

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.
- ▶ We want to look at the familiar binary and decimal systems of writing real numbers.

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.
- ▶ We want to look at the familiar binary and decimal systems of writing real numbers.
- ▶ Binary expansion for integers: We know that any natural number can be written uniquely as $c_n \cdot 2^n + c_{n-1} \cdot 2^{n-1} + \cdots + c_1 \cdot 2 + c_0$, for some $n \in \mathbb{N}$ with each $c_j \in \{0, 1\}$ ($c_n \neq 0$).

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.
- ▶ We want to look at the familiar binary and decimal systems of writing real numbers.
- ▶ Binary expansion for integers: We know that any natural number can be written uniquely as $c_n \cdot 2^n + c_{n-1} \cdot 2^{n-1} + \cdots + c_1 \cdot 2 + c_0$, for some $n \in \mathbb{N}$ with each $c_j \in \{0, 1\}$ ($c_n \neq 0$).
- ▶ As every real number is its integer part plus the fractional part it suffices to consider real numbers in the interval $[0, 1)$ in binary and decimal systems.

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.
- ▶ We want to look at the familiar binary and decimal systems of writing real numbers.
- ▶ Binary expansion for integers: We know that any natural number can be written uniquely as $c_n \cdot 2^n + c_{n-1} \cdot 2^{n-1} + \cdots + c_1 \cdot 2 + c_0$, for some $n \in \mathbb{N}$ with each $c_j \in \{0, 1\}$ ($c_n \neq 0$).
- ▶ As every real number is its integer part plus the fractional part it suffices to consider real numbers in the interval $[0, 1)$ in binary and decimal systems.
- ▶ Qn: What is the difference between 1 and 0.9999999...?

Lecture 12: Real Numbers: Binary and Decimal systems

- ▶ Consider \mathbb{R} , the set of real numbers.
- ▶ We want to look at the familiar binary and decimal systems of writing real numbers.
- ▶ Binary expansion for integers: We know that any natural number can be written uniquely as $c_n \cdot 2^n + c_{n-1} \cdot 2^{n-1} + \cdots + c_1 \cdot 2 + c_0$, for some $n \in \mathbb{N}$ with each $c_j \in \{0, 1\}$ ($c_n \neq 0$).
- ▶ As every real number is its integer part plus the fractional part it suffices to consider real numbers in the interval $[0, 1)$ in binary and decimal systems.
- ▶ Qn: What is the difference between 1 and 0.9999999...?
- ▶ Ans: $1 = 0.999999\cdots$. In other words, they are equal.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.
- Assume the result for $n = m$, so we have $(1 + x)^m \geq 1 + mx$.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.
- Assume the result for $n = m$, so we have $(1 + x)^m \geq 1 + mx$.
- Note that as $x > -1$, $1 + x > 0$.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.
- Assume the result for $n = m$, so we have $(1 + x)^m \geq 1 + mx$.
- Note that as $x > -1$, $1 + x > 0$.
- Now using the induction hypothesis,

$$\begin{aligned}(1 + x)^{m+1} &= (1 + x)^m \cdot (1 + x) \\ &\geq (1 + mx)(1 + x) \\ &= 1 + x + mx + mx^2 \\ &\geq 1 + (m + 1)x\end{aligned}$$

as $mx^2 \geq 0$.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.
- Assume the result for $n = m$, so we have $(1 + x)^m \geq 1 + mx$.
- Note that as $x > -1$, $1 + x > 0$.
- Now using the induction hypothesis,

$$\begin{aligned}(1 + x)^{m+1} &= (1 + x)^m \cdot (1 + x) \\ &\geq (1 + mx)(1 + x) \\ &= 1 + x + mx + mx^2 \\ &\geq 1 + (m + 1)x\end{aligned}$$

as $mx^2 \geq 0$.

- Hence the inequality is true for $n = m + 1$.

Bernoulli's inequality

- **Theorem 12.1 (Bernoulli's inequality):** If $x \in \mathbb{R}$ with $x > -1$, then

$$(1 + x)^n \geq 1 + nx, \quad \forall n \in \mathbb{N}.$$

- **Proof:** This we prove by induction on n .
- For $n = 1$, clearly the equality holds.
- Assume the result for $n = m$, so we have $(1 + x)^m \geq 1 + mx$.
- Note that as $x > -1$, $1 + x > 0$.
- Now using the induction hypothesis,

$$\begin{aligned}(1 + x)^{m+1} &= (1 + x)^m \cdot (1 + x) \\ &\geq (1 + mx)(1 + x) \\ &= 1 + x + mx + mx^2 \\ &\geq 1 + (m + 1)x\end{aligned}$$

as $mx^2 \geq 0$.

