

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
- ▶ (i)

$$\inf\{x \in \mathbb{R} : x > 0\} = 0.$$

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
 - ▶ (i)

$$\inf\{x \in \mathbb{R} : x > 0\} = 0.$$

- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
- ▶ (i)

$$\inf\{x \in \mathbb{R} : x > 0\} = 0.$$

- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.
- ▶ (iii) Triangle inequality: For $x, y, z \in \mathbb{R}$,

$$|x - y| \leq |x - z| + |z - y|.$$

Lecture 15. Sequences and limits

- ▶ Now that we have the real number system in place we can build the edifice of real analysis.
- ▶ This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
- ▶ (i)

$$\inf\{x \in \mathbb{R} : x > 0\} = 0.$$

- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.
- ▶ (iii) Triangle inequality: For $x, y, z \in \mathbb{R}$,

$$|x - y| \leq |x - z| + |z - y|.$$

- ▶ We have already proved these results.

Definition and Examples

- ▶ **Definition 15.1 :** A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n \in \mathbb{N}}$ is a function $a : \mathbb{N} \rightarrow \mathbb{R}$ with $a_n = a(n)$.

Definition and Examples

- ▶ **Definition 15.1 :** A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n \in \mathbb{N}}$ is a function $a : \mathbb{N} \rightarrow \mathbb{R}$ with $a_n = a(n)$.

- ▶ **Example 15.2:** Consider the function $a : \mathbb{N} \rightarrow \mathbb{N}$ defined by $a(n) = n^2$, this gives us the sequence,

$$1, 4, 9, 16, \dots,$$

also written as $\{n^2\}_{n \in \mathbb{N}}$.

Definition and Examples

- ▶ **Definition 15.1 :** A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n \in \mathbb{N}}$ is a function $a : \mathbb{N} \rightarrow \mathbb{R}$ with $a_n = a(n)$.

- ▶ **Example 15.2:** Consider the function $a : \mathbb{N} \rightarrow \mathbb{N}$ defined by $a(n) = n^2$, this gives us the sequence,

$$1, 4, 9, 16, \dots,$$

also written as $\{n^2\}_{n \in \mathbb{N}}$.

- ▶ **Example 15.3 (Fibonacci sequence):** This is the sequence:

$$1, 1, 2, 3, 5, 8, \dots,$$

defined 'recursively', by $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-2} + a_{n-1}$ for $n \geq 3$.

Limit of a sequence

- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

Limit of a sequence

- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not convergent is said to be **divergent**.

Limit of a sequence

- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not convergent is said to be **divergent**.
- ▶ We may write, $|a_n - x| < \epsilon$, equivalently as $x - \epsilon < a_n < x + \epsilon$ or as $a_n \in (x - \epsilon, x + \epsilon)$.

Constant sequence

- ▶ **Example 15.3 (Constant sequence):** Choose and fix a real number c . Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = c, \forall n \in \mathbb{N}$. So it is the sequence:

$$c, c, c, c, \dots$$

Then $\{a_n\}_{n \in \mathbb{N}}$ is convergent and it converges to c .

Constant sequence

- ▶ **Example 15.3 (Constant sequence):** Choose and fix a real number c . Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = c, \forall n \in \mathbb{N}$. So it is the sequence:

$$c, c, c, c, \dots$$

Then $\{a_n\}_{n \in \mathbb{N}}$ is convergent and it converges to c .

- ▶ **Proof:** For any $\epsilon > 0$, we may take $K = 1$.

Constant sequence

- ▶ **Example 15.3 (Constant sequence):** Choose and fix a real number c . Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = c, \forall n \in \mathbb{N}$. So it is the sequence:

$$c, c, c, c, \dots$$

Then $\{a_n\}_{n \in \mathbb{N}}$ is convergent and it converges to c .

- ▶ **Proof:** For any $\epsilon > 0$, we may take $K = 1$.

- ▶ Then,

$$|a_n - c| = |c - c| = 0 < \epsilon, \quad \forall n \geq K.$$

Constant sequence

- ▶ **Example 15.3 (Constant sequence):** Choose and fix a real number c . Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = c, \forall n \in \mathbb{N}$. So it is the sequence:

$$c, c, c, c, \dots$$

Then $\{a_n\}_{n \in \mathbb{N}}$ is convergent and it converges to c .

- ▶ **Proof:** For any $\epsilon > 0$, we may take $K = 1$.

- ▶ Then,

$$|a_n - c| = |c - c| = 0 < \epsilon, \quad \forall n \geq K.$$

- ▶ Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to c .

The uniqueness of limit

- Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.

The uniqueness of limit

- ▶ **Theorem 15.3 (The uniqueness of limit):** Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x, y in \mathbb{R} . We want to show $x = y$.

