

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

13. Countable sets in infinite sets

- **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .

13. Countable sets in infinite sets

- ▶ **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .
- ▶ **Proof:** As S is infinite, it is non-empty. So there exists some $x_1 \in S$.

13. Countable sets in infinite sets

- ▶ **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .
- ▶ **Proof:** As S is infinite, it is non-empty. So there exists some $x_1 \in S$.
- ▶ Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.

13. Countable sets in infinite sets

- ▶ **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .
- ▶ **Proof:** As S is infinite, it is non-empty. So there exists some $x_1 \in S$.
- ▶ Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- ▶ Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.

13. Countable sets in infinite sets

- ▶ **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .
- ▶ **Proof:** As S is infinite, it is non-empty. So there exists some $x_1 \in S$.
- ▶ Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- ▶ Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.
- ▶ For every n , after choosing distinct elements x_1, x_2, \dots, x_n in S , we can choose $x_{n+1} \in S \setminus \{x_1, x_2, \dots, x_n\}$ in S .

13. Countable sets in infinite sets

- ▶ **Theorem 13.1:** Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S , such that T is equipotent to \mathbb{N} .
- ▶ **Proof:** As S is infinite, it is non-empty. So there exists some $x_1 \in S$.
- ▶ Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- ▶ Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.
- ▶ For every n , after choosing distinct elements x_1, x_2, \dots, x_n in S , we can choose $x_{n+1} \in S \setminus \{x_1, x_2, \dots, x_n\}$ in S .
- ▶ Then by mathematical induction we have a sequence $\{x_1, x_2, \dots\}$ of distinct elements in S . Clearly $T = \{x_n : n \in \mathbb{N}\}$ is equipotent with \mathbb{N} .

Unions of finite and infinite sets

- **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .

Unions of finite and infinite sets

- ▶ **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .
- ▶ **Proof:** This is an exercise. Here are the suggested steps:

Unions of finite and infinite sets

- ▶ **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .
- ▶ **Proof:** This is an exercise. Here are the suggested steps:
 - ▶ Step 1: $S \cup F = S \cup (F \setminus (S \cap F))$. Since F is finite, $F \setminus (S \cap F)$ is also finite. Note that S and $F \setminus (S \cap F)$ are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by $F \setminus (S \cap F)$).

Unions of finite and infinite sets

- ▶ **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .
- ▶ **Proof:** This is an exercise. Here are the suggested steps:
 - ▶ Step 1: $S \cup F = S \cup (F \setminus (S \cap F))$. Since F is finite, $F \setminus (S \cap F)$ is also finite. Note that S and $F \setminus (S \cap F)$ are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by $F \setminus (S \cap F)$).
 - ▶ Step 2: Using the previous theorem, choose a subset T of S , which is equipotent with \mathbb{N} .

Unions of finite and infinite sets

- ▶ **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .
- ▶ **Proof:** This is an exercise. Here are the suggested steps:
- ▶ Step 1: $S \cup F = S \cup (F \setminus (S \cap F))$. Since F is finite, $F \setminus (S \cap F)$ is also finite. Note that S and $F \setminus (S \cap F)$ are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by $F \setminus (S \cap F)$).
- ▶ Step 2: Using the previous theorem, choose a subset T of S , which is equipotent with \mathbb{N} .
- ▶ Step 3: Show that $T \cup F$ is equipotent with \mathbb{N} , and hence it is equipotent with T .

Unions of finite and infinite sets

- ▶ **Theorem 13.2:** Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S .
- ▶ **Proof:** This is an exercise. Here are the suggested steps:
- ▶ Step 1: $S \cup F = S \cup (F \setminus (S \cap F))$. Since F is finite, $F \setminus (S \cap F)$ is also finite. Note that S and $F \setminus (S \cap F)$ are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by $F \setminus (S \cap F)$).
- ▶ Step 2: Using the previous theorem, choose a subset T of S , which is equipotent with \mathbb{N} .
- ▶ Step 3: Show that $T \cup F$ is equipotent with \mathbb{N} , and hence it is equipotent with T .
- ▶ Conclude that $S \cup F$ is equipotent with S .

