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Lecture 11: Real Numbers: Nested intervals property and
Uncountability

Consider R the set of real numbers.

We draw the set as ‘Real line':

This is only a visual aid for us. We are not connecting axioms
of geometry with axioms of real line.
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> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2hk2
> Example 11.1: Take /, = (=21, 1), then
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> Claim: pen(—7, 7) = {0}

» Proof: CIearIy 0e (- l l) for every n € N, and hence
0e mn 1( E? %)

> Now |f x € R and x > 0, there exists m € N, such that
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> Hence x¢ (-1, 1)

» Consequently x ﬂneN(_l 1)

n’>n/*



Nested Intervals

> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2hk2
> Example 11.1: Take /, = (=21, 1), then

(~L1)3(~5)2(-5.3)

> Claim: en(~1.2) = {0},

» Proof: CIearIy 0e (- l l) for every n € N, and hence
0e mn 1( E? %)

> Now |f x € R and x > 0, there exists m € N, such that
0< 4 <x

> Hence x¢ (-1, 1)

> Consequently x ¢ (,en(—2%,1).

> Similarly, if x € R and x < 0, then x ¢ (,cn(—1, 1).
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Nested Intervals

> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2>hk2
> Example 11.1: Take /, = (=21, 1), then
11 11
~1.1 S R

> Claim: (\,en(— E:%) {0}.
» Proof: Clearly 0 € (— l l) for every n € N, and hence

0e mn 1( E’%)‘

> Now |f x € R and x > 0, there exists m € N, such that
0< 4 <x

> Hence x¢ (-1, 1)

> Consequently x ¢ (,en(—2%,1).

> Similarly, if x € R and x < 0, then x ¢ (,cn(—1, 1).

» This completes the proof.
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Another Example

> Example 11.2: Take J, = (0, 1) for n € N.
» Then J, is a nested family of intervals:

J13J23J3D"'.

» Clearly

ﬂJn:(z).
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» So intersection of a nested family of intervals can be empty.
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One more example

» For n € N take K, = [n,00) = {x e R: n < x}.
» Then K, is a nested family of intervals:

K13K23K3D"'.

> mnEN K” =0.
» Considering previous examples, the following theorem can be
a bit of a surprise.
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» Theorem 11.4 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

» Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

» Proof: Suppose h, b, ... is a nested sequence of intervals,
where I, = [ap, by, for some a,, b, € R, with a, < b, for
every n.

> We want to show that (), In = [penlan, bn] # 0.
» As I, O 41, we have [an, by| D [an+1, bnt1] for every n.



Nested intervals property
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Theorem 11.4 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

Proof: Suppose I1, I, ... is a nested sequence of intervals,
where I, = [ap, by, for some a,, b, € R, with a, < b, for
every n.

We want to show that (,cy In = Npenlans bn] # 0.
As I O Iny1, we have [ap, by 2 [an+1, bny1] for every n.

This means that a, < ap11 < bpy1 < b, for every n.
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> By completeness axiom, A has a least upper bound. Take
u = sup(A).

» We claim that u €

» Fix ne N.

v

nEN



Continuation

v

v

Since for every n, h D I,, we get a1 < a, < b, < by.

In particular A := {a, : n € N} is bounded by b;.

By completeness axiom, A has a least upper bound. Take
u = sup(A).

We claim that u € N
Fix n € N.

Since u is an upper bound for A, and a, € A,

a, < u, (1)
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Since for every n, h D I,, we get a1 < a, < b, < by.

In particular A := {a, : n € N} is bounded by b;.

By completeness axiom, A has a least upper bound. Take
u = sup(A).

We claim that u € N
Fix n € N.

Since u is an upper bound for A, and a, € A,

a, < u, (1)

nEN

We have
aa<a<---<a,<b,
Hence a,, < b, for 1 < m < n.
For m > n, I, C I,, and hence a, < a;, < by < by In
particular, a,, < b,.



Continuation

» Since for every n, Iy D I,,, we get a1 < a, < b, < by.

» In particular A := {a, : n € N} is bounded by b;.

> By completeness axiom, A has a least upper bound. Take
u = sup(A).

> We claim that u € [),c /n-

> Fix ne N.

» Since u is an upper bound for A, and a, € A,
an < u, (1)
> We have
aa<a<---<a,< by

Hence a,, < b, for 1 < m < n.

» Form>n, I, C I, and hence a, < ay, < by < b,. |n
particular, a,, < b,.