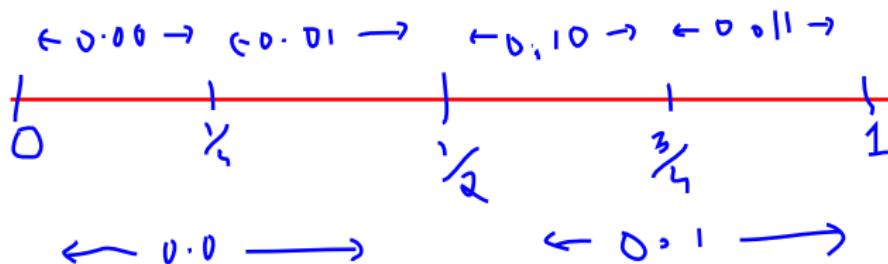
- Hence the inequality is true for $n = m + 1$.
- This completes the proof by Mathematical Induction.

Binary system

- We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[\frac{1}{2}, 1)$, and then sub-divide them into two more equal pieces and so on.

Binary system

- We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[1/2, 1)$, and then sub-divide them into two more equal pieces and so on.



Binary system

- ▶ We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[\frac{1}{2}, 1)$, and then sub-divide them into two more equal pieces and so on.
- ▶ We have $[0, 1) = [0, \frac{1}{2}) \cup [\frac{1}{2}, 1)$
- ▶ If $x \in [0, \frac{1}{2})$, the first binary digit b_1 of x is 0. If $x \in [\frac{1}{2}, 1)$, the first binary digit b_1 of x is 1.

Binary system

- ▶ We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[1/2, 1)$, and then sub-divide them into two more equal pieces and so on.
- ▶ We have $[0, 1) = [0, \frac{1}{2}) \cup [\frac{1}{2}, 1)$
- ▶ If $x \in [0, \frac{1}{2})$, the first binary digit b_1 of x is 0. If $x \in [\frac{1}{2}, 1)$, the first binary digit b_1 of x is 1.
- ▶ Here we have made a choice to put the mid-point with the right interval. We can opt to the mid-point with the left interval. This option we will explore later on.
- ▶ Consider the case where $b_1 = 0$. Now $x \in [0, \frac{1}{2})$. To determine the second digit, divide $[0, \frac{1}{2})$ into two parts.

Binary system

- ▶ We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[\frac{1}{2}, 1)$, and then sub-divide them into two more equal pieces and so on.
- ▶ We have $[0, 1) = [0, \frac{1}{2}) \cup [\frac{1}{2}, 1)$
- ▶ If $x \in [0, \frac{1}{2})$, the first binary digit b_1 of x is 0. If $x \in [\frac{1}{2}, 1)$, the first binary digit b_1 of x is 1.
- ▶ Here we have made a choice to put the mid-point with the right interval. We can opt to the mid-point with the left interval. This option we will explore later on.
- ▶ Consider the case where $b_1 = 0$. Now $x \in [0, \frac{1}{2})$. To determine the second digit, divide $[0, \frac{1}{2})$ into two parts.
- ▶ If $x \in [0, \frac{1}{4})$, the second binary digit b_2 of x is 0. If $x \in [\frac{1}{4}, \frac{1}{2})$ the second binary digit b_2 of x is 1.

Binary system

- ▶ We divide the interval $[0, 1)$ into two parts, $[0, 1/2)$ and $[\frac{1}{2}, 1)$, and then sub-divide them into two more equal pieces and so on.
- ▶ We have $[0, 1) = [0, \frac{1}{2}) \cup [\frac{1}{2}, 1)$
- ▶ If $x \in [0, \frac{1}{2})$, the first binary digit b_1 of x is 0. If $x \in [\frac{1}{2}, 1)$, the first binary digit b_1 of x is 1.
- ▶ Here we have made a choice to put the mid-point with the right interval. We can opt to the mid-point with the left interval. This option we will explore later on.
- ▶ Consider the case where $b_1 = 0$. Now $x \in [0, \frac{1}{2})$. To determine the second digit, divide $[0, \frac{1}{2})$ into two parts.
- ▶ If $x \in [0, \frac{1}{4})$, the second binary digit b_2 of x is 0. If $x \in [\frac{1}{4}, \frac{1}{2})$ the second binary digit b_2 of x is 1.
- ▶ On the other hand if $b_1 = 1$, that is, $x \in [\frac{1}{2}, 1)$, the second binary digit b_2 is 0 if $x \in [\frac{1}{2}, \frac{3}{4})$ and $b_2 = 1$ if $x \in [\frac{3}{4}, 1)$.