Countable sets in Uncountable sets

- **Theorem 13.3:** Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S .

Countable sets in Uncountable sets

- ▶ **Theorem 13.3:** Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S .
- ▶ **Proof:** Like before, it suffices to prove the result when C is disjoint from S .

Countable sets in Uncountable sets

- ▶ **Theorem 13.3:** Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S .
- ▶ **Proof:** Like before, it suffices to prove the result when C is disjoint from S .
- ▶ By Theorem 13.1, there exists a countably infinite subset T of S .
- ▶ Clearly $T \cup C$ is equipotent with T .

Countable sets in Uncountable sets

- ▶ **Theorem 13.3:** Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S .
- ▶ **Proof:** Like before, it suffices to prove the result when C is disjoint from S .
- ▶ By Theorem 13.1, there exists a countably infinite subset T of S .
- ▶ Clearly $T \cup C$ is equipotent with T .
- ▶ If $f : T \rightarrow T \cup C$ is a bijection, $\tilde{f} : S \rightarrow S \cup C$ defined by

$$(\tilde{f})(x) = \begin{cases} f(x) & x \in T; \\ x & x \in S \setminus T \end{cases}$$

is seen to be a bijection from S to $S \cup C$ and this completes the proof.

Countable sets in Uncountable sets

- ▶ **Theorem 13.3:** Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S .
- ▶ **Proof:** Like before, it suffices to prove the result when C is disjoint from S .
- ▶ By Theorem 13.1, there exists a countably infinite subset T of S .
- ▶ Clearly $T \cup C$ is equipotent with T .
- ▶ If $f : T \rightarrow T \cup C$ is a bijection, $\tilde{f} : S \rightarrow S \cup C$ defined by

$$(\tilde{f})(x) = \begin{cases} f(x) & x \in T; \\ x & x \in S \setminus T \end{cases}$$

is seen to be a bijection from S to $S \cup C$ and this completes the proof.

- ▶ **Corollary 13.4:** If S is an uncountable set and $T \subset S$ is countable then S is equipotent with $S \setminus T$.

[0, 1) and binary sequences

- **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.

[0, 1) and binary sequences

- ▶ **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- ▶ **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

[0, 1) and binary sequences

- ▶ **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- ▶ **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B_0 be the set of binary sequences which terminate with sequence of just 1's.

[0, 1) and binary sequences

- ▶ **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- ▶ **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B_0 be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.

[0, 1) and binary sequences

- ▶ **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- ▶ **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B_0 be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- ▶ Consider the map $f : [0, 1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \dots),$$

where $0.b_1b_2b_3\dots$ is the binary expansion of x , using the first option. We have seen that f is a bijection. Therefore $[0, 1)$ and A are equipotent.

[0, 1) and binary sequences

- **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- Let B_0 be the set of binary sequences which terminate with sequence of just 1's.
- Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- Consider the map $f : [0, 1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \dots),$$

where $0.b_1b_2b_3\dots$ is the binary expansion of x , using the first option. We have seen that f is a bijection. Therefore $[0, 1)$ and A are equipotent.

- Now $\mathbb{B} = A \cup B_0$. A is uncountable and B_0 is countable. Hence \mathbb{B} is equipotent with A .

[0, 1) and binary sequences

- **Theorem 13.5:** The set of real numbers in $[0, 1)$ is in bijection with binary sequences.
- **Proof:** Let \mathbb{B} be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- Let B_0 be the set of binary sequences which terminate with sequence of just 1's.
- Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- Consider the map $f : [0, 1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \dots),$$

where $0.b_1b_2b_3\dots$ is the binary expansion of x , using the first option. We have seen that f is a bijection. Therefore $[0, 1)$ and A are equipotent.

