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» Consider R, the set of real numbers.

» We want to look at the familiar binary and decimal systems of
writing real numbers.

» Binary expansion for integers: We know that any natural
number can be written uniquely as
€n2" 4+ 1.2 4o 4+ 1.2 + ¢, for some n € N with each
¢j €4{0,1} (cn #0).

» As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

» Qn: What is the difference between 1 and 0.9999999 - - -7

> Ans: 1=0.999999--- . In other words, they are equal.
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» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

Proof: This we prove by induction on n.

For n =1, clearly the equality holds.

Assume the result for n = m, so we have (1 + x)™ > 1+ mx.
Note that as x > —1, 1 +x > 0.

Now using the induction hypothesis,

(1 + x)m+1 (1+x)™.(1+ x)
(1+ mx)(1+x)
1+ x + mx + mx?
1+ (m+1)x

vVvVvyyvyy

AV B AVART

as mx2 > 0.
» Hence the inequality is true for n = m+ 1.
» This completes the proof by Mathematical Induction.
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Binary system

>

We divide the interval [0,1) into two parts, [0,1/2) and [3,1),
and then sub-divide them into two more equal pieces and so
on.

We have [0,1) = [0, ) U[%. 1)

If x € [0, ), the first binary digit by of x is 0. If x € [3,1),
the first binary digit by of x is 1.

Here we have made a choice to put the mid-point with the
right interval. We can opt to the mid-point with the left
interval. This option we will explore later on.

Consider the case where by = 0. Now x € [0, 3). To
determine the second digit, divide [0, 3) into two parts.

If x € [0, 1), the second binary digit b, of x is 0. If x € [3, 3)
the second binary digit by of x is 1.

On the other hand if by =1, that is, x € [%, 1), the second
binary digit by is 0 if x € [2, Z) and b =1if x € [%, 1).
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By Bernoulli's inequality (taking x =1) 2" = (1+1)" > 1+n.
In particular, for € > 0, there exists n € N, such that
0< 57 <737 <€

Consequently, inf{(b";[l) — 5. neN}=inf{% :neN}=0.

Then by Theorem 11.5,

Hence (,en In = {x}.
This shows that the binary digits of x, determines x.

nen In s singleton.

In other words, two different real numbers x, y would have
different binary expansions.
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» Now we explore the Second Option.
> We divide the interval (0,1] as (0, 3] (3, 1].
» Then (0, %] as (0, 22]U(227 2] and (2,1] as (2, 22]U(;’z,l].
> This way we get a possibly new binary expansion, say the
digits are ¢, ¢, . . ., satisfying
1 8} Cn c1 (o)) cr+1

» The two expansions are different only if x is one of the end
points in these divisions, that is, if x = 2ﬂk for some natural
numbers m, k. Here without loss of generality we may take m
to be odd.

» In other words in (0, 1), only numbers of the form
natural numbers m, k have two binary expansions.

2%, with

» For instance, % is expressed as 0.10000000. .. using the first
option and as 0.0111111111... through the second option.
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>

Suppose x € (0,1) is expressed using binary expansion, under

either option, and by, by, ..., b, are the first n binary digits.
Then
by | b b by | b b, +1
B LU VD QI Ea A T
2+22+ +2n_x_2+22+ + n

From the proof of the nested intervals property, we see that

by b bn
X:SUP{E—F?‘F‘F?FIEN}
Note that
I = sup{3+0+---+0(n—1 times):neN}

= sup{0+ 5+ 5+ +3:neN}

Similarly 1 =sup{3 + % +--- 5= : n € N}.
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Similar to binary expansion we can have expansion with ‘base’
M, for any M € {2,3,4,...}, where we use only the digits
{0,1,2,...,(M—1)}.
Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.
If x =0.d1d> - is the decimal expansion of x, then, each
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» Similar to binary expansion we can have expansion with ‘base’
M, for any M € {2,3,4,...}, where we use only the digits
{0,1,2,...,(M—1)}.

» Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.

» If x =0.d1d>--- is the decimal expansion of x, then, each
d; €{0,1,2,...,9} and

d | dn
x—sup{ﬁ—kl—oz-#--”—k 07

» Here x € (0, 1) has two decimal expansions if and only if
x = 1g% for some natural numbers m, k.

P Alternatively x has two decimal expansions if and only if its
decimal expansion is of the form 0.d1d> ... d,000000... or it
is of the form 0.d1d> ... d,999999. .. for some d’s.

» In such cases, we say that x has a terminating decimal
expansion. (It ends either with a sequence of 0's or with a
ceqauence of 0'c )

:n e N}
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