Binary expansion: Continuation

- ▶ Continuing this way, if b_1, b_2, \dots, b_n are the first n -binary digits of x , then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n} \leq x < \frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{(b_n + 1)}{2^n}.$$

Binary expansion: Continuation

- ▶ Continuing this way, if b_1, b_2, \dots, b_n are the first n -binary digits of x , then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x < \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n}.$$

- ▶ In other words, taking

$$I_1 = \left[\frac{b_1}{2^1}, \frac{(b_1 + 1)}{2^1} \right].$$

$$I_2 = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2}, \frac{b_1}{2^1} + \frac{(b_2 + 1)}{2^2} \right]$$

$$I_n = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n}, \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n} \right], \quad \forall n,$$

Binary expansion: Continuation

- ▶ Continuing this way, if b_1, b_2, \dots, b_n are the first n -binary digits of x , then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n} \leq x < \frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{(b_n + 1)}{2^n}.$$

- ▶ In other words, taking

$$I_1 = \left[\frac{b_1}{2^1}, \frac{(b_1 + 1)}{2^1} \right].$$

$$I_2 = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2}, \frac{b_1}{2^1} + \frac{(b_2 + 1)}{2^2} \right]$$

$$I_n = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n}, \frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{(b_n + 1)}{2^n} \right], \quad \forall n,$$

- ▶ we get a nested family of closed and bounded intervals:

$$I_1 \supset I_2 \supset I_3 \dots$$

Binary expansion: Continuation

- ▶ Continuing this way, if b_1, b_2, \dots, b_n are the first n -binary digits of x , then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x < \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n}.$$

- ▶ In other words, taking

$$I_1 = \left[\frac{b_1}{2^1}, \frac{(b_1 + 1)}{2^1} \right].$$

$$I_2 = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2}, \frac{b_1}{2^1} + \frac{(b_2 + 1)}{2^2} \right]$$

$$I_n = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n}, \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n} \right], \quad \forall n,$$

- ▶ we get a nested family of closed and bounded intervals:

$$I_1 \supset I_2 \supset I_3 \cdots$$

- ▶ satisfying $x \in I_n$ for every n .

Binary expansion: Continuation

- ▶ Continuing this way, if b_1, b_2, \dots, b_n are the first n -binary digits of x , then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x < \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n}.$$

- ▶ In other words, taking

$$I_1 = \left[\frac{b_1}{2^1}, \frac{(b_1 + 1)}{2^1} \right].$$

$$I_2 = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2}, \frac{b_1}{2^1} + \frac{(b_2 + 1)}{2^2} \right]$$

$$I_n = \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n}, \frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{(b_n + 1)}{2^n} \right], \quad \forall n,$$

- ▶ we get a nested family of closed and bounded intervals:

$$I_1 \supset I_2 \supset I_3 \cdots$$

- ▶ satisfying $x \in I_n$ for every n .
- ▶ Hence $x \in \bigcap_{n \in \mathbb{N}} I_n$.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.
- ▶ Consequently, $\inf\left\{\frac{(b_n+1)}{2^n} - \frac{b_n}{2^n} : n \in \mathbb{N}\right\} = \inf\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\} = 0$.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.
- ▶ Consequently, $\inf\left\{\frac{(b_n+1)}{2^n} - \frac{b_n}{2^n} : n \in \mathbb{N}\right\} = \inf\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\} = 0$.
- ▶ Then by Theorem 11.5, $\bigcap_{n \in \mathbb{N}} I_n$ is singleton.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.
- ▶ Consequently, $\inf\left\{\frac{(b_n+1)}{2^n} - \frac{b_n}{2^n} : n \in \mathbb{N}\right\} = \inf\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\} = 0$.
- ▶ Then by Theorem 11.5, $\bigcap_{n \in \mathbb{N}} I_n$ is singleton.
- ▶ Hence $\bigcap_{n \in \mathbb{N}} I_n = \{x\}$.

