

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.

Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':

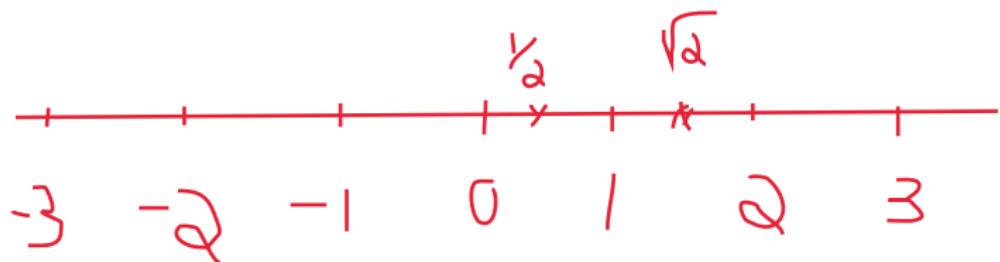
Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':
- ▶

Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':

- ▶
- ▶



Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':
- ▶
- ▶
- ▶

Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':
- ▶
- ▶
- ▶
- ▶
- ▶

Lecture 11: Real Numbers: Nested intervals property and Uncountability

- ▶ Consider \mathbb{R} the set of real numbers.
- ▶ We draw the set as 'Real line':
 - ▶
 - ▶
 - ▶
 - ▶
 - ▶
 - ▶
- ▶ This is only a visual aid for us. We are not connecting axioms of geometry with axioms of real line.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$\left(-1, 1\right) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$\left(-1, 1\right) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$\left(-1, 1\right) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.

- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$(-1, 1) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.
- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Now if $x \in \mathbb{R}$ and $x > 0$, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$(-1, 1) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.
- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Now if $x \in \mathbb{R}$ and $x > 0$, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- ▶ Hence $x \notin \left(-\frac{1}{m}, \frac{1}{m}\right)$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$(-1, 1) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.
- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Now if $x \in \mathbb{R}$ and $x > 0$, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- ▶ Hence $x \notin \left(-\frac{1}{m}, \frac{1}{m}\right)$.
- ▶ Consequently $x \notin \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$(-1, 1) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.
- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Now if $x \in \mathbb{R}$ and $x > 0$, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- ▶ Hence $x \notin \left(-\frac{1}{m}, \frac{1}{m}\right)$.
- ▶ Consequently $x \notin \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Similarly, if $x \in \mathbb{R}$ and $x < 0$, then $x \notin \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$.

Nested Intervals

- ▶ A sequence of intervals I_1, I_2, I_3, \dots is said to be **nested** if $I_n \supseteq I_{n+1}$ for every $n \in \mathbb{N}$, that is,

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

- ▶ **Example 11.1:** Take $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then

$$(-1, 1) \supset \left(-\frac{1}{2}, \frac{1}{2}\right) \supset \left(-\frac{1}{3}, \frac{1}{3}\right) \dots$$

- ▶ **Claim:** $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$.
- ▶ **Proof:** Clearly $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$, and hence $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Now if $x \in \mathbb{R}$ and $x > 0$, there exists $m \in \mathbb{N}$, such that $0 < \frac{1}{m} < x$.
- ▶ Hence $x \notin \left(-\frac{1}{m}, \frac{1}{m}\right)$.
- ▶ Consequently $x \notin \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ Similarly, if $x \in \mathbb{R}$ and $x < 0$, then $x \notin \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- ▶ This completes the proof.

Another Example

- ▶ Example 11.2: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.

Another Example

- ▶ Example 11.2: Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1 \supset J_2 \supset J_3 \supset \dots$$

Another Example

- ▶ **Example 11.2:** Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1 \supset J_2 \supset J_3 \supset \dots$$

- ▶ Clearly

$$\bigcap_{n \in \mathbb{N}} J_n = \emptyset.$$

Another Example

- ▶ **Example 11.2:** Take $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$.
- ▶ Then J_n is a nested family of intervals:

$$J_1 \supset J_2 \supset J_3 \supset \dots$$

- ▶ Clearly

$$\bigcap_{n \in \mathbb{N}} J_n = \emptyset.$$

- ▶ So intersection of a nested family of intervals can be empty.

One more example

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.

One more example

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1 \supset K_2 \supset K_3 \supset \dots$$

One more example

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1 \supset K_2 \supset K_3 \supset \dots$$

- ▶ $\bigcap_{n \in \mathbb{N}} K_n = \emptyset$.