The uniqueness of limit

- ▶ **Theorem 15.3 (The uniqueness of limit):** Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x, y in \mathbb{R} . We want to show $x = y$.
- ▶ Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x , there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K_1.$$

The uniqueness of limit

- ▶ **Theorem 15.3 (The uniqueness of limit):** Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x, y in \mathbb{R} . We want to show $x = y$.
- ▶ Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x , there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K_1.$$

- ▶ Similarly, since $\{a_n\}_{n \in \mathbb{N}}$ converges to y , there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \geq K_2.$$

The uniqueness of limit

- ▶ **Theorem 15.3 (The uniqueness of limit):** Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x, y in \mathbb{R} . We want to show $x = y$.
- ▶ Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x , there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K_1.$$

- ▶ Similarly, since $\{a_n\}_{n \in \mathbb{N}}$ converges to y , there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \geq K_2.$$

- ▶ Choose any $n \geq \max\{K_1, K_2\}$. Then both the previous inequalities are true. Then by triangle inequality we get

$$|x - y| \leq |x - a_n| + |a_n - y| < \epsilon + \epsilon.$$

The uniqueness of limit

- ▶ **Theorem 15.3 (The uniqueness of limit):** Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x, y in \mathbb{R} . We want to show $x = y$.
- ▶ Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x , there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K_1.$$

- ▶ Similarly, since $\{a_n\}_{n \in \mathbb{N}}$ converges to y , there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \geq K_2.$$

- ▶ Choose any $n \geq \max\{K_1, K_2\}$. Then both the previous inequalities are true. Then by triangle inequality we get

$$|x - y| \leq |x - a_n| + |a_n - y| < \epsilon + \epsilon.$$

- ▶ Hence

$$0 \leq |x - y| < 2\epsilon$$

Continuation

- ▶ Consequently,

$$0 \leq \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

Continuation

- ▶ Consequently,

$$0 \leq \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

- ▶ Since $\inf\{\epsilon : \epsilon > 0\} = 0$, we get $0 \leq \frac{1}{2}|x - y| \leq 0$,

Continuation

- ▶ Consequently,

$$0 \leq \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

- ▶ Since $\inf\{\epsilon : \epsilon > 0\} = 0$, we get $0 \leq \frac{1}{2}|x - y| \leq 0$,
- ▶ Hence $\frac{1}{2}|x - y| = 0$ or $|x - y| = 0$, which is same as saying $x = y$.

Notation

- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x . Then we write:

$$\lim_{n \rightarrow \infty} a_n = x.$$

Notation

- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x . Then we write:

$$\lim_{n \rightarrow \infty} a_n = x.$$

- ▶ We say that "The limit of a_n as n tends to infinity exists and is equal to x ".

Notation

- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x . Then we write:

$$\lim_{n \rightarrow \infty} a_n = x.$$

- ▶ We say that "The limit of a_n as n tends to infinity exists and is equal to x ".
- ▶ Note that here n is a dummy variable, that is, if

$$\lim_{n \rightarrow \infty} a_n = x$$

then we also have,

$$\lim_{m \rightarrow \infty} a_m = x.$$

Notation

- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x . Then we write:

$$\lim_{n \rightarrow \infty} a_n = x.$$

- ▶ We say that "The limit of a_n as n tends to infinity exists and is equal to x ".
- ▶ Note that here n is a dummy variable, that is, if

$$\lim_{n \rightarrow \infty} a_n = x$$

then we also have,

$$\lim_{m \rightarrow \infty} a_m = x.$$

- ▶ So the convergence or non-convergence is a property of the whole sequence.

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

- ▶ This means that $\{b_n\}_{n \in \mathbb{N}}$ is convergent and it converges to zero.

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

- ▶ This means that $\{b_n\}_{n \in \mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0 < \frac{1}{K} < \epsilon.$$

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

- ▶ This means that $\{b_n\}_{n \in \mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0 < \frac{1}{K} < \epsilon.$$

- ▶ Then for any $n \geq K$, we have $\frac{1}{n} \leq \frac{1}{K} < \epsilon$. Hence,

$$|b_n - 0| = \left| \frac{1}{n} \right| \leq \frac{1}{K} < \epsilon, \quad \forall n \geq K.$$

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

- ▶ This means that $\{b_n\}_{n \in \mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0 < \frac{1}{K} < \epsilon.$$

- ▶ Then for any $n \geq K$, we have $\frac{1}{n} \leq \frac{1}{K} < \epsilon$. Hence,

$$|b_n - 0| = \left| \frac{1}{n} \right| \leq \frac{1}{K} < \epsilon, \quad \forall n \geq K.$$

- ▶ Consequently, by the definition of convergence, $\{b_n\}$ is convergent, and $\lim_{n \rightarrow \infty} b_n = 0$.

Examples

- ▶ **Example 15.5:** Consider the sequence $\{b_n\}_{n \in \mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ▶ Claim:

$$\lim_{n \rightarrow \infty} b_n = 0.$$

- ▶ This means that $\{b_n\}_{n \in \mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0 < \frac{1}{K} < \epsilon.$$

- ▶ Then for any $n \geq K$, we have $\frac{1}{n} \leq \frac{1}{K} < \epsilon$. Hence,

$$|b_n - 0| = \left| \frac{1}{n} \right| \leq \frac{1}{K} < \epsilon, \quad \forall n \geq K.$$

- ▶ Consequently, by the definition of convergence, $\{b_n\}$ is convergent, and $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ We may also write this as: $\lim_{n \rightarrow \infty} \frac{1}{n} = 0$.