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.
- ▶ Consequently, $\inf\left\{\frac{(b_n+1)}{2^n} - \frac{b_n}{2^n} : n \in \mathbb{N}\right\} = \inf\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\} = 0$.
- ▶ Then by Theorem 11.5, $\bigcap_{n \in \mathbb{N}} I_n$ is singleton.
- ▶ Hence $\bigcap_{n \in \mathbb{N}} I_n = \{x\}$.
- ▶ This shows that the binary digits of x , determines x .

Continuation

- ▶ By Bernoulli's inequality (taking $x = 1$) $2^n = (1+1)^n \geq 1+n$.
- ▶ In particular, for $\epsilon > 0$, there exists $n \in \mathbb{N}$, such that $0 < \frac{1}{2^n} < \frac{1}{n+1} < \epsilon$.
- ▶ Consequently, $\inf\left\{\frac{(b_n+1)}{2^n} - \frac{b_n}{2^n} : n \in \mathbb{N}\right\} = \inf\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\} = 0$.
- ▶ Then by Theorem 11.5, $\bigcap_{n \in \mathbb{N}} I_n$ is singleton.
- ▶ Hence $\bigcap_{n \in \mathbb{N}} I_n = \{x\}$.
- ▶ This shows that the binary digits of x , determines x .
- ▶ In other words, two different real numbers x, y would have different binary expansions.

Second Option in Binary expansion

- ▶ Now we explore the Second Option.

Second Option in Binary expansion

- ▶ Now we explore the Second Option.
- ▶ We divide the interval $(0, 1]$ as $(0, \frac{1}{2}] \cup (\frac{1}{2}, 1]$.

Second Option in Binary expansion

- ▶ Now we explore the Second Option.
- ▶ We divide the interval $(0, 1]$ as $(0, \frac{1}{2}] \cup (\frac{1}{2}, 1]$.
- ▶ Then $(0, \frac{1}{2}]$ as $(0, \frac{1}{2^2}] \cup (\frac{1}{2^2}, \frac{1}{2}]$ and $(\frac{1}{2}, 1]$ as $(\frac{1}{2}, \frac{3}{2^2}] \cup (\frac{3}{2^2}, 1]$.

Second Option in Binary expansion

- ▶ Now we explore the Second Option.
- ▶ We divide the interval $(0, 1]$ as $(0, \frac{1}{2}] \cup (\frac{1}{2}, 1]$.
- ▶ Then $(0, \frac{1}{2}]$ as $(0, \frac{1}{2^2}] \cup (\frac{1}{2^2}, \frac{1}{2}]$ and $(\frac{1}{2}, 1]$ as $(\frac{1}{2}, \frac{3}{2^2}] \cup (\frac{3}{2^2}, 1]$.
- ▶ This way we get a possibly new binary expansion, say the digits are c_1, c_2, \dots , satisfying

$$\frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n}{2^n} \leq x \leq \frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n + 1}{2^n}.$$

Second Option in Binary expansion

- ▶ Now we explore the Second Option.
- ▶ We divide the interval $(0, 1]$ as $(0, \frac{1}{2}] \cup (\frac{1}{2}, 1]$.
- ▶ Then $(0, \frac{1}{2}]$ as $(0, \frac{1}{2^2}] \cup (\frac{1}{2^2}, \frac{1}{2}]$ and $(\frac{1}{2}, 1]$ as $(\frac{1}{2}, \frac{3}{2^2}] \cup (\frac{3}{2^2}, 1]$.
- ▶ This way we get a possibly new binary expansion, say the digits are c_1, c_2, \dots , satisfying

$$\frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n}{2^n} \leq x \leq \frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n + 1}{2^n}.$$

- ▶ The two expansions are different only if x is one of the end points in these divisions, that is, if $x = \frac{m}{2^k}$ for some natural numbers m, k . Here without loss of generality we may take m to be odd.