One more example

- ▶ For $n \in \mathbb{N}$ take $K_n = [n, \infty) = \{x \in \mathbb{R} : n \leq x\}$.
- ▶ Then K_n is a nested family of intervals:

$$K_1 \supset K_2 \supset K_3 \supset \dots$$

- ▶ $\bigcap_{n \in \mathbb{N}} K_n = \emptyset$.
- ▶ Considering previous examples, the following theorem can be a bit of a surprise.

Nested intervals property

- Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.

Nested intervals property

- ▶ Theorem 11.4 (Nested intervals property): Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form $[a, b]$ for some real numbers a, b with $a < b$.

Nested intervals property

- ▶ **Theorem 11.4 (Nested intervals property):** Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form $[a, b]$ for some real numbers a, b with $a < b$.
- ▶ **Proof:** Suppose I_1, I_2, \dots is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n .

Nested intervals property

- ▶ **Theorem 11.4 (Nested intervals property):** Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form $[a, b]$ for some real numbers a, b with $a < b$.
- ▶ **Proof:** Suppose I_1, I_2, \dots is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n .
- ▶ We want to show that $\bigcap_{n \in \mathbb{N}} I_n = \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.

Nested intervals property

- ▶ **Theorem 11.4 (Nested intervals property):** Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form $[a, b]$ for some real numbers a, b with $a < b$.
- ▶ **Proof:** Suppose I_1, I_2, \dots is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n .
- ▶ We want to show that $\bigcap_{n \in \mathbb{N}} I_n = \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.
- ▶ As $I_n \supseteq I_{n+1}$, we have $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ for every n .

Nested intervals property

- ▶ **Theorem 11.4 (Nested intervals property):** Intersection of a nested sequence of closed and bounded intervals is non-empty.
- ▶ Recall that an interval is said to be closed and bounded if it is of the form $[a, b]$ for some real numbers a, b with $a < b$.
- ▶ **Proof:** Suppose I_1, I_2, \dots is a nested sequence of intervals, where $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$, with $a_n < b_n$ for every n .
- ▶ We want to show that $\bigcap_{n \in \mathbb{N}} I_n = \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.
- ▶ As $I_n \supseteq I_{n+1}$, we have $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ for every n .
- ▶ This means that $a_n \leq a_{n+1} < b_{n+1} \leq b_n$ for every n .

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A , and $a_n \in A$,

$$a_n \leq u, \quad (i)$$

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A , and $a_n \in A$,

$$a_n \leq u, \quad (i)$$

- ▶ We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A , and $a_n \in A$,

$$a_n \leq u, \quad (i)$$

- ▶ We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

- ▶ For $m \geq n$, $I_m \subseteq I_n$, and hence $a_n \leq a_m < b_m \leq b_n$. In particular, $a_m \leq b_n$.

Continuation

- ▶ Since for every n , $I_1 \supseteq I_n$, we get $a_1 \leq a_n \leq b_n \leq b_1$.
- ▶ In particular $A := \{a_n : n \in \mathbb{N}\}$ is bounded by b_1 .
- ▶ By completeness axiom, A has a least upper bound. Take $u = \sup(A)$.
- ▶ We claim that $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ Fix $n \in \mathbb{N}$.
- ▶ Since u is an upper bound for A , and $a_n \in A$,

$$a_n \leq u, \quad (i)$$

- ▶ We have

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq b_n$$

Hence $a_m \leq b_n$ for $1 \leq m \leq n$.

- ▶ For $m \geq n$, $I_m \subseteq I_n$, and hence $a_n \leq a_m < b_m \leq b_n$. In particular, $a_m \leq b_n$.
- ▶ Combining the last two conclusions, we have

$$a_m \leq b_n, \quad \forall m \quad (ii)$$

Continuation

- ▶ From (ii), b_n is an upper bound for A . Since u is the least upper bound, we get

$$u \leq b_n, \quad (iii).$$

Continuation

- ▶ From (ii), b_n is an upper bound for A . Since u is the least upper bound, we get

$$u \leq b_n, \quad (iii).$$

- ▶ From (i) and (iii), $a_n \leq u \leq b_n$. In other words, $u \in I_n$. Since this is true for every n , $u \in \bigcap_{n \in \mathbb{N}} I_n$.