- Now $\mathbb{B} = A \cup B_0$. A is uncountable and B_0 is countable. Hence \mathbb{B} is equipotent with A .
- Consequently $[0, 1)$ and \mathbb{B} are equipotent.

Different intervals

- Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (ii) $(0, 1)$ is equipotent with $[0, 1]$. This is clear, as $\{0, 1\}$ is countable and $(0, 1)$ is uncountable.

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (ii) $(0, 1)$ is equipotent with $[0, 1]$. This is clear, as $\{0, 1\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (iii) $[0, 1]$ is equipotent with $[a, b]$ for any a, b in \mathbb{R} with $a < b$: Consider the map $g : [0, 1] \rightarrow [a, b]$ defined by

$$g(x) = a + x(b - a), \quad x \in [0, 1]$$

Then g is a bijection.

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (ii) $(0, 1)$ is equipotent with $[0, 1]$. This is clear, as $\{0, 1\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (iii) $[0, 1]$ is equipotent with $[a, b]$ for any a, b in \mathbb{R} with $a < b$: Consider the map $g : [0, 1] \rightarrow [a, b]$ defined by

$$g(x) = a + x(b - a), \quad x \in [0, 1]$$

Then g is a bijection.

- ▶ (iv) $(0, 1)$ is equipotent with $(1, \infty)$:

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (ii) $(0, 1)$ is equipotent with $[0, 1]$. This is clear, as $\{0, 1\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (iii) $[0, 1]$ is equipotent with $[a, b]$ for any a, b in \mathbb{R} with $a < b$: Consider the map $g : [0, 1] \rightarrow [a, b]$ defined by

$$g(x) = a + x(b - a), \quad x \in [0, 1]$$

Then g is a bijection.

- ▶ (iv) $(0, 1)$ is equipotent with $(1, \infty)$:
- ▶ Consider the map $h : (0, 1) \rightarrow (1, \infty)$ defined by $h(x) = \frac{1}{x}$, $x \in (0, 1)$. Then it is easily seen that h is a bijection.

Different intervals

- ▶ **Theorem 13.6:** Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ **Proof:** (i) $[0, 1]$ is equipotent with $(0, 1)$: This is clear, as $\{0\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (ii) $(0, 1)$ is equipotent with $[0, 1]$. This is clear, as $\{0, 1\}$ is countable and $(0, 1)$ is uncountable.
- ▶ (iii) $[0, 1]$ is equipotent with $[a, b]$ for any a, b in \mathbb{R} with $a < b$: Consider the map $g : [0, 1] \rightarrow [a, b]$ defined by

$$g(x) = a + x(b - a), \quad x \in [0, 1]$$

Then g is a bijection.

- ▶ (iv) $(0, 1)$ is equipotent with $(1, \infty)$:
- ▶ Consider the map $h : (0, 1) \rightarrow (1, \infty)$ defined by $h(x) = \frac{1}{x}$, $x \in (0, 1)$. Then it is easily seen that h is a bijection.
- ▶ (v) It is an exercise to cover all the remaining cases.

More problems

- ▶ Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.

More problems

- ▶ Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0, 1] \times [0, 1]$ is equipotent with \mathbb{R} .

More problems

- ▶ Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0, 1] \times [0, 1]$ is equipotent with \mathbb{R} .
- ▶ Show that the space of real valued functions on \mathbb{N} :

$$F = \{f | f : \mathbb{N} \rightarrow \mathbb{R}\}$$

is equipotent with \mathbb{R} .

More problems

- ▶ Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0, 1] \times [0, 1]$ is equipotent with \mathbb{R} .
- ▶ Show that the space of real valued functions on \mathbb{N} :

$$F = \{f | f : \mathbb{N} \rightarrow \mathbb{R}\}$$

is equipotent with \mathbb{R} .

- ▶ END OF LECTURE 13