Second Option in Binary expansion

- ▶ Now we explore the Second Option.
- ▶ We divide the interval $(0, 1]$ as $(0, \frac{1}{2}] \cup (\frac{1}{2}, 1]$.
- ▶ Then $(0, \frac{1}{2}]$ as $(0, \frac{1}{2^2}] \cup (\frac{1}{2^2}, \frac{1}{2}]$ and $(\frac{1}{2}, 1]$ as $(\frac{1}{2}, \frac{3}{2^2}] \cup (\frac{3}{2^2}, 1]$.
- ▶ This way we get a possibly new binary expansion, say the digits are c_1, c_2, \dots , satisfying

$$\frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n}{2^n} \leq x \leq \frac{c_1}{2^1} + \frac{c_2}{2^2} + \cdots + \frac{c_n + 1}{2^n}.$$

- ▶ The two expansions are different only if x is one of the end points in these divisions, that is, if $x = \frac{m}{2^k}$ for some natural numbers m, k . Here without loss of generality we may take m to be odd.
- ▶ In other words in $(0, 1)$, only numbers of the form $\frac{m}{2^k}$, with natural numbers m, k have two binary expansions.
- ▶ For instance, $\frac{1}{2}$ is expressed as 0.10000000... using the first option and as 0.011111111... through the second option.

Binary expansion continued

- ▶ Suppose $x \in (0, 1)$ is expressed using binary expansion, under either option, and b_1, b_2, \dots, b_n are the first n binary digits.

Binary expansion continued

- ▶ Suppose $x \in (0, 1)$ is expressed using binary expansion, under either option, and b_1, b_2, \dots, b_n are the first n binary digits.
- ▶ Then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x \leq \frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n + 1}{2^n}$$

Binary expansion continued

- ▶ Suppose $x \in (0, 1)$ is expressed using binary expansion, under either option, and b_1, b_2, \dots, b_n are the first n binary digits.
- ▶ Then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x \leq \frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n + 1}{2^n}$$

- ▶ From the proof of the nested intervals property, we see that

$$x = \sup \left\{ \frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} : n \in \mathbb{N} \right\}.$$

Binary expansion continued

- ▶ Suppose $x \in (0, 1)$ is expressed using binary expansion, under either option, and b_1, b_2, \dots, b_n are the first n binary digits.
- ▶ Then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x \leq \frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n + 1}{2^n}$$

- ▶ From the proof of the nested intervals property, we see that

$$x = \sup\left\{\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} : n \in \mathbb{N}\right\}.$$

- ▶ Note that

$$\begin{aligned}\frac{1}{2} &= \sup\left\{\frac{1}{2} + 0 + \cdots + 0(n-1 \text{ times}) : n \in \mathbb{N}\right\} \\ &= \sup\left\{0 + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^n} : n \in \mathbb{N}\right\}.\end{aligned}$$

Binary expansion continued

- ▶ Suppose $x \in (0, 1)$ is expressed using binary expansion, under either option, and b_1, b_2, \dots, b_n are the first n binary digits.
- ▶ Then

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} \leq x \leq \frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n + 1}{2^n}$$

- ▶ From the proof of the nested intervals property, we see that

$$x = \sup\left\{\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_n}{2^n} : n \in \mathbb{N}\right\}.$$

- ▶ Note that

$$\begin{aligned}\frac{1}{2} &= \sup\left\{\frac{1}{2} + 0 + \cdots + 0(n-1 \text{ times}) : n \in \mathbb{N}\right\} \\ &= \sup\left\{0 + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^n} : n \in \mathbb{N}\right\}.\end{aligned}$$

- ▶ Similarly $1 = \sup\left\{\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n} : n \in \mathbb{N}\right\}.$

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M - 1)\}$.

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M - 1)\}$.
- ▶ Ternary ($M = 3$) and decimal ($M = 10$) expansions are particularly useful.

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M-1)\}$.
- ▶ Ternary ($M = 3$) and decimal ($M = 10$) expansions are particularly useful.
- ▶ If $x = 0.d_1d_2\dots$ is the decimal expansion of x , then, each $d_j \in \{0, 1, 2, \dots, 9\}$ and

$$x = \sup \left\{ \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n} : n \in \mathbb{N} \right\}.$$

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M-1)\}$.
- ▶ Ternary ($M = 3$) and decimal ($M = 10$) expansions are particularly useful.
- ▶ If $x = 0.d_1d_2\dots$ is the decimal expansion of x , then, each $d_j \in \{0, 1, 2, \dots, 9\}$ and

$$x = \sup \left\{ \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n} : n \in \mathbb{N} \right\}.$$

- ▶ Here $x \in (0, 1)$ has two decimal expansions if and only if $x = \frac{m}{10^k}$ for some natural numbers m, k .