Boundedness

► **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

Boundedness

- ▶ **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not bounded is said to be **unbounded**.
- ▶ **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.

Boundedness

- ▶ **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not bounded is said to be **unbounded**.
- ▶ **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.
- ▶ **Example 15.7:** The sequence $\{n\}_{n \in \mathbb{N}}$ is unbounded.

Boundedness

- ▶ **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not bounded is said to be **unbounded**.
- ▶ **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.
- ▶ **Example 15.7:** The sequence $\{n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ **Theorem 15.8:** Every convergent sequence of real numbers is bounded. The converse is not true.

Boundedness

- ▶ **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not bounded is said to be **unbounded**.
- ▶ **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.
- ▶ **Example 15.7:** The sequence $\{n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ **Theorem 15.8:** Every convergent sequence of real numbers is bounded. The converse is not true.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x .

Boundedness

- ▶ **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ A sequence which is not bounded is said to be **unbounded**.
- ▶ **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.
- ▶ **Example 15.7:** The sequence $\{n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ **Theorem 15.8:** Every convergent sequence of real numbers is bounded. The converse is not true.
- ▶ **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take $\epsilon = 1$. Then there exists $K \in \mathbb{N}$, such that

$$|a_n - x| < 1, \quad \forall n \geq K.$$

Boundedness

► **Definition 15.7:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **bounded** if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n \in \mathbb{N}}$.

- A sequence which is not bounded is said to be **unbounded**.
- **Example 15.8:** Clearly every constant sequence c, c, \dots is bounded by $M = |c|$.
- **Example 15.7:** The sequence $\{n\}_{n \in \mathbb{N}}$ is unbounded.
- **Theorem 15.8:** Every convergent sequence of real numbers is bounded. The converse is not true.
- **Proof:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- Take $\epsilon = 1$. Then there exists $K \in \mathbb{N}$, such that

$$|a_n - x| < 1, \quad \forall n \geq K.$$

► Note that for $n \geq K$, by triangle inequality,

$$|a_n| = |a_n - 0| \leq |a_n - x| + |x - 0| \leq 1 + |x|.$$

Continuation

- ▶ Now take,

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |x| + 1\}$$

Continuation

- ▶ Now take,

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |x| + 1\}$$

- ▶ Then we have, $|a_n| \leq M$ for all $n \in \mathbb{N}$. Hence $\{a_n\}_{n \in \mathbb{N}}$ is bounded by M .

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd;} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd;} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

- ▶ So this is the sequence:

$$0, 1, 0, 1, 0, 1, \dots$$

- ▶ Suppose $\{c_n\}_{n \in \mathbb{N}}$ is convergent and it converges to some x .

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd;} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

- ▶ So this is the sequence:

$$0, 1, 0, 1, 0, 1, \dots$$

- ▶ Suppose $\{c_n\}_{n \in \mathbb{N}}$ is convergent and it converges to some x .
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n - x| < \epsilon, \quad \forall n \geq K.$$

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd;} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

- ▶ So this is the sequence:

$$0, 1, 0, 1, 0, 1, \dots$$

- ▶ Suppose $\{c_n\}_{n \in \mathbb{N}}$ is convergent and it converges to some x .
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ Choosing an odd number $n \geq K$, we get $|0 - x| < \epsilon$.

The converse

- ▶ The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd;} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

- ▶ So this is the sequence:

$$0, 1, 0, 1, 0, 1, \dots$$

- ▶ Suppose $\{c_n\}_{n \in \mathbb{N}}$ is convergent and it converges to some x .
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ Choosing an odd number $n \geq K$, we get $|0 - x| < \epsilon$.
- ▶ Similarly choosing an even number $n \geq K$, we get $|1 - x| < \epsilon$.

Continuation

- ▶ Then by triangle inequality,

$$|0 - 1| \leq |0 - x| + |x - 1| < \epsilon + \epsilon = 2\epsilon.$$

Continuation

- ▶ Then by triangle inequality,

$$|0 - 1| \leq |0 - x| + |x - 1| < \epsilon + \epsilon = 2\epsilon.$$

- ▶ Hence $0 \leq \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.

Continuation

- ▶ Then by triangle inequality,

$$|0 - 1| \leq |0 - x| + |x - 1| < \epsilon + \epsilon = 2\epsilon.$$

- ▶ Hence $0 \leq \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.
- ▶ This proves that $\{c_n\}_{n \in \mathbb{N}}$ is not convergent.

Continuation

- ▶ Then by triangle inequality,

$$|0 - 1| \leq |0 - x| + |x - 1| < \epsilon + \epsilon = 2\epsilon.$$

- ▶ Hence $0 \leq \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.
- ▶ This proves that $\{c_n\}_{n \in \mathbb{N}}$ is not convergent.
- ▶ END OF LECTURE 15