

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 10: Existence of irrational numbers

- ▶ We now have all the required axioms.

Lecture 10: Existence of irrational numbers

- ▶ We now have all the required axioms.
- ▶ A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.

Lecture 10: Existence of irrational numbers

- ▶ We now have all the required axioms.
- ▶ A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.
- ▶ O1-O3, axioms of order, and

Lecture 10: Existence of irrational numbers

- ▶ We now have all the required axioms.
- ▶ A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.
- ▶ O1-O3, axioms of order, and
- ▶ C- Completeness axiom.

Recall: Completeness axiom

- ▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

Recall: Completeness axiom

- ▶ **Definition 9.1:** A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

- ▶ **Definition 9.8:** Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a **least upper bound (or supremum)** of S if

Recall: Completeness axiom

- ▶ **Definition 9.1:** A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

- ▶ **Definition 9.8:** Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a **least upper bound (or supremum)** of S if
- ▶ (i) u_0 is an upper bound of S ;

Recall: Completeness axiom

- ▶ **Definition 9.1:** A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

- ▶ **Definition 9.8:** Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a **least upper bound (or supremum)** of S if
 - ▶ (i) u_0 is an upper bound of S ;
 - ▶ (ii) If u is an upper bound of S , then $u_0 \leq u$.

Recall: Completeness axiom

- ▶ **Definition 9.1:** A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

- ▶ **Definition 9.8:** Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a **least upper bound (or supremum)** of S if
 - ▶ (i) u_0 is an upper bound of S ;
 - ▶ (ii) If u is an upper bound of S , then $u_0 \leq u$.
- ▶ **C. Completeness axiom (Least upper bound property):** Every non-empty subset of \mathbb{R} which is bounded above has a least upper bound.

Recall: Completeness axiom

- ▶ **Definition 9.1:** A non-empty subset S of \mathbb{R} is said to be **bounded above** if there exists $u \in \mathbb{R}$ such that

$$x \leq u, \quad \forall x \in S.$$

In such a case, u is said to be an **upper bound** of S .

- ▶ **Definition 9.8:** Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a **least upper bound (or supremum)** of S if
 - ▶ (i) u_0 is an upper bound of S ;
 - ▶ (ii) If u is an upper bound of S , then $u_0 \leq u$.
- ▶ **C. Completeness axiom (Least upper bound property):** Every non-empty subset of \mathbb{R} which is bounded above has a least upper bound.
- ▶ If S is non-empty and bounded above, its least upper bound is unique and is denoted by $\sup(S)$.

A Lemma

- ▶ **Lemma 10.1:** Let ϵ be a positive real number. Then there exists a natural number n such that

$$0 < \frac{1}{n} < \epsilon.$$

A Lemma

- ▶ **Lemma 10.1:** Let ϵ be a positive real number. Then there exists a natural number n such that

$$0 < \frac{1}{n} < \epsilon.$$

- ▶ **Proof:** This inequality is equivalent to

$$0 < 1 < n\epsilon.$$

A Lemma

- ▶ **Lemma 10.1:** Let ϵ be a positive real number. Then there exists a natural number n such that

$$0 < \frac{1}{n} < \epsilon.$$

- ▶ **Proof:** This inequality is equivalent to

$$0 < 1 < n\epsilon.$$

- ▶ Now the result is a special case of Archimedean property with $x = 1$.

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .
- ▶ The set of even integers is: $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$.

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .
- ▶ The set of even integers is: $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form $2k + 1$ for some integer k , and conversely all integers of the form $2k + 1$ with $k \in \mathbb{Z}$ are all odd.

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .
- ▶ The set of even integers is: $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form $2k + 1$ for some integer k , and conversely all integers of the form $2k + 1$ with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\dots, -5, -3, -1, 1, 3, 5, \dots\}$.

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .
- ▶ The set of even integers is: $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form $2k + 1$ for some integer k , and conversely all integers of the form $2k + 1$ with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\dots, -5, -3, -1, 1, 3, 5, \dots\}$.
- ▶ **Proposition 10.1:** Square of an even integer is even and square of an odd integer is odd.

Squares of integers

- ▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form $2k$ for some integer k .
- ▶ The set of even integers is: $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form $2k + 1$ for some integer k , and conversely all integers of the form $2k + 1$ with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\dots, -5, -3, -1, 1, 3, 5, \dots\}$.
- ▶ **Proposition 10.1:** Square of an even integer is even and square of an odd integer is odd.
- ▶ **Proof.** Exercise.

Square root of 2

- **Theorem 10.2:** There is no rational number x such that $x^2 = 2$.

Square root of 2

- ▶ **Theorem 10.2:** There is no rational number x such that $x^2 = 2$.
- ▶ **Proof:** The proof is by contradiction.