Continuation

- ▶ From (ii), b_n is an upper bound for A . Since u is the least upper bound, we get

$$u \leq b_n, \quad (iii).$$

- ▶ From (i) and (iii), $a_n \leq u \leq b_n$. In other words, $u \in I_n$. Since this is true for every n , $u \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ In particular, $\bigcap_{n \in \mathbb{N}} I_n$ is non-empty.

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \leq b_n$ for all m, n .

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \leq b_n$ for all m, n .
- ▶ This implies $v \leq b_n$ for all n , as b_n is an upper bound for A and v is the least upper bound.

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \leq b_n$ for all m, n .
- ▶ This implies $u \leq b_n$ for all n , as b_n is an upper bound for A and u is the least upper bound.
- ▶ This in turn implies u is a lower bound for B and since v is the greatest lower bound we get

$$u \leq v.$$

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \leq b_n$ for all m, n .
- ▶ This implies $u \leq b_n$ for all n , as b_n is an upper bound for A and u is the least upper bound.
- ▶ This in turn implies u is a lower bound for B and since v is the greatest lower bound we get

$$u \leq v.$$

- ▶ In fact, as $a_n \leq u \leq v \leq b_n$ for every n , we can see that

$$[u, v] \subseteq \bigcap_{n \in \mathbb{N}} I_n.$$

The intersection is an interval

- ▶ Consider the intervals $I_n = [a_n, b_n]$ of previous theorem.
- ▶ Similar arguments show that $B = \{b_n : n \in \mathbb{N}\}$ is bounded below and taking $v = \inf(B)$,
- ▶ $v \in \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We have $a_m \leq b_n$ for all m, n .
- ▶ This implies $u \leq b_n$ for all n , as b_n is an upper bound for A and u is the least upper bound.
- ▶ This in turn implies u is a lower bound for B and since v is the greatest lower bound we get

$$u \leq v.$$

- ▶ In fact, as $a_n \leq u \leq v \leq b_n$ for every n , we can see that

$$[u, v] \subseteq \bigcap_{n \in \mathbb{N}} I_n.$$

- ▶ Here if $u = v$, then $[u, v]$ is to be understood as the singleton $\{u\}$.

The Singleton

- **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ▶ We want to show $u = v$.

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ▶ We want to show $u = v$.
- ▶ Suppose not. Since $a_n \leq u \leq v \leq b_n$ for every n .

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ▶ We want to show $u = v$.
- ▶ Suppose not. Since $a_n \leq u \leq v \leq b_n$ for every n .
- ▶ Hence $b_n - a_n \geq (v - u)$ for every n .

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ▶ We want to show $u = v$.
- ▶ Suppose not. Since $a_n \leq u \leq v \leq b_n$ for every n .
- ▶ Hence $b_n - a_n \geq (v - u)$ for every n .
- ▶ In particular $v - u$ is a lower bound for $\{b_n - a_n : n \in \mathbb{N}\}$
Therefore $(v - u) \leq 0$.

The Singleton

- ▶ **Theorem 11.2:** Let I_1, I_2, \dots be a nested sequence of intervals, with $I_n = [a_n, b_n]$, for some $a_n, b_n \in \mathbb{R}$. Suppose $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$. Then $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton set.
- ▶ **Proof:** Suppose $u = \sup\{a_n : n \in \mathbb{N}\}$ and $v = \inf\{b_n : n \in \mathbb{N}\}$.
- ▶ We want to show $u = v$.
- ▶ Suppose not. Since $a_n \leq u \leq v \leq b_n$ for every n .
- ▶ Hence $b_n - a_n \geq (v - u)$ for every n .
- ▶ In particular $v - u$ is a lower bound for $\{b_n - a_n : n \in \mathbb{N}\}$
Therefore $(v - u) \leq 0$.
- ▶ Since we already have $u \leq v$, we get $v - u = 0$, that is, $u = v$.

Uncountability of \mathbb{R}

- Theorem 11.5: The set \mathbb{R} is uncountable.

Uncountability of \mathbb{R}

- **Theorem 11.5:** The set \mathbb{R} is uncountable.
- **Proof:** Fix $a, b \in \mathbb{R}$ with $a < b$.

Uncountability of \mathbb{R}

- ▶ **Theorem 11.5:** The set \mathbb{R} is uncountable.
- ▶ **Proof:** Fix $a, b \in \mathbb{R}$ with $a < b$.
- ▶ We will show that $[a, b]$ is uncountable.