» Combining the last two conclusions, we have

am < bp, Vm  (ii)
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» From (ii), b, is an upper bound for A. Since u is the least
upper bound, we get

u<b, (i)

» From (i) and (iii), a, < u < by. In other words, u € I,. Since
this is true for every n, u € [ oy /n-



Continuation

» From (ii), b, is an upper bound for A. Since u is the least
upper bound, we get

u<b, (i)

» From (i) and (iii), a, < u < by. In other words, u € I,. Since
this is true for every n, u € [ oy /n-

» In particular, I, is non-empty.

neN
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The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.

» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),

> v e (Npen ln

We have a,, < b, for all m, n.

» This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.

v



The intersection is an interval

>
>

v

Consider the intervals I, = [a,, b,] of previous theorem.
Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),
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We have a,, < b, for all m, n.

This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.

This in turn implies u is a lower bound for B and since v is
the greatest lower bound we get

u<v.
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» We have a,, < b, for all m, n.

» This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.

» This in turn implies v is a lower bound for B and since v is
the greatest lower bound we get
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The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.

» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),

> v e (Npen ln

» We have a,, < b, for all m, n.

» This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.

» This in turn implies v is a lower bound for B and since v is
the greatest lower bound we get

u<v.

» In fact, as a, < u < v < b, for every n, we can see that
[u,v] C ﬂ In.
neN

» Here if u = v, then [u, v] is to be understood as the singleton

{u}.
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» Theorem 11.2: Let I, 5, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose

inf{b, —a,:n €N} =0. Then (. /n is a singleton set.
Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.

Suppose not. Since a, < u < v < b, for every n.
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The Singleton

» Theorem 11.2: Let I, 5, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose
inf{b, —a,:n €N} =0. Then (. /n is a singleton set.

Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.
Suppose not. Since a, < u < v < b, for every n.

Hence b, — a, > (v — u) for every n.
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In particular v — u is a lower bound for {b, — a, : n € N}
Therefore (v — u) < 0.



The Singleton
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Theorem 11.2: Let /1, I, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose
inf{b, —a,:n €N} =0. Then (. /n is a singleton set.

Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.

Suppose not. Since a, < u < v < b, for every n.

Hence b, — a, > (v — u) for every n.

In particular v — u is a lower bound for {b, — a, : n € N}
Therefore (v — u) < 0.

Since we already have u < v, we get v — u =0, thatis, u = v.
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Theorem 11.5: The set R is uncountable.
Proof: Fix a, b € R with a < b.
We will show that [a, b] is uncountable.

This would complete the proof as subsets of countable sets
are countable, R can not be countable.

Suppose [a, b] is countable.

Let {x1,x2,...} be an enumeration of [a, b]. (This just means
that n+— x, is a bijective function from N to [a, b].)
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Now x; € [a, b]. Clearly we can choose a closed sub-interval
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Next, in a similar fashion, we can choose a sub-interval

I = [ag, by] of I, such that xo & k. (If x2 ¢ I, we can simply
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Now x; € [a, b]. Clearly we can choose a closed sub-interval

h = [a1, b1] of [a, b] such that x; ¢ /.

Next, in a similar fashion, we can choose a sub-interval

I = [ag, by] of I, such that xo & k. (If x2 ¢ I, we can simply
choose b = I;.
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By nested intervals property of R,
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Now x; € [a, b]. Clearly we can choose a closed sub-interval

h = [a1, b1] of [a, b] such that x; ¢ /.

Next, in a similar fashion, we can choose a sub-interval

I = [ag, by] of I, such that xo & k. (If x2 ¢ I, we can simply
choose b = I;.

Then we can choose a sub-interval I3 = [a3, b3] of | such that
x3 & b.

Continuing this way, we have a nested sequence of closed and
bounded intervals:

[avb]2I12/22"'a

with x, ¢ I, for every n € R.

By nested intervals property of R,
L
neN

is non-empty. Take u € [,y /n-
Then clearly u € [a, b].
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» Also for every n, u € I, and x, ¢ I,, and hence u # x,.

» This holds for every n. This means that n — x, from N to
[a, b] is not surjective as we have got u € [a, b] such that
u # xp for every n.
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» Also for every n, u € I, and x, ¢ I,, and hence u # x,.

» This holds for every n. This means that n — x, from N to
[a, b] is not surjective as we have got u € [a, b] such that
u # xp for every n.

» This is a contradiction and hence [a, b] is not countable.

» END OF LECTURE 11.



