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13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € S.

» Now consider S\{x1}. If S\{x1} is empty, then S = {x;} and
this would mean that S is finite. Therefore S\{x;} is
non-empty. Choose any x; € S\{x1}.

» Now we can see that S\{x1,x2} is non-empty.

» For every n, after choosing distinct elements x1, x2, ..., X, in
S, we can choose x,4+1 € S\{x1,x2,...,%,} Iin S.

» Then by mathematical induction we have a sequence
{x1,x2,...} of distinct elements in S. Clearly
T = {x, : n € N} is equipotent with N.
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Unions of finite and infinite sets

» Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S|JF is equipotent with S.

» Proof: This is an exercise. Here are the suggested steps:

» Step 1: SUF =SU(F\(SNF)). Since F is finite,
F\(SF) is also finite. Note that S and F\(S()F) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(SNF).

» Step 2: Using the previous theorem, choose a subset T of S,
which is equipotent with N.

» Step 3: Show that T |J F is equipotent with N, and hence it
is equipotent with T.

» Conclude that S|JF is equipotent with S.
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Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S| J C is equipotent with S.

Proof: Like before, it suffices to prove the result when C is
disjoint from S.

By Theorem 13.1, there exists a countably infinite subset T of
S.

Clearly T | C is equipotent with T.
If f: T — TUJCis a bijection, f : S — S|J C defined by

o-{ 1 e,

is seen to be a bijection from S to S|J C and this completes
the proof.
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Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S| J C is equipotent with S.

Proof: Like before, it suffices to prove the result when C is
disjoint from S.

By Theorem 13.1, there exists a countably infinite subset T of
S.

Clearly T | C is equipotent with T.
If f: T — TUJCis a bijection, f : S — S|J C defined by

o-{ 1 e,

is seen to be a bijection from S to S|J C and this completes
the proof.

Corollary 13.4: If S is an uncountable set and T C S is
countable then S is equipotent with S\ T.



[0,1) and binary sequences

» Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.



[0,1) and binary sequences

» Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
> Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.



[0,1) and binary sequences

» Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
> Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

» Let By be the set of binary sequences which terminate with
sequence of just 1's.



[0,1) and binary sequences

» Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
> Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

» Let By be the set of binary sequences which terminate with
sequence of just 1's.

» Clearly By is an infinite set. Since By is countable union of
finite sets (Why?) it is countably infinite. Take A = B\ Bp.



[0,1) and binary sequences

| 2

>

Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

Let By be the set of binary sequences which terminate with
sequence of just 1's.

Clearly By is an infinite set. Since By is countable union of
finite sets (Why?) it is countably infinite. Take A = B\ Bp.
Consider the map f : [0,1) — A defined by

f(X) = (bl, bg, b37 .. .),

where 0.b1bobs ... is the binary expansion of x, using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.



[0,1) and binary sequences

| 2

>

Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

Let By be the set of binary sequences which terminate with
sequence of just 1's.

Clearly By is an infinite set. Since By is countable union of
finite sets (Why?) it is countably infinite. Take A = B\ Bp.
Consider the map f : [0,1) — A defined by

f(X) = (bl, bg, b37 .. .),

where 0.b1bobs ... is the binary expansion of x, using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

Now B = A By. A is uncountable and By is countable.
Hence B is equipotent with A.



[0,1) and binary sequences

| 2

>

Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

Let By be the set of binary sequences which terminate with
sequence of just 1's.

Clearly By is an infinite set. Since By is countable union of
finite sets (Why?) it is countably infinite. Take A = B\ Bp.
Consider the map f : [0,1) — A defined by

f(X) = (bl, bg, b37 .. .),

where 0.b1bobs ... is the binary expansion of x, using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

Now B = A By. A is uncountable and By is countable.
Hence B is equipotent with A.

Consequently [0,1) and B are equipotent.
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Theorem 13.6: Any two sub-intervals of R are equipotent.
Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0}
is countable and (0,1) is uncountable.

(ii) (0,1) is equipotent with [0, 1]. This is clear, as {0,1} is
countable and (0, 1) is uncountable.

(iii) [0, 1] is equipotent with [a, b] for any a, b in R with

a < b: Consider the map g : [0,1] — [a, b] defined by

g(x)=a+x(b—a), xel0,1]

Then g is a bijection.

(iv) (0,1) is equipotent with (1, 00):

Consider the map h: (0,1) — (1,00) defined by

h(x) =1, x€(0,1). Then it is easily seen that h is a
bijection.

(v) It is an exercise to cover all the remaining cases.
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» Show that R x R is equipotent with R. More generally, show
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» Show that the space of real valued functions on N :
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