Square root of 2

- ▶ **Theorem 10.2:** There is no rational number x such that $x^2 = 2$.
- ▶ **Proof:** The proof is by contradiction.
- ▶ Suppose x is a rational number such that $x^2 = 2$.

Square root of 2

- ▶ **Theorem 10.2:** There is no rational number x such that $x^2 = 2$.
- ▶ **Proof:** The proof is by contradiction.
- ▶ Suppose x is a rational number such that $x^2 = 2$.
- ▶ As x is a rational number, $x = \frac{p}{q}$, for some integers, p, q with $q \neq 0$.

Square root of 2

- ▶ **Theorem 10.2:** There is no rational number x such that $x^2 = 2$.
- ▶ **Proof:** The proof is by contradiction.
- ▶ Suppose x is a rational number such that $x^2 = 2$.
- ▶ As x is a rational number, $x = \frac{p}{q}$, for some integers, p, q with $q \neq 0$.
- ▶ Without loss of generality, we may assume that p, q are relatively prime (they have no common factor bigger than 1). This is possible, because, if $p = rp_1$ and $q = rq_1$, with $r > 1$, we can write $x = \frac{p_1}{q_1}$.

Continuation

- We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.
- ▶ Since squares of odd numbers are odd, p also must be even. Say, $p = 2k$, with $k \in \mathbb{Z}$.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.
- ▶ Since squares of odd numbers are odd, p also must be even. Say, $p = 2k$, with $k \in \mathbb{Z}$.
- ▶ Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.
- ▶ Since squares of odd numbers are odd, p also must be even. Say, $p = 2k$, with $k \in \mathbb{Z}$.
- ▶ Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.
- ▶ Since squares of odd numbers are odd, p also must be even. Say, $p = 2k$, with $k \in \mathbb{Z}$.
- ▶ Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.
- ▶ Consequently, both p and q are even. This is a contradiction, as we have taken p, q to be relatively prime.

Continuation

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- ▶ As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ▶ In particular, p^2 is even.
- ▶ Since squares of odd numbers are odd, p also must be even. Say, $p = 2k$, with $k \in \mathbb{Z}$.
- ▶ Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.
- ▶ Consequently, both p and q are even. This is a contradiction, as we have taken p, q to be relatively prime.
- ▶ This completes the proof.

Square root of 2 as a real number

- **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b :

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b :
- ▶ $a < b$ if and only if $a^2 < b^2$.

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b :
- ▶ $a < b$ if and only if $a^2 < b^2$.
- ▶ If $x \in S$, then $x^2 < 2 < 4 = 2^2$.

Square root of 2 as a real number

- ▶ **Theorem 10.3:** There exists unique positive real number s such that $s^2 = 2$.
- ▶ **Proof:** Consider the set S defined by

$$S = \{x \in \mathbb{R} : x > 0, x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b :
 - ▶ $a < b$ if and only if $a^2 < b^2$.
 - ▶ If $x \in S$, then $x^2 < 2 < 4 = 2^2$.
 - ▶ As $x^2 < 2^2$, we get $x < 2$. Therefore S is bounded above by 2.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.
- ▶ Suppose $s^2 < 2$.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.
- ▶ Suppose $s^2 < 2$.
- ▶ We want to choose a natural number n such that

$$(s + \frac{1}{n})^2 < 2.$$

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.
- ▶ Suppose $s^2 < 2$.
- ▶ We want to choose a natural number n such that

$$(s + \frac{1}{n})^2 < 2.$$

- ▶ $(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}$.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.
- ▶ Suppose $s^2 < 2$.
- ▶ We want to choose a natural number n such that

$$(s + \frac{1}{n})^2 < 2.$$

- ▶ $(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}$.
- ▶ Since $n^2 \geq n$, $\frac{1}{n^2} \leq \frac{1}{n}$.

Continuation

- ▶ Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- ▶ Let s be the least upper bound of S .
- ▶ **Claim:** $s^2 = 2$.
- ▶ Suppose $s^2 < 2$.
- ▶ We want to choose a natural number n such that

$$(s + \frac{1}{n})^2 < 2.$$

- ▶ $(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}$.
- ▶ Since $n^2 \geq n$, $\frac{1}{n^2} \leq \frac{1}{n}$.
- ▶ Hence, $(s + \frac{1}{n})^2 \leq s^2 + \frac{2s}{n} + \frac{1}{n}$.

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

Continuation

- ▶ We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- ▶ or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

- Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

- Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $0 < \frac{1}{n} < \frac{2-s^2}{2s+1}$.

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

- Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $0 < \frac{1}{n} < \frac{2-s^2}{2s+1}$.
- Choosing such an n , clearly we have

$$(s + \frac{1}{n})^2 < 2.$$

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

- Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $0 < \frac{1}{n} < \frac{2-s^2}{2s+1}$.
- Choosing such an n , clearly we have

$$(s + \frac{1}{n})^2 < 2.$$

- Hence, $s + \frac{1}{n} \in S$. This is clearly a contradiction as s is an upper bound for S .

