

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

14. Direct and inverse images of functions

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for $A \subseteq X$, $f(A)$ is defined as:

14. Direct and inverse images of functions

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for $A \subseteq X$, $f(A)$ is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ▶ **Example 14.1:** Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \rightarrow Y$ is defined by $f(1) = f(2) = u$ and $f(3) = v$.

14. Direct and inverse images of functions

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for $A \subseteq X$, $f(A)$ is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ▶ **Example 14.1:** Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \rightarrow Y$ is defined by $f(1) = f(2) = u$ and $f(3) = v$.
- ▶ Then $f(\{1, 2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.

14. Direct and inverse images of functions

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for $A \subseteq X$, $f(A)$ is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ▶ **Example 14.1:** Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \rightarrow Y$ is defined by $f(1) = f(2) = u$ and $f(3) = v$.
- ▶ Then $f(\{1, 2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.
- ▶ Here we have slight abuse of notation as we are defining $f(A)$ for subsets of X and not elements of X , whereas, normally when we write $f(x)$, x is an element of X . However, this notation is standard.

14. Direct and inverse images of functions

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for $A \subseteq X$, $f(A)$ is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ▶ **Example 14.1:** Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \rightarrow Y$ is defined by $f(1) = f(2) = u$ and $f(3) = v$.
- ▶ Then $f(\{1, 2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.
- ▶ Here we have slight abuse of notation as we are defining $f(A)$ for subsets of X and not elements of X , whereas, normally when we write $f(x)$, x is an element of X . However, this notation is standard.
- ▶ Note that for any element x of X , $f(\{x\}) = \{f(x)\}$, which is the singleton set containing $f(x)$ and is different from the element $f(x)$. This distinction between elements and singleton sets should always be maintained to avoid confusion.

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,
 - ▶ (i) $f(\emptyset) = \emptyset$.

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,
 - ▶ (i) $f(\emptyset) = \emptyset$.
 - ▶ (ii) In general, $f(X) \neq Y$.

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,
 - ▶ (i) $f(\emptyset) = \emptyset$.
 - ▶ (ii) In general, $f(X) \neq Y$.
 - ▶ (iii) In general, for $A, B \subseteq X$,

$$f(A \bigcap B) \neq f(A) \bigcap f(B).$$

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,
 - ▶ (i) $f(\emptyset) = \emptyset$.
 - ▶ (ii) In general, $f(X) \neq Y$.
 - ▶ (iii) In general, for $A, B \subseteq X$,

$$f(A \cap B) \neq f(A) \cap f(B).$$

- ▶ (iv) For any two subsets A, B of X ,

$$f(A \cup B) = f(A) \cup f(B).$$

- ▶ More generally, for arbitrary family $\{A_i : i \in I\}$ of subsets of X ,

$$f\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f(A_i).$$

Basic properties

- ▶ **Proposition 14.2:** Let $f : X \rightarrow Y$ be a function. Then,
 - ▶ (i) $f(\emptyset) = \emptyset$.
 - ▶ (ii) In general, $f(X) \neq Y$.
 - ▶ (iii) In general, for $A, B \subseteq X$,

$$f(A \cap B) \neq f(A) \cap f(B).$$

- ▶ (iv) For any two subsets A, B of X ,

$$f(A \cup B) = f(A) \cup f(B).$$

- ▶ More generally, for arbitrary family $\{A_i : i \in I\}$ of subsets of X ,

$$f\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f(A_i).$$

- ▶ (v) In general, for $A \subseteq X$

$$f(A^c) \neq (f(A))^c.$$

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2, \quad \forall x \in \mathbb{R}$.

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ▶ $A \cap B = \{0\}$.

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ▶ $A \cap B = \{0\}$.
- ▶ $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ▶ $A \cap B = \{0\}$.
- ▶ $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,
- ▶ $f(A \cap B) = f(\{0\}) = \{0\}$.

Examples

- ▶ **Example 14.3:** Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ▶ $A \cap B = \{0\}$.
- ▶ $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,
- ▶ $f(A \cap B) = f(\{0\}) = \{0\}$.
- ▶ Hence $f(A \cap B) \neq f(A) \cap f(B)$.

Continuation

- ▶ The prof of Proposition 14.2 is an exercise.

Continuation

- ▶ The proof of Proposition 14.2 is an exercise.
- ▶ For instance, if $y \in f(A \cup B)$, then $y = f(x)$ for some $x \in A \cup B$. Here either $x \in A$ or $x \in B$ (or both). If $x \in A$, we get $y \in f(A)$. If $x \in B$, we get $y \in f(B)$. Consequently, we get $y \in f(A) \cup f(B)$. This shows that $f(A \cup B) \subseteq f(A) \cup f(B)$.

Continuation

- ▶ The proof of Proposition 14.2 is an exercise.
- ▶ For instance, if $y \in f(A \cup B)$, then $y = f(x)$ for some $x \in A \cup B$. Here either $x \in A$ or $x \in B$ (or both). If $x \in A$, we get $y \in f(A)$. If $x \in B$, we get $y \in f(B)$. Consequently, we get $y \in f(A) \cup f(B)$. This shows that $f(A \cup B) \subseteq f(A) \cup f(B)$.
- ▶ Similarly, you can show $f(A) \cup f(B) \subseteq f(A \cup B)$ and conclude that $f(A \cup B) = f(A) \cup f(B)$.

