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Lecture 15. Sequences and limits

I Now that we have the real number system in place we can
build the edifice of real analysis.

I This includes notions such as sequences and their limits,
continuity, differentiability, integration and so on.

I Three basic results we keep using repeatedly:

I (i)
inf{x ∈ R : x > 0} = 0.

I (ii) For any ε > 0, there exists a natural number n ∈ N such
that 0 < 1

n < ε.

I (iii) Triangle inequality: For x , y , z ∈ R,

|x − y | ≤ |x − z |+ |z − y |.

I We have already proved these results.
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Definition and Examples

I Definition 15.1 : A sequence of real numbers

a1, a2, a3, . . .

or written equivalently as {an}n∈N is a function a : N→ R
with an = a(n).

I Example 15.2: Consider the function a : N→ N defined by
a(n) = n2, this gives us the sequence,

1, 4, 9, 16, . . . ,

also written as {n2}n∈N.
I Example 15.3 (Fibonacci sequence): This is the sequence:

1, 1, 2, 3, 5, 8, . . . ,

defined ‘recursively’, by a1 = 1, a2 = 1 and an = an−2 + an−1
for n ≥ 3.
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Limit of a sequence

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I A sequence which is not convergent is said to be divergent.

I We may write, |an − x | < ε, equivalently as
x − ε < an < x + ε or as an ∈ (x − ε, x + ε).
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Constant sequence

I Example 15.3 (Constant sequence): Choose and fix a real
number c . Let {an}n∈N be the sequence defined by
an = c , ∀n ∈ N. So it is the sequence:

c , c, c , c , . . .

Then {an}n∈N is convergent and it converges to c.

I Proof: For any ε > 0, we may take K = 1.

I Then,
|an − c | = |c − c | = 0 < ε, ∀n ≥ K .

I Hence {an}n∈N converges to c .



Constant sequence

I Example 15.3 (Constant sequence): Choose and fix a real
number c . Let {an}n∈N be the sequence defined by
an = c , ∀n ∈ N. So it is the sequence:

c , c, c , c , . . .

Then {an}n∈N is convergent and it converges to c.

I Proof: For any ε > 0, we may take K = 1.

I Then,
|an − c | = |c − c | = 0 < ε, ∀n ≥ K .

I Hence {an}n∈N converges to c .



Constant sequence

I Example 15.3 (Constant sequence): Choose and fix a real
number c . Let {an}n∈N be the sequence defined by
an = c , ∀n ∈ N. So it is the sequence:

c , c, c , c , . . .

Then {an}n∈N is convergent and it converges to c.

I Proof: For any ε > 0, we may take K = 1.

I Then,
|an − c | = |c − c | = 0 < ε, ∀n ≥ K .

I Hence {an}n∈N converges to c .



Constant sequence

I Example 15.3 (Constant sequence): Choose and fix a real
number c . Let {an}n∈N be the sequence defined by
an = c , ∀n ∈ N. So it is the sequence:

c , c, c , c , . . .

Then {an}n∈N is convergent and it converges to c.

I Proof: For any ε > 0, we may take K = 1.

I Then,
|an − c | = |c − c | = 0 < ε, ∀n ≥ K .

I Hence {an}n∈N converges to c .



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.



Continuation

I Consequently,

0 ≤ 1

2
|x − y | < ε

for all ε > 0.

I Since inf{ε : ε > 0} = 0, we get 0 ≤ 1
2 |x − y | ≤ 0,

I Hence 1
2 |x − y | = 0 or |x − y | = 0, which is same as saying

x = y .
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Notation

I Suppose {an}n∈N is a sequence converging to x . Then we
write:

lim
n→∞

an = x .

I We say that ”The limit of an as n tends to infinity exists and
is equal to x”.

I Note that here n is a dummy variable, that is, if

lim
n→∞

an = x

then we also have,
lim

m→∞
am = x .

I So the convergence or non-convergence is a property of the
whole sequence.
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Examples

I Example 15.5: Consider the sequence {bn}n∈N where bn = 1
n

for every n ∈ N.

I Claim:
lim
n→∞

bn = 0.

I This means that {bn}n∈N is convergent and it converges to
zero.

I The proof is easy. For any ε > 0, choose K ∈ N such that

0 <
1

K
< ε.

I Then for any n ≥ K , we have 1
n ≤

1
K < ε. Hence,

|bn − 0| = |1
n
| ≤ 1

K
< ε, ∀n ≥ K .

I Consequently, by the definition of convergence, {bn} is
convergent, and limn→∞ bn = 0.

I We may also write this as: limn→∞
1
n = 0.
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Boundedness

I Definition 15.7: A sequence {an}n∈N of real numbers is said to
be bounded if there exists a positive real number M such that

|an| ≤ M, ∀n ∈ N.

Then M is said to be a bound for {an}n∈N.

I A sequence which is not bounded is said to be unbounded.
I Example 15.8: Clearly every constant sequence c , c , . . . is

bounded by M = |c |.
I Example 15.7: The sequence {n}n∈N is unbounded.
I Theorem 15.8: Every convergent sequence of real numbers is

bounded. The converse is not true.
I Proof: Suppose {an}n∈N converges to x .
I Take ε = 1. Then there exists K ∈ N, such that

|an − x | < 1, ∀n ≥ K .

I Note that for n ≥ K , by triangle inequality,

|an| = |an − 0| ≤ |an − x |+ |x − 0| ≤ 1 + |x |.
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Continuation

I Now take,

M = max{|a1|, |a2|, . . . , |aK−1|, |x |+ 1}

I Then we have, |an| ≤ M for all n ∈ N. Hence {an}n∈N is
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The converse

I The claim ” The converse is not true”, is shown by exhibiting
a bounded sequence which is not convergent.

I Define {cn}n∈N by

cn =

{
0 if n is odd;
1 if n is even.

I So this is the sequence:

0, 1, 0, 1, 0, 1, . . . .

I Suppose {cn}n∈N is convergent and it converges to some x .

I Then for ε > 0, there exists K ∈ N such that

|cn − x | < ε, ∀n ≥ K .

I Choosing an odd number n ≥ K , we get |0− x | < ε.

I Similarly choosing an even number n ≥ K , we get |1− x | < ε.
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Continuation

I Then by triangle inequality,

|0− 1| ≤ |0− x |+ |x − 1| < ε+ ε = 2ε.

I Hence 0 ≤ 1
2 < ε for every ε > 0. This means 1

2 = 0, which is
clearly a contradiction.

I This proves that {cn}n∈N is not convergent.
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