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: Completeness axiom

Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists v € R such that

x<u, VxeSs.

In such a case, u is said to be an upper bound of S.

Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then up € R is said to be a least upper
bound (or supremum) of S if

(i) up is an upper bound of S;

(i) If u is an upper bound of S, then ug < u.

C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

If S is non-empty and bounded above, its least upper bound is
unique and is denoted by sup(S).
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A Lemma

» Lemma 10.1: Let € be a positive real number. Then there
exists a natural number n such that

1
0<-<e
n
» Proof: This inequality is equivalent to

0<1<ne

» Now the result is a special case of Archimedean property with
x=1.
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> An integer n € Z is said to be an even number if it is a
multiple of 2, that is, it is of the form 2k for some integer k.

» The set of even integersis: {...,—4,—2,0,2,4,6,...}.

» An integer n € Z is said to be an odd number if it is not an
even number. Odd integers are all of the form 2k 4 1 for
some integer k, and conversely all integers of the form 2k + 1
with k € Z are all odd.

» The set of odd integersis: {...,—5,—3,-1,1,3,5,...}.

» Proposition 10.1: Square of an even integer is even and
square of an odd integer is odd.

» Proof. Exercise.
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Square root of 2

» Theorem 10.2: There is no rational number x such that
x? =2.

» Proof: The proof is by contradiction.

» Suppose x is a rational number such that x> = 2.

» As x is a rational number, x = g, for some integers, p, g with
qg#0.

> Without loss of generality, we may assume that p, g are
relatively prime (they have no common factor bigger than 1).
This is possible, because, if p = rp; and g = rq1, with r > 1,

we can write x = %.
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We have x = g, where p, g € Z and are relatively prime.
As x> =2, we get 5—2:2orp2:2q2.

In particular, p? is even.
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Since squares of odd numbers are odd, p also must be even.
Say, p = 2k, with k € Z.

Then we get 4k?> = 2g® or 2k? = g°.

In particular, g? is even and hence q is also even.

vy

» Consequently, both p and g are even. This is a contradiction,
as we have taken p, g to be relatively prime.

» This completes the proof.
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Square root of 2 as a real number

» Theorem 10.3: There exists unique positive real number s
such that s? = 2.

» Proof: Consider the set S defined by
S={xcR:x>0, x> <2}.

Then S is non-empty as 1 € S.

We have seen earlier that for positive real numbers a, b:

a < b if and only if a® < b?.

If x € S, then x2 <2 < 4 =22,

As x? < 22, we get x < 2. Therefore S is bounded above by 2.

vVvYyyvyy
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Let s be the least upper bound of S.
Claim: s? = 2.

Suppose s < 2.
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We want to choose a natural number n such that
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» We want n, such that
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<2,

1<2—§
n 2s+1

» Since gs_ji > 0, by a direct application of Lemma 10.1, there

exists n € N such that

n 2s+1°
» Choosing such an n, clearly we have

1o
) < 2.
(5+n)

> Hence, s+ % € S. This is clearly a contradiction as s is an
upper bound for S.
» Therefore, s2 < 2 is not true.
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> We have, (s — 1)2 =522 4 1 1L > s — 2
> Using Lemma 10.1, choose a natural number m, such that
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» Then, (s— )" =s —5+m2>s 2> —(s7—2)=2.
» Hence, s — % > x for every x € S.
» This contradicts the fact that s is the least upper bound for S.
» Therefore, s2 > 2 is not possible.
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» Since both s> < 2 and s > 2 are not possible, the only
possibility is s> = 2, by the trichotomy property.

» So we have shown the existence of a positive real number s
such that s = 2.

> If0<t<s wehave 0 < t?<s?2=2 andifs<t, we get
2 = s? < t2. Hence s is the unique positive real number such
that s2 = 2.

» We denote s, by v/2.

> It is easily seen that —+/2 is the only other real number whose
square 2.
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» Exercise: Show that there is unique positive real number t,
such that t2 = 3.

» Exercise: Show that there is unique real number x such that
3
x° = 2.
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Given any positive real number x, we know that there exists a
natural number n, such that x < n.

Now it is easy to see that given any real number x, there exist
integers, m, n such that m < x < n.

Fix a real number x. Take
T={m:meZ,m<x}.

Then T is non-empty and is bounded above by x.
Take [x] = sup(T).

Then [x] is known as the integer part of x.

[x] is the unique integer satisfying [x] < x < [x] + 1.
x — [x] is known as the fractional part of x. Note that

0<x—[x]<1, VxeR
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Intervals

» Notation: For any two real numbers a, b with a < b, we write
(a,b) :={xe€R:a< x < b}.
[a,b) :={x € R:a<x< b}
(a,b] :={x eR:a<x < b}
[a,b] . ={x € R:a<x<b}.
(a,00) :={xeR:a<x}.
[a,00) == {x € R:a<x}.
(—00,a) :={xeR:x < a}.
(—o0,a] :={xeR:x < a}.

» We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.
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The density of rational and irrational numbers

» Lemma 10.8: For any rational number x # 0, xv/2 is an
irrational number.

» Proof: It is easily seen that if x1/2 is rational, then so is v/2.
But we have already proved that v/2 is not rational.

» Theorem 10.9: Suppose a, b are real numbers such that a < b.
(i) Then there exists a rational number r such that a < r < b.
(ii) There exists an irrational number s such that a < s < b.

» Proof: (i) Case I: a = 0: We know that there exists n € N

such that 0 < % < b. Since % is rational, we are done.



Continuation

» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.



Continuation

» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.

» Take m = [na] + 1. So m € N.
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» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.

» Take m = [na] + 1. So m € N.

» Then m — 1 < na < m. Which implies, on dividing by n,
a< .
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» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.

» Take m = [na] + 1. So m € N.

» Then m — 1 < na < m. Which implies, on dividing by n,
a< .

» And also, %—%ga



Continuation

» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.

» Take m = [na] + 1. So m € N.

» Then m — 1 < na < m. Which implies, on dividing by n,
a< .

» And also, %—%ga

>or T <at+i<cat(b—a)=0b



Continuation

v

Case Il: a > 0. Now as (b —a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.
Take m = [na] + 1. So m € N.

Then m —1 < na < m. Which implies, on dividing by n,
a< .

And also, 7 — % <a

orP<a+lcat(b—a)=0b.

So we have a < 71 < b.
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vy

vvyyypy

Case Il: a > 0. Now as (b —a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.
Take m = [na] + 1. So m € N.

Then m —1 < na < m. Which implies, on dividing by n,
a< .

And also, 7 — % <a

orP<a+lcat(b—a)=0b.

So we have a < 71 < b.

Case lll: a < 0. The result for this case can be derived from
Case | and Case Il (Exercise).



Continuation

» We have a < b. Hence

a

S

<

Sk



Continuation

a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that

<

m
— <
n

Sl
Sl



Continuation

a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that
a_m_ b
V2 2
» This implies,
a< ﬂ.\@ < b.
n



Continuation

a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that

a < m < b
V2 n V2
» This implies,
a< ﬂ.\@ < b.
n

> As %\@ is irrational we are done.
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v

a b
We have a < b. Hence 7 < N

From (i), we have rational number ', (with m # 0) such that

v

a < m < b
V2 n V2
» This implies,
a< ﬂ.\@ < b.
n

v

As ™ \/2 is irrational we are done.
n

v

This completes the proof.



Continuation

a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that
a_m_ b
V2 2
» This implies,
a< ﬂ.\fZ < b.
n

v

As %\@ is irrational we are done.
» This completes the proof.
» END OF LECTURE 10.