Characterizations

- Theorem 14.4: Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.

Characterizations

- ▶ **Theorem 14.4:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
- ▶ (a) $f(X) = Y$ if and only if f is surjective.

Characterizations

- ▶ **Theorem 14.4:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
 - ▶ (a) $f(X) = Y$ if and only if f is surjective.
 - ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.

Characterizations

- ▶ **Theorem 14.4:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
 - ▶ (a) $f(X) = Y$ if and only if f is surjective.
 - ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.
 - ▶ (c) $f(A^c) = (f(A))^c$ for all subsets A of X if and only if f is a bijection.

Characterizations

- ▶ **Theorem 14.4:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
 - ▶ (a) $f(X) = Y$ if and only if f is surjective.
 - ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.
 - ▶ (c) $f(A^c) = (f(A))^c$ for all subsets A of X if and only if f is a bijection.
- ▶ **Proof:** (a) follows from the definition of surjectivity. (b) and (c) are interesting exercises.

Inverse images

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for any subset V of Y ,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

Inverse images

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for any subset V of Y ,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

- ▶ For instance, for $f : \{1, 2, 3\} \rightarrow \{u, v, w\}$ defined by $f(1) = f(2) = u$ and $f(3) = v$,

$$f^{-1}(\{u\}) = \{1, 2\}, \quad f^{-1}(\{w\}) = \emptyset.$$

Inverse images

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for any subset V of Y ,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

- ▶ For instance, for $f : \{1, 2, 3\} \rightarrow \{u, v, w\}$ defined by $f(1) = f(2) = u$ and $f(3) = v$,

$$f^{-1}(\{u\}) = \{1, 2\}, \quad f^{-1}(\{w\}) = \emptyset.$$

- ▶ Here also there is some abuse of notation as we writing f^{-1} even when f is not invertible. But we are defining f^{-1} for subsets of Y and not for elements of Y .

Inverse images

- ▶ **Notation:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then for any subset V of Y ,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

- ▶ For instance, for $f : \{1, 2, 3\} \rightarrow \{u, v, w\}$ defined by $f(1) = f(2) = u$ and $f(3) = v$,

$$f^{-1}(\{u\}) = \{1, 2\}, \quad f^{-1}(\{w\}) = \emptyset.$$

- ▶ Here also there is some abuse of notation as we writing f^{-1} even when f is not invertible. But we are defining f^{-1} for subsets of Y and not for elements of Y .
- ▶ For the example, $g : \mathbb{R} \rightarrow \mathbb{R}$, defined by $g(x) = x^2$, $\forall x \in \mathbb{R}$, we see that $g^{-1}(\{0\}) = \{0\}$ and $g^{-1}([0, \infty)) = \mathbb{R}$.

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.
- (i) $f^{-1}(\emptyset) = \emptyset$;

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.
 - (i) $f^{-1}(\emptyset) = \emptyset$;
 - (ii) $f^{-1}(Y) = X$;

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.
 - (i) $f^{-1}(\emptyset) = \emptyset$;
 - (ii) $f^{-1}(Y) = X$;
 - (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y . More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y ,

$$f^{-1}\left(\bigcap_{i \in I} V_i\right) = \bigcap_{i \in I} f^{-1}(V_i).$$

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.
 - (i) $f^{-1}(\emptyset) = \emptyset$;
 - (ii) $f^{-1}(Y) = X$;
 - (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y . More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y ,

$$f^{-1}\left(\bigcap_{i \in I} V_i\right) = \bigcap_{i \in I} f^{-1}(V_i).$$

- (iv) $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$ for subsets V, W of Y . More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y ,

$$f^{-1}\left(\bigcup_{i \in I} V_i\right) = \bigcup_{i \in I} f^{-1}(V_i).$$

Basic properties of inverse images

- **Theorem 14.5:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function. Then following properties hold.
 - (i) $f^{-1}(\emptyset) = \emptyset$;
 - (ii) $f^{-1}(Y) = X$;
 - (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y . More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y ,

$$f^{-1}\left(\bigcap_{i \in I} V_i\right) = \bigcap_{i \in I} f^{-1}(V_i).$$

- (iv) $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$ for subsets V, W of Y . More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y ,

$$f^{-1}\left(\bigcup_{i \in I} V_i\right) = \bigcup_{i \in I} f^{-1}(V_i).$$

- (v) $f^{-1}(V^c) = (f^{-1}(V))^c$ for every subset V of Y .

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ **Theorem 14.6:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f . This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ **Theorem 14.6:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
- ▶ (a) For any subset A of X ,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f . This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ **Theorem 14.6:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
- ▶ (a) For any subset A of X ,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

- ▶ (b) For any subset V of Y ,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f . This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ **Theorem 14.6:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
- ▶ (a) For any subset A of X ,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

- ▶ (b) For any subset V of Y ,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

- ▶ **Proof:** Exercise.

Continuation

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f . This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ **Theorem 14.6:** Let X, Y be non-empty sets and let $f : X \rightarrow Y$ be a function.
- ▶ (a) For any subset A of X ,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

- ▶ (b) For any subset V of Y ,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

- ▶ **Proof:** Exercise.
- ▶ **END OF LECTURE 14.**