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Lecture 16. Some limit theorems

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I Notation: If {an}n∈N converges to x , we write

lim
n→∞

an = x .

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.
I We have seen that every convergent sequence is bounded but

the converse is not true.
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Product with a bounded sequence

I Theorem 16.1: Suppose {an}n∈N is a sequence converging to
0 and {bn}n∈N is a bounded sequence then {anbn}n∈N
converges to 0.

I Proof: As {bn}n∈N is bounded, there exists M > 0 such that

|bn| ≤ M, ∀n ∈ N.

I For ε > 0, take ε′ = ε
M .

I As ε′ > 0, and {an}n∈N converges to 0, there exists a natural
number K such that

|an − 0| < ε′, ∀n ≥ K .

I Now for n ≥ K ,

|anbn − 0| = |anbn| = |an||bn| ≤ |an|M < ε′.M = ε.

I Hence {anbn}n∈N converges to 0.
I Taking an = 1

n and bn = n, we see that the result may not be
true when {bn}n∈N is not bounded.
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Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .



Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .



Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .



Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .



Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .



Proof of (a)

I Proof: (a) Clearly the result is true if c = 0. So assume that
c 6= 0.

I Now for ε > 0, take ε′ = ε
|c| > 0.

I As {an}n∈N converges to x , there exists K ∈ N such that

|an − x | < ε′, ∀n ≥ K .

I Then for n ≥ K ,

|can − cx | = |c ||an − x | < |c|ε′ = ε.

I Hence {can}n∈N converges to cx .
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Proof of (b) and (c)

I For ε > 0, we have ε
2 > 0. Choose K1 such that

|an − x | < ε

2
, ∀n ≥ K1.

I Choose K2 such that

|bn − y | < ε

2
, ∀n ≥ K2.

I Take K = max{K1,K2}.
I Then for n ≥ K ,

|(an + bn)− (x + y)| ≤ |an − x |+ |bn − y | < ε

2
+
ε

2
= ε.

I Hence {an + bn}n∈N converges to x + y .

I Clearly (c) follows from (a) and (b).
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Proof of (d)

I Now we need to estimate |anbn − xy |.

I By triangle inequality,

|anbn − xy | ≤ |anbn − xbn + xbn − xy |
≤ |(an − x)bn|+ |x(bn − y)|
≤ |an − x ||bn|+ |x ||bn − y |.

I As {bn}n∈N is convergent it is a bounded sequence. Hence
there exists M > 0 such that |bn| ≤ M for all n.

I For ε > 0, choose K1 ∈ N such that

|an − x | < ε

2M
, ∀n ≥ K1.

I Choose K2 ∈ N such that

|x ||bn − y | < ε

2
, ∀n ≥ K2.

I If x 6= 0, this can be done by taking ε′ = ε
2|x | , and using

convergence of {bn}. If x = 0, the inequality is trivially true
and we can simply take K2 = 1.
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Continuation

I Now for n ≥ max{K1,K2}
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ε
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Proof of (e)

I Clearly (e) follows from (d) if we show that 1
bn

converges to
1
y . (Note that here we are assuming that bn 6= 0 for every n
and y 6= 0.)

I Now we need to estimate,

| 1

bn
− 1

y
| = |y − bn

bny
| =
|y − bn|
|bny |

.

I Claim: There exists M > 0 such that 1
|bn| ≤ M for all n ∈ N.

I Once we prove this claim, for ε > 0, take ε′ = ε|y |
M , and choose

K ∈ N such that

|bn − y | < ε′, ∀n ≥ K .

I Then for n ≥ K ,
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| =
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<
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M|bn|
≤ ε.

I This shows that 1
bn

converges to 1
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I Once we prove this claim, for ε > 0, take ε′ = ε|y |
M , and choose

K ∈ N such that

|bn − y | < ε′, ∀n ≥ K .

I Then for n ≥ K ,

| 1

bn
− 1

y
| =
|y − bn|
|bny |

<
ε′

|bn||y |
≤ ε

M|bn|
≤ ε.

I This shows that 1
bn
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Boundedness

I Claim: There exists M > 0 such that 1
|bn| ≤ M for all n ∈ N.

I Proof of claim: Recall that limn→∞ bn = y and y 6= 0.

I Take ε = |y |
2 > 0.

I Now there exists natural number K such that

|bn − y | < |y |
2
, ∀n ≥ K .

I This implies that |bn| ≥ |y |2 for n ≥ K . (Why?)

I Therefore 1
|bn| ≤

2
|y | for n ≥ K .

I Take

M = max{ 1

|b1|
,

1

|b2|
, . . . ,

1

|bK−1|
,

2

|y |
}.

I Note that M is well-defined as bn 6= 0 for every n.

I Now we have 1
|bn| ≤ M for every n ∈ N.

I END OF LECTURE 16.
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