}.

(a,∞) := {x ∈ R : a < x}.

[a,∞) := {x ∈ R : a ≤ x}.

(−∞, a) := {x ∈ R : x < a}.

(−∞, a] := {x ∈ R : x ≤ a}.

I We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.



The density of rational and irrational numbers

I Lemma 10.8: For any rational number x 6= 0, x
√

2 is an
irrational number.

I Proof: It is easily seen that if x
√

2 is rational, then so is
√

2.
But we have already proved that

√
2 is not rational.

I Theorem 10.9: Suppose a, b are real numbers such that a < b.
(i) Then there exists a rational number r such that a < r < b.
(ii) There exists an irrational number s such that a < s < b.

I Proof: (i) Case I: a = 0: We know that there exists n ∈ N
such that 0 < 1

n < b. Since 1
n is rational, we are done.
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Continuation

I Case II: a > 0. Now as (b − a) > 0, we can find n ∈ N such
that 0 < 1

n < (b − a), or 1 < nb − na, that is, na + 1 < nb.

I Take m = [na] + 1. So m ∈ N.

I Then m − 1 ≤ na < m. Which implies, on dividing by n,
a < m

n .

I And also, m
n −

1
n ≤ a

I or m
n < a + 1

n < a + (b − a) = b.

I So we have a < m
n < b.

I Case III: a < 0. The result for this case can be derived from
Case I and Case II (Exercise).
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Continuation

I We have a < b. Hence a√
2
< b√

2
.

I From (i), we have rational number m
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