Continuation

- We want n , such that

$$s^2 + \frac{2s+1}{n} < 2,$$

- or

$$\frac{1}{n} < \frac{2-s^2}{2s+1}.$$

- Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $0 < \frac{1}{n} < \frac{2-s^2}{2s+1}$.
- Choosing such an n , clearly we have

$$(s + \frac{1}{n})^2 < 2.$$

- Hence, $s + \frac{1}{n} \in S$. This is clearly a contradiction as s is an upper bound for S .
- Therefore, $s^2 < 2$ is not true.

Continuation

- ▶ Suppose $s^2 > 2$.

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.
- ▶ Using Lemma 10.1, choose a natural number m , such that $\frac{1}{m} < \frac{s^2 - 2}{2s}$.

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.
- ▶ Using Lemma 10.1, choose a natural number m , such that $\frac{1}{m} < \frac{s^2 - 2}{2s}$.
- ▶ or $\frac{2s}{m} < s^2 - 2$.
- ▶ Then, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m} > s^2 - (s^2 - 2) = 2$.

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.
- ▶ Using Lemma 10.1, choose a natural number m , such that $\frac{1}{m} < \frac{s^2 - 2}{2s}$.
- ▶ or $\frac{2s}{m} < s^2 - 2$.
- ▶ Then, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m} > s^2 - (s^2 - 2) = 2$.
- ▶ Hence, $s - \frac{1}{m} > x$ for every $x \in S$.

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.
- ▶ Using Lemma 10.1, choose a natural number m , such that $\frac{1}{m} < \frac{s^2 - 2}{2s}$.
- ▶ or $\frac{2s}{m} < s^2 - 2$.
- ▶ Then, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m} > s^2 - (s^2 - 2) = 2$.
- ▶ Hence, $s - \frac{1}{m} > x$ for every $x \in S$.
- ▶ This contradicts the fact that s is the least upper bound for S .

Continuation

- ▶ Suppose $s^2 > 2$.
- ▶ We want to get a natural number m , such that

$$(s - \frac{1}{m})^2 > 2.$$

- ▶ We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.
- ▶ Using Lemma 10.1, choose a natural number m , such that $\frac{1}{m} < \frac{s^2 - 2}{2s}$.
- ▶ or $\frac{2s}{m} < s^2 - 2$.
- ▶ Then, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m} > s^2 - (s^2 - 2) = 2$.
- ▶ Hence, $s - \frac{1}{m} > x$ for every $x \in S$.
- ▶ This contradicts the fact that s is the least upper bound for S .
- ▶ Therefore, $s^2 > 2$ is not possible.

Continuation

- ▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.

Continuation

- ▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- ▶ So we have shown the existence of a positive real number s such that $s^2 = 2$.

Continuation

- ▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- ▶ So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If $0 < t < s$, we have $0 < t^2 < s^2 = 2$, and if $s < t$, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.

Continuation

- ▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- ▶ So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If $0 < t < s$, we have $0 < t^2 < s^2 = 2$, and if $s < t$, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.
- ▶ We denote s , by $\sqrt{2}$.

Continuation

- ▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- ▶ So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If $0 < t < s$, we have $0 < t^2 < s^2 = 2$, and if $s < t$, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.
- ▶ We denote s , by $\sqrt{2}$.
- ▶ It is easily seen that $-\sqrt{2}$ is the only other real number whose square 2.

Other roots

- ▶ Exercise: Show that there is unique positive real number t , such that $t^2 = 3$.

Other roots

- ▶ **Exercise:** Show that there is unique positive real number t , such that $t^2 = 3$.
- ▶ **Exercise:** Show that there is unique real number x such that $x^3 = 2$.

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

- ▶ Then T is non-empty and is bounded above by x .

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

- ▶ Then T is non-empty and is bounded above by x .
- ▶ Take $[x] = \sup(T)$.

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

- ▶ Then T is non-empty and is bounded above by x .
- ▶ Take $[x] = \sup(T)$.
- ▶ Then $[x]$ is known as the integer part of x .

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

- ▶ Then T is non-empty and is bounded above by x .
- ▶ Take $[x] = \sup(T)$.
- ▶ Then $[x]$ is known as the integer part of x .
- ▶ $[x]$ is the unique integer satisfying $[x] \leq x < [x] + 1$.