Uncountability of \mathbb{R}

- ▶ **Theorem 11.5:** The set \mathbb{R} is uncountable.
- ▶ **Proof:** Fix $a, b \in \mathbb{R}$ with $a < b$.
- ▶ We will show that $[a, b]$ is uncountable.
- ▶ This would complete the proof as subsets of countable sets are countable, \mathbb{R} can not be countable.

Uncountability of \mathbb{R}

- ▶ **Theorem 11.5:** The set \mathbb{R} is uncountable.
- ▶ **Proof:** Fix $a, b \in \mathbb{R}$ with $a < b$.
- ▶ We will show that $[a, b]$ is uncountable.
- ▶ This would complete the proof as subsets of countable sets are countable, \mathbb{R} can not be countable.
- ▶ Suppose $[a, b]$ is countable.

Uncountability of \mathbb{R}

- ▶ **Theorem 11.5:** The set \mathbb{R} is uncountable.
- ▶ **Proof:** Fix $a, b \in \mathbb{R}$ with $a < b$.
- ▶ We will show that $[a, b]$ is uncountable.
- ▶ This would complete the proof as subsets of countable sets are countable, \mathbb{R} can not be countable.
- ▶ Suppose $[a, b]$ is countable.
- ▶ Let $\{x_1, x_2, \dots\}$ be an enumeration of $[a, b]$. (This just means that $n \mapsto x_n$ is a bijective function from \mathbb{N} to $[a, b]$.)

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- ▶ Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a, b] \supseteq I_1 \supseteq I_2 \supseteq \dots,$$

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- ▶ Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a, b] \supseteq I_1 \supseteq I_2 \supseteq \cdots,$$

- ▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- ▶ Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a, b] \supseteq I_1 \supseteq I_2 \supseteq \dots,$$

- ▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.
- ▶ By nested intervals property of \mathbb{R} ,

$$\bigcap_{n \in \mathbb{N}} I_n$$

is non-empty. Take $u \in \bigcap_{n \in \mathbb{N}} I_n$.

Continuation

- ▶ Now $x_1 \in [a, b]$. Clearly we can choose a closed sub-interval $I_1 = [a_1, b_1]$ of $[a, b]$ such that $x_1 \notin I_1$.
- ▶ Next, in a similar fashion, we can choose a sub-interval $I_2 = [a_2, b_2]$ of I_1 , such that $x_2 \notin I_2$. (If $x_2 \notin I_1$, we can simply choose $I_2 = I_1$.)
- ▶ Then we can choose a sub-interval $I_3 = [a_3, b_3]$ of I_2 such that $x_3 \notin I_3$.
- ▶ Continuing this way, we have a nested sequence of closed and bounded intervals:

$$[a, b] \supseteq I_1 \supseteq I_2 \supseteq \dots,$$

- ▶ with $x_n \notin I_n$ for every $n \in \mathbb{R}$.
- ▶ By nested intervals property of \mathbb{R} ,

$$\bigcap_{n \in \mathbb{N}} I_n$$

is non-empty. Take $u \in \bigcap_{n \in \mathbb{N}} I_n$.

- ▶ Then clearly $u \in [a, b]$.

Continuation

- ▶ Also for every n , $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.

Continuation

- ▶ Also for every n , $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n . This means that $n \mapsto x_n$ from \mathbb{N} to $[a, b]$ is not surjective as we have got $u \in [a, b]$ such that $u \neq x_n$ for every n .

Continuation

- ▶ Also for every n , $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n . This means that $n \mapsto x_n$ from \mathbb{N} to $[a, b]$ is not surjective as we have got $u \in [a, b]$ such that $u \neq x_n$ for every n .
- ▶ This is a contradiction and hence $[a, b]$ is not countable.

Continuation

- ▶ Also for every n , $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n . This means that $n \mapsto x_n$ from \mathbb{N} to $[a, b]$ is not surjective as we have got $u \in [a, b]$ such that $u \neq x_n$ for every n .
- ▶ This is a contradiction and hence $[a, b]$ is not countable.

Continuation

- ▶ Also for every n , $u \in I_n$ and $x_n \notin I_n$, and hence $u \neq x_n$.
- ▶ This holds for every n . This means that $n \mapsto x_n$ from \mathbb{N} to $[a, b]$ is not surjective as we have got $u \in [a, b]$ such that $u \neq x_n$ for every n .
- ▶ This is a contradiction and hence $[a, b]$ is not countable.
- ▶ **END OF LECTURE 11.**