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13. Countable sets in infinite sets

I Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S ,
such that T is equipotent to N.

I Proof: As S is infinite, it is non-empty. So there exists some
x1 ∈ S .

I Now consider S\{x1}. If S\{x1} is empty, then S = {x1} and
this would mean that S is finite. Therefore S\{x1} is
non-empty. Choose any x2 ∈ S\{x1}.

I Now we can see that S\{x1, x2} is non-empty.

I For every n, after choosing distinct elements x1, x2, . . . , xn in
S , we can choose xn+1 ∈ S\{x1, x2, . . . , xn} in S .

I Then by mathematical induction we have a sequence
{x1, x2, . . .} of distinct elements in S . Clearly
T = {xn : n ∈ N} is equipotent with N.
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Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂

F ) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .
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Countable sets in Uncountable sets

I Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S

⋃
C is equipotent with S .

I Proof: Like before, it suffices to prove the result when C is
disjoint from S .

I By Theorem 13.1, there exists a countably infinite subset T of
S .

I Clearly T
⋃

C is equipotent with T .

I If f : T → T
⋃

C is a bijection, f̃ : S → S
⋃
C defined by

(f̃ )(x) =

{
f (x) x ∈ T ;
x x ∈ S\T

is seen to be a bijection from S to S
⋃
C and this completes

the proof.

I Corollary 13.4: If S is an uncountable set and T ⊂ S is
countable then S is equipotent with S\T .
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[0, 1) and binary sequences

I Theorem 13.5: The set of real numbers in [0, 1) is in bijection
with binary sequences.

I Proof: Let B be the set of binary sequences:

B = {(w1,w2, . . . , ) : wj ∈ {0, 1}, j ∈ N}.
I Let B0 be the set of binary sequences which terminate with

sequence of just 1’s.
I Clearly B0 is an infinite set. Since B0 is countable union of

finite sets (Why?) it is countably infinite. Take A = B\B0.
I Consider the map f : [0, 1)→ A defined by

f (x) = (b1, b2, b3, . . .),

where 0.b1b2b3 . . . is the binary expansion of x , using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

I Now B = A
⋃
B0. A is uncountable and B0 is countable.

Hence B is equipotent with A.
I Consequently [0, 1) and B are equipotent.
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Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.
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I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



More problems

I Show that R× R is equipotent with R. More generally, show
that Rn is equipotent with R for any n ∈ N.

I Show that [0, 1]× [0, 1] is equipotent with R.
I Show that the space of real valued functions on N :

F = {f |f : N→ R}

is equipotent with R.
I END OF LECTURE 13
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