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P> We have seen that every convergent sequence is bounded but
the converse is not true.
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» Theorem 16.1: Suppose {a,}nen is @ sequence converging to
0 and {bp}nen is a bounded sequence then {anbp}nen
converges to 0.

» Proof: As {bp}nen is bounded, there exists M > 0 such that

|bp| <M, VneN.
» For e >0, take € = .
» As ¢ >0, and {a,},en converges to 0, there exists a natural
number K such that
la, — 0| <€, Vn>K.
» Now for n > K,
|anbn — 0| = |anbn| = |an||bn] < |an|M < €.M =e.

» Hence {apbp}nen converges to 0.
» Taking a, = % and b, = n, we see that the result may not be
true when {b,}nen is not bounded.
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» Theorem 16.2: Suppose {a,}nen and {bp}nen are sequences
converging to x, y respectively.

(a) For c € R, {cap}nen converges to cx.
(b) {an + bn}nen converges to x + y.

(c) For c,d € R, {cap + db,}nen converges to cx + dy.
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d) {anbn}nen converges to xy.
e

) If by # 0 for every n € N and y # 0 then {22 }nen
converges to §
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Proof of (b) and (c)

» For € > 0, we have 5 > 0. Choose Ki such that
€
‘a,-, —X‘ < 5, Vn > Kl.
» Choose K> such that

by — y| < % Vn > Ko.

» Take K = max{Ki, Kz }.
» Then for n > K,
€ €
an - bo) — (x+ Y| < lan x| b —y] < S+ 5 =
» Hence {a, + bn}nen converges to x + y.
» Clearly (c) follows from (a) and (b).
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Proof of (d)

» Now we need to estimate |a,b, — xy/.
» By triangle inequality,

< |apbny — xb, + xbp, — xy|
< [(an = x)bn| + [x(bn — y)
< lap = x|[bn| + |x[|by — y/.

|anbn — xy|

» As {bp}nen is convergent it is a bounded sequence. Hence
there exists M > 0 such that |b,| < M for all n.
» For € > 0, choose K; € N such that

L VHZ K1.

- <
[an = x| <50

» Choose K> € N such that
€
Ix||bn — y| < > Vn > Ka.
» If x # 0, this can be done by taking ¢ = ﬁ and using

convergence of {b,}. If x =0, the inequality is trivially true
and we can simply take K, = 1.
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» Now for n > max{Ki, K>}

’anbn_xy’ S ’an_XHb ‘—i_‘Xan_y‘
< — M+ =
2I\/I +

= €.

» Hence {a,bp}nen converges to xy.
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» Clearly (e) follows from (d) if we show that bin converges to

1 (Note that here we are assuming that b, # 0 for every n
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Proof of claim: Recall that lim,_,., b, =y and y # 0.
Take € = % > 0.

Now there exists natural number K such that
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This implies that |b,| > & for n > K. (Why?)
Therefore o] ‘ < |2| for n > K.
> Take
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» Note that M is well-defined as b, # 0 for every n.

Now we have \bflnl < M for every n € N.
» END OF LECTURE 16.
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