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> Now that we have the real number system in place we can
build the edifice of real analysis.

» This includes notions such as sequences and their limits,
continuity, differentiability, integration and so on.
» Three basic results we keep using repeatedly:
> (i)
inffix e R: x>0} =0.
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(ii) For any € > 0, there exists a natural number n € N such
that 0 < 1 <.

» (iii) Triangle inequality: For x,y,z € R,
x =yl <|x—z[+]z -yl

> We have already proved these results.
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Definition and Examples

» Definition 15.1 : A sequence of real numbers

d1,d2,as,...

or written equivalently as {a,}en is a function a: N — R
with a, = a(n).
» Example 15.2: Consider the function a : N — N defined by
a(n) = n?, this gives us the sequence,
1,4,9.16,...,

also written as {n?} cn.

» Example 15.3 (Fibonacci sequence): This is the sequence:
1,1,2,3,5,8,...,

defined ‘recursively’, by a3y = 1,a =1 and a, = a,—» + ap—1
for n > 3.
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Limit of a sequence

» Definition 15.2: A sequence of real numbers {a,} e is said
to be convergent if there exists a real number x, where for
every € > 0, there exists a natural number K (depending upon
€) such that

lan — x| <€, Vn>K.

In such a case, {an}nen is said to converge to x, and x is said
to be the limit of {a,}pen.
> A sequence which is not convergent is said to be divergent.

» We may write, |a, — x| < €, equivalently as
Xx—€e<ap<x-+eorasa,€ (x—ex+e).
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Constant sequence

» Example 15.3 (Constant sequence): Choose and fix a real
number c. Let {a,}nen be the sequence defined by
a,=c¢, VnéeN. So it is the sequence:

C,C,C,Cy. ..

Then {a,}nen is convergent and it converges to c.
» Proof: For any € > 0, we may take K = 1.
» Then,
lap—c|=]c—c|=0<e€ Vn>K.

» Hence {a,}nen converges to c.
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Theorem 15.3 (The uniqueness of limit): Let {a,}nen be a
convergent sequence. Then its limit is unique.

Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.

Now for any € > 0, since {a,},en converges to x, there exists
some Kj € N such that

lan — x| <€, Vn>Kj.

Similarly, since {a,}nen converges to y, there exists some
K> € N such that

lan —y| <€, VYn> K.

Choose any n > max{Ki, K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

Ix —y| <|x—ap|+|an —y| < e+e

Hence
0<|x—y| < 2e
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Continuation

» Consequently,
1
0< §|x —yl<e
for all € > 0.
> Since inf{e:e>0} =0, we get 0 < 3[x—y[ <0,

> Hence 3|x — y| =0 or |x — y| = 0, which is same as saying
x=y.
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Notation

» Suppose {ap}nen is a sequence converging to x. Then we
write:

lim a, = x.
n—oo

» We say that " The limit of a, as n tends to infinity exists and
is equal to x".

» Note that here n is a dummy variable, that is, if

lim a, = x
n—o00
then we also have,
lim a, = x.
m—0o0

» So the convergence or non-convergence is a property of the
whole sequence.
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» Example 15.5: Consider the sequence {b,},cn where b, = 1
for every n € N.
» Claim:

lim b, =0.

n—oo

» This means that {b,}ncn is convergent and it converges to
zero.

» The proof is easy. For any € > 0, choose K € N such that

0< < €.
» Then for any n > K, we have

1
< % < €. Hence,

o 3= X| =

1
‘bn—o‘:’E’§R<€, anK

» Consequently, by the definition of convergence, {b,} is
convergent, and lim,_, b, = 0.
> We may also write this as: lim,_

=0



Boundedness

» Definition 15.7: A sequence {a,}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.
Then M is said to be a bound for {a,}sen.



Boundedness

» Definition 15.7: A sequence {a,}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.
» A sequence which is not bounded is said to be unbounded.

» Example 15.8: Clearly every constant sequence c,c,... is
bounded by M = |c|.



Boundedness

» Definition 15.7: A sequence {a,}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.
» A sequence which is not bounded is said to be unbounded.
» Example 15.8: Clearly every constant sequence c,c,... is
bounded by M = |c|.
» Example 15.7: The sequence {n},cn is unbounded.



Boundedness

| 2

Definition 15.7: A sequence {ap}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.

A sequence which is not bounded is said to be unbounded.
Example 15.8: Clearly every constant sequence c,c, ... is
bounded by M = |c|.

Example 15.7: The sequence {n},cn is unbounded.
Theorem 15.8: Every convergent sequence of real numbers is
bounded. The converse is not true.



Boundedness

» Definition 15.7: A sequence {a,}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.

» A sequence which is not bounded is said to be unbounded.

» Example 15.8: Clearly every constant sequence c,c,... is
bounded by M = |c|.

» Example 15.7: The sequence {n},cn is unbounded.

» Theorem 15.8: Every convergent sequence of real numbers is
bounded. The converse is not true.

» Proof: Suppose {an}nen converges to x.



Boundedness

| 2

Definition 15.7: A sequence {ap}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.

A sequence which is not bounded is said to be unbounded.
Example 15.8: Clearly every constant sequence c,c, ... is
bounded by M = |c|.

Example 15.7: The sequence {n},cn is unbounded.
Theorem 15.8: Every convergent sequence of real numbers is
bounded. The converse is not true.

Proof: Suppose {an}nen converges to x.

Take e = 1. Then there exists K € N, such that

lap — x| <1, ¥Vn>K.



Boundedness

| 2

Definition 15.7: A sequence {ap}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.

A sequence which is not bounded is said to be unbounded.
Example 15.8: Clearly every constant sequence c,c, ... is
bounded by M = |c|.

Example 15.7: The sequence {n},cn is unbounded.
Theorem 15.8: Every convergent sequence of real numbers is
bounded. The converse is not true.

Proof: Suppose {an}nen converges to x.

Take e = 1. Then there exists K € N, such that

lap — x| <1, ¥Vn>K.
Note that for n > K, by triangle inequality,
lan| = lan — 0] < |ap — x| +|x = 0] <1+ |x|.
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» Now take,
M = max{|a1|, |az|, .- -, |ak—1|,|x| + 1}

» Then we have, |a,| < M for all n € N. Hence {a,}pen is
bounded by M.
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The converse

» The claim " The converse is not true”, is shown by exhibiting
a bounded sequence which is not convergent.

» Define {cp}nen by

| 0 if n isodd;
=Y 1 if n s even.
» So this is the sequence:
0,1,0,1,0,1,....

» Suppose {cp}nen is convergent and it converges to some x.
» Then for € > 0, there exists K € N such that

lcn — x| <€, Vn> K.

v

Choosing an odd number n > K, we get |0 — x| < e.

» Similarly choosing an even number n > K, we get |1 — x| < e.
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» Then by triangle inequality,
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» Then by triangle inequality,
0—1<[0—x|+|x—1] <e+e€=2e.

» Hence 0 < % < € for every € > 0. This means % =0, which is
clearly a contradiction.

» This proves that {c,}nen is not convergent.
» END OF LECTURE 15