Integer part and fractional part

- ▶ Given any positive real number x , we know that there exists a natural number n , such that $x < n$.
- ▶ Now it is easy to see that given any real number x , there exist integers, m, n such that $m < x < n$.
- ▶ Fix a real number x . Take

$$T = \{m : m \in \mathbb{Z}, m \leq x\}.$$

- ▶ Then T is non-empty and is bounded above by x .
- ▶ Take $[x] = \sup(T)$.
- ▶ Then $[x]$ is known as the integer part of x .
- ▶ $[x]$ is the unique integer satisfying $[x] \leq x < [x] + 1$.
- ▶ $x - [x]$ is known as the fractional part of x . Note that

$$0 \leq x - [x] < 1, \quad \forall x \in \mathbb{R}.$$

Intervals

► **Notation:** For any two real numbers a, b with $a < b$, we write

$$(a, b) := \{x \in \mathbb{R} : a < x < b\}.$$

$$[a, b) := \{x \in \mathbb{R} : a \leq x < b\}.$$

$$(a, b] := \{x \in \mathbb{R} : a < x \leq b\}.$$

$$[a, b] := \{x \in \mathbb{R} : a \leq x \leq b\}.$$

$$(a, \infty) := \{x \in \mathbb{R} : a < x\}.$$

$$[a, \infty) := \{x \in \mathbb{R} : a \leq x\}.$$

$$(-\infty, a) := \{x \in \mathbb{R} : x < a\}.$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \leq a\}.$$

Intervals

► **Notation:** For any two real numbers a, b with $a < b$, we write

$$(a, b) := \{x \in \mathbb{R} : a < x < b\}.$$

$$[a, b) := \{x \in \mathbb{R} : a \leq x < b\}.$$

$$(a, b] := \{x \in \mathbb{R} : a < x \leq b\}.$$

$$[a, b] := \{x \in \mathbb{R} : a \leq x \leq b\}.$$

$$(a, \infty) := \{x \in \mathbb{R} : a < x\}.$$

$$[a, \infty) := \{x \in \mathbb{R} : a \leq x\}.$$

$$(-\infty, a) := \{x \in \mathbb{R} : x < a\}.$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \leq a\}.$$

► We call (a, b) as open interval and $[a, b]$ as closed interval. Intervals $[a, b)$ etc. are called semi-open intervals.

The density of rational and irrational numbers

- ▶ **Lemma 10.8:** For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.

The density of rational and irrational numbers

- ▶ **Lemma 10.8:** For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- ▶ **Proof:** It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.

The density of rational and irrational numbers

- ▶ **Lemma 10.8:** For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- ▶ **Proof:** It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.
- ▶ **Theorem 10.9:** Suppose a, b are real numbers such that $a < b$.
 - (i) Then there exists a rational number r such that $a < r < b$.
 - (ii) There exists an irrational number s such that $a < s < b$.

The density of rational and irrational numbers

- ▶ **Lemma 10.8:** For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- ▶ **Proof:** It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.
- ▶ **Theorem 10.9:** Suppose a, b are real numbers such that $a < b$.
 - (i) Then there exists a rational number r such that $a < r < b$.
 - (ii) There exists an irrational number s such that $a < s < b$.
- ▶ **Proof:** (i) Case I: $a = 0$: We know that there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < b$. Since $\frac{1}{n}$ is rational, we are done.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.
- ▶ Then $m - 1 \leq na < m$. Which implies, on dividing by n , $a < \frac{m}{n}$.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.
- ▶ Then $m - 1 \leq na < m$. Which implies, on dividing by n , $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} - \frac{1}{n} \leq a$

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.
- ▶ Then $m - 1 \leq na < m$. Which implies, on dividing by n , $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} - \frac{1}{n} \leq a$
- ▶ or $\frac{m}{n} < a + \frac{1}{n} < a + (b - a) = b$.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.
- ▶ Then $m - 1 \leq na < m$. Which implies, on dividing by n , $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} - \frac{1}{n} \leq a$
- ▶ or $\frac{m}{n} < a + \frac{1}{n} < a + (b - a) = b$.
- ▶ So we have $a < \frac{m}{n} < b$.

Continuation

- ▶ Case II: $a > 0$. Now as $(b - a) > 0$, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or $1 < nb - na$, that is, $na + 1 < nb$.
- ▶ Take $m = [na] + 1$. So $m \in \mathbb{N}$.
- ▶ Then $m - 1 \leq na < m$. Which implies, on dividing by n , $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} - \frac{1}{n} \leq a$
- ▶ or $\frac{m}{n} < a + \frac{1}{n} < a + (b - a) = b$.
- ▶ So we have $a < \frac{m}{n} < b$.
- ▶ Case III: $a < 0$. The result for this case can be derived from Case I and Case II ([Exercise](#)).

Continuation

- ▶ We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.

Continuation

- We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

Continuation

- ▶ We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- ▶ From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

- ▶ This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b.$$

Continuation

- We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

- This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b.$$

- As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.

Continuation

- We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

- This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b.$$

- As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.
- This completes the proof.

Continuation

- We have $a < b$. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

- This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b.$$

- As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.
- This completes the proof.
- END OF LECTURE 10.