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Lecture 11: Real Numbers: Nested intervals property and
Uncountability

I Consider R the set of real numbers.

I We draw the set as ‘Real line’:

I

I

I

I

I This is only a visual aid for us. We are not connecting axioms
of geometry with axioms of real line.
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Nested Intervals

I A sequence of intervals I1, I2, I3, . . . is said to be nested if
In ⊇ In+1 for every n ∈ N, that is,

I1 ⊇ I2 ⊇ I3 ⊇ · · · .

I Example 11.1: Take In = (− 1
n ,

1
n ), then

(−1, 1) ⊃ (−1

2
,
1

2
) ⊃ (−1

3
,
1

3
) · · · .

I Claim:
⋂

n∈N(−
1
n ,

1
n ) = {0}.

I Proof: Clearly 0 ∈ (− 1
n ,

1
n ) for every n ∈ N, and hence

0 ∈
⋂∞

n=1(−
1
n ,

1
n ).

I Now if x ∈ R and x > 0, there exists m ∈ N, such that
0 < 1

m < x .
I Hence x /∈ (− 1

m , 1
m ).

I Consequently x /∈
⋂

n∈N(−
1
n ,

1
n ).

I Similarly, if x ∈ R and x < 0, then x /∈
⋂

n∈N(−
1
n ,

1
n ).

I This completes the proof.
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Another Example

I Example 11.2: Take Jn = (0, 1n ) for n ∈ N.

I Then Jn is a nested family of intervals:

J1 ⊃ J2 ⊃ J3 ⊃ · · · .

I Clearly ⋂
n∈N

Jn = ∅.

I So intersection of a nested family of intervals can be empty.
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One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.

I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.
I Considering previous examples, the following theorem can be

a bit of a surprise.
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Nested intervals property

I Theorem 11.4 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

I Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

I Proof: Suppose I1, I2, . . . is a nested sequence of intervals,
where In = [an, bn], for some an, bn ∈ R, with an < bn for
every n.

I We want to show that
⋂

n∈N In =
⋂

n∈N[an, bn] 6= ∅.
I As In ⊇ In+1, we have [an, bn] ⊇ [an+1, bn+1] for every n.

I This means that an ≤ an+1 < bn+1 ≤ bn for every n.
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Continuation

I Since for every n, I1 ⊇ In, we get a1 ≤ an ≤ bn ≤ b1.

I In particular A := {an : n ∈ N} is bounded by b1.
I By completeness axiom, A has a least upper bound. Take

u = sup(A).
I We claim that u ∈

⋂
n∈N In.

I Fix n ∈ N.
I Since u is an upper bound for A, and an ∈ A,

an ≤ u, (i)

I We have
a1 ≤ a2 ≤ · · · ≤ an ≤ bn

Hence am ≤ bn for 1 ≤ m ≤ n.
I For m ≥ n, Im ⊆ In, and hence an ≤ am < bm ≤ bn. In

particular, am ≤ bn.
I Combining the last two conclusions, we have

am ≤ bn, ∀m (ii)
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Continuation

I From (ii), bn is an upper bound for A. Since u is the least
upper bound, we get

u ≤ bn, (iii).

I From (i) and (iii), an ≤ u ≤ bn. In other words, u ∈ In. Since
this is true for every n, u ∈

⋂
n∈N In.

I In particular,
⋂
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The Singleton

I Theorem 11.2: Let I1, I2, . . . be a nested sequence of intervals,
with In = [an, bn], for some an, bn ∈ R. Suppose
inf{bn − an : n ∈ N} = 0. Then

⋂
n∈N In is a singleton set.

I Proof: Suppose u = sup{an : n ∈ N} and v = inf{bn : n ∈ N}.
I We want to show u = v .

I Suppose not. Since an ≤ u ≤ v ≤ bn for every n.

I Hence bn − an ≥ (v − u) for every n.

I In particular v − u is a lower bound for {bn − an : n ∈ N}
Therefore (v − u) ≤ 0.

I Since we already have u ≤ v , we get v − u = 0, that is, u = v .
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Uncountability of R

I Theorem 11.5: The set R is uncountable.

I Proof: Fix a, b ∈ R with a < b.

I We will show that [a, b] is uncountable.

I This would complete the proof as subsets of countable sets
are countable, R can not be countable.

I Suppose [a, b] is countable.

I Let {x1, x2, . . .} be an enumeration of [a, b]. (This just means
that n 7→ xn is a bijective function from N to [a, b].)
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Continuation

I Now x1 ∈ [a, b]. Clearly we can choose a closed sub-interval
I1 = [a1, b1] of [a, b] such that x1 /∈ I1.

I Next, in a similar fashion, we can choose a sub-interval
I2 = [a2, b2] of I1, such that x2 /∈ I2. (If x2 /∈ I1, we can simply
choose I2 = I1.

I Then we can choose a sub-interval I3 = [a3, b3] of I2 such that
x3 /∈ I3.

I Continuing this way, we have a nested sequence of closed and
bounded intervals:

[a, b] ⊇ I1 ⊇ I2 ⊇ · · · ,
I with xn /∈ In for every n ∈ R.
I By nested intervals property of R,⋂

n∈N
In

is non-empty. Take u ∈
⋂

n∈N In.
I Then clearly u ∈ [a, b].
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Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.
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