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M-1)\}$.
- ▶ Ternary ($M = 3$) and decimal ($M = 10$) expansions are particularly useful.
- ▶ If $x = 0.d_1d_2\dots$ is the decimal expansion of x , then, each $d_j \in \{0, 1, 2, \dots, 9\}$ and

$$x = \sup\left\{\frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n} : n \in \mathbb{N}\right\}.$$

- ▶ Here $x \in (0, 1)$ has two decimal expansions if and only if $x = \frac{m}{10^k}$ for some natural numbers m, k .
- ▶ Alternatively x has two decimal expansions if and only if its decimal expansion is of the form $0.d_1d_2\dots d_n000000\dots$ or it is of the form $0.d_1d_2\dots d_n999999\dots$ for some d_j ’s.

Ternary and decimal expansions

- ▶ Similar to binary expansion we can have expansion with ‘base’ M , for any $M \in \{2, 3, 4, \dots\}$, where we use only the digits $\{0, 1, 2, \dots, (M-1)\}$.
- ▶ Ternary ($M = 3$) and decimal ($M = 10$) expansions are particularly useful.
- ▶ If $x = 0.d_1d_2\dots$ is the decimal expansion of x , then, each $d_j \in \{0, 1, 2, \dots, 9\}$ and

$$x = \sup\left\{\frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n} : n \in \mathbb{N}\right\}.$$

- ▶ Here $x \in (0, 1)$ has two decimal expansions if and only if $x = \frac{m}{10^k}$ for some natural numbers m, k .
- ▶ Alternatively x has two decimal expansions if and only if its decimal expansion is of the form $0.d_1d_2\dots d_n000000\dots$ or it is of the form $0.d_1d_2\dots d_n999999\dots$ for some d_j ’s.
- ▶ In such cases, we say that x has a terminating decimal expansion. (It ends either with a sequence of 0’s or with a sequence of 9’s.)

Summary

- ▶ We summarize our observations as follows.

Summary

- ▶ We summarize our observations as follows.
- ▶ **Theorem 12.2:** Fix $M \in \mathbb{N}$ with $M \geq 2$. Then any real number $x \in [0, 1)$ can be expressed as:

$$x = \sup \left\{ \frac{d_1}{M} + \frac{d_2}{M^2} + \cdots + \frac{d_n}{M^n} : n \in \mathbb{N}, d_j \in \{0, 1, \dots, M-1\} \right\}$$

The sequence d_1, d_2, \dots is uniquely determined unless $x = \frac{m}{M^k}$ for some natural numbers m, k . Further, if $x = \frac{m}{M^k}$ then x has two possible expressions, one terminating with 0's and another terminating with $(M-1)$'s.

Summary

- ▶ We summarize our observations as follows.
- ▶ **Theorem 12.2:** Fix $M \in \mathbb{N}$ with $M \geq 2$. Then any real number $x \in [0, 1)$ can be expressed as:

$$x = \sup \left\{ \frac{d_1}{M} + \frac{d_2}{M^2} + \cdots + \frac{d_n}{M^n} : n \in \mathbb{N}, d_j \in \{0, 1, \dots, M-1\} \right\}$$

The sequence d_1, d_2, \dots is uniquely determined unless $x = \frac{m}{M^k}$ for some natural numbers m, k . Further, if $x = \frac{m}{M^k}$ then x has two possible expressions, one terminating with 0's and another terminating with $(M-1)$'s.

- ▶ If d_1, d_2, \dots are as in this theorem, we say

$$x = 0.d_1d_2d_3\dots$$

in base M .

Summary

- ▶ We summarize our observations as follows.
- ▶ **Theorem 12.2:** Fix $M \in \mathbb{N}$ with $M \geq 2$. Then any real number $x \in [0, 1)$ can be expressed as:

$$x = \sup\left\{\frac{d_1}{M} + \frac{d_2}{M^2} + \cdots + \frac{d_n}{M^n} : n \in \mathbb{N}, d_j \in \{0, 1, \dots, M-1\}\right\}$$

The sequence d_1, d_2, \dots is uniquely determined unless $x = \frac{m}{M^k}$ for some natural numbers m, k . Further, if $x = \frac{m}{M^k}$ then x has two possible expressions, one terminating with 0's and another terminating with $(M-1)$'s.

- ▶ If d_1, d_2, \dots are as in this theorem, we say

$$x = 0.d_1d_2d_3\dots$$

in base M .

- ▶ **END OF LECTURE 12**