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Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.
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Bernoulli’s inequality

I Theorem 12.1 (Bernoulli’s inequality): If x ∈ R with x > −1,
then

(1 + x)n ≥ 1 + nx , ∀n ∈ N.

I Proof: This we prove by induction on n.
I For n = 1, clearly the equality holds.
I Assume the result for n = m, so we have (1 + x)m ≥ 1 + mx .
I Note that as x > −1, 1 + x > 0.
I Now using the induction hypothesis,

(1 + x)m+1 = (1 + x)m.(1 + x)
≥ (1 + mx)(1 + x)
= 1 + x + mx + mx2

≥ 1 + (m + 1)x

as mx2 ≥ 0.
I Hence the inequality is true for n = m + 1.
I This completes the proof by Mathematical Induction.
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Binary system

I We divide the interval [0, 1) into two parts, [0, 1/2) and [12 , 1),
and then sub-divide them into two more equal pieces and so
on.

I We have [0, 1) = [0, 12)
⋃

[12 , 1)

I If x ∈ [0, 12), the first binary digit b1 of x is 0. If x ∈ [12 , 1),
the first binary digit b1 of x is 1.

I Here we have made a choice to put the mid-point with the
right interval. We can opt to the mid-point with the left
interval. This option we will explore later on.

I Consider the case where b1 = 0. Now x ∈ [0, 12). To
determine the second digit, divide [0, 12) into two parts.

I If x ∈ [0, 14), the second binary digit b2 of x is 0. If x ∈ [14 ,
1
2)

the second binary digit b2 of x is 1.

I On the other hand if b1 = 1, that is, x ∈ [12 , 1), the second
binary digit b2 is 0 if x ∈ [12 ,

3
4) and b2 = 1 if x ∈ [34 , 1).
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Binary expansion: Continuation

I Continuing this way, if b1, b2, . . . , bn are the first n-binary
digits of x , then

b1
2

+
b2
22
· · ·+ bn

2n
≤ x <

b1
21

+
b2
22
· · ·+ (bn + 1)

2n
.

I In other words, taking

I1 = [
b1
21
,

(b1 + 1)

21
].

I2 = [
b1
21

+
b2
22
,

b1
21

+
(b2 + 1)

22
]

In = [
b1
21

+
b2
22

+ · · ·+ bn
2n
,

b1
21

+
b2
22

+ · · ·+ (bn + 1)

2n
], ∀n,

I we get a nested family of closed and bounded intervals:

I1 ⊃ I2 ⊃ I2 · · ·
I satisfying x ∈ In for every n.
I Hence x ∈

⋂
n∈N In.
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Continuation

I By Bernoulli’s inequality (taking x = 1) 2n = (1 + 1)n ≥ 1 +n.

I In particular, for ε > 0, there exists n ∈ N, such that
0 < 1

2n <
1

n+1 < ε.

I Consequently, inf{ (bn+1)
2n − bn

2n : n ∈ N} = inf{ 1
2n : n ∈ N} = 0.

I Then by Theorem 11.5,
⋂

n∈N In is singleton.

I Hence
⋂

n∈N In = {x}.
I This shows that the binary digits of x , determines x .

I In other words, two different real numbers x , y would have
different binary expansions.
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Second Option in Binary expansion

I Now we explore the Second Option.

I We divide the interval (0, 1] as (0, 12 ]
⋃

(12 , 1].

I Then (0, 12 ] as (0, 1
22

]
⋃

( 1
22
, 12 ] and (12 , 1] as (12 ,

3
22

]
⋃

( 3
22
, 1].

I This way we get a possibly new binary expansion, say the
digits are c1, c2, . . ., satisfying

c1
21
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Binary expansion continued

I Suppose x ∈ (0, 1) is expressed using binary expansion, under
either option, and b1, b2, . . . , bn are the first n binary digits.

I Then
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+
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22

+ · · ·+ bn
2n
≤ x ≤ b1

2
+
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22

+ · · ·+ bn + 1

2n

I From the proof of the nested intervals property, we see that

x = sup{b1
2

+
b2
22

+ · · ·+ bn
2n

: n ∈ N}.

I Note that

1
2 = sup{12 + 0 + · · ·+ 0(n − 1 times ) : n ∈ N}

= sup{0 + 1
22

+ 1
23

+ · · ·+ 1
2n : n ∈ N}.

I Similarly 1 = sup{12 + 1
22

+ · · · 1
2n : n ∈ N}.
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Ternary and decimal expansions

I Similar to binary expansion we can have expansion with ‘base’
M, for any M ∈ {2, 3, 4, . . .}, where we use only the digits
{0, 1, 2, . . . , (M − 1)}.

I Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.

I If x = 0.d1d2 · · · is the decimal expansion of x , then, each
dj ∈ {0, 1, 2, . . . , 9} and

x = sup{d1
10

+
d2

102
+ · · ·+ dn

10n
: n ∈ N}.

I Here x ∈ (0, 1) has two decimal expansions if and only if
x = m

10k
for some natural numbers m, k.

I Alternatively x has two decimal expansions if and only if its
decimal expansion is of the form 0.d1d2 . . . dn000000 . . . or it
is of the form 0.d1d2 . . . dn999999 . . . for some dj ’s.

I In such cases, we say that x has a terminating decimal
expansion. (It ends either with a sequence of 0’s or with a
sequence of 9’s.)
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Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12
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