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» Recall the definition of convergence:

» Definition 15.2: A sequence of real numbers {a,}en is said
to be convergent if there exists a real number x, where for
every € > 0, there exists a natural number K (depending upon
€) such that

lan — x| <€, Vn>K.
In such a case, {ap}nen is said to converge to x, and x is said
to be the limit of {a,}nen.

» |a, — x| < eis equivalent to x —e < a, < x+ € or
an € (x —e,x+e).

» A sequence {ap}nen is said to be bounded if there exists
positive real number M such that

lan| < M, ¥neN.

> We have seen that every convergent sequence is bounded but
the converse is not true.
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» Theorem 16.2: Suppose {a,}nen and {bp}nen are sequences
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(a) For c € R, {cap}nen converges to cx.

(b) {an + bn}nen converges to x + y.

(c) For c,d € R, {cap + db,}nen converges to cx + dy.
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(
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d) {anbn}nen converges to xy.
e

) If by # 0 for every n € N and y # 0 then {22 }nen
converges to §
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Theorem 17.1: Suppose {an}nen is a sequence converging to
x and a, > 0 for every n € N. Then x > 0.

Proof: Suppose x < 0.
Take € = %

As {an}nen is convergent to x, there exists K, such that
lan — x| <€, Vn> K.

That is,
an € (x—ex+e€), Vn>K.

Clearly this is not possible, as a, > 0 and
(X - €’X+€) - (_0070)

So we have a contradiction. Hence x < 0 is not possible.
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» Theorem 17.2: Suppose {a,}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

» Proof: Take ¢, = b, —a,, neN.
We know that {c,}nen converges to y — x.
» Also ¢, > 0,Vn.
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Theorem 17.2: Suppose {ap}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

Proof: Take ¢, = b, — a,, n€N.
We know that {c,}nen converges to y — x.
Also ¢, > 0,Vn.

Hence by previous theorem y — x > 0, or equivalently x < y.
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Theorem 17.2: Suppose {ap}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

Proof: Take ¢, = b, — a,, n€N.

We know that {c,}nen converges to y — x.

Also ¢, > 0,Vn.

Hence by previous theorem y — x > 0, or equivalently x < y.

Warning: In this Theorem, a, < b, for all n does not imply
x < y. For example, take a, =0 and b, = % for all n. Then
x =y =0 and we don't have x < y.
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Monotonicity

» Definition 17.4: A sequence {ap}nen of real numbers is said
to be increasing (or non-decreasing) if

an <apt1, VneN.

> A sequence {an}nen of real numbers is said to be decreasing
(or non-increasing) if

an > any1, VvVneN.

> A sequence {an}nen of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

» Example 17.5: The sequence {%}neN is a decreasing
sequence. The sequence {n}en is an increasing sequence.

» Note that an increasing sequence is always bounded below by
the first term, that is, a; < a,, Vn € N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

» Theorem 17.6: (i) An increasing sequence {an}nen is
convergent if and only if it is bounded above. In such a case,

lim a, =sup{a,: ne N}
n—oo

» (ii) A decreasing sequence {ap}nen is convergent if and only if
it is bounded below. In such a case,

nI|_>nC1>O ap = inf{a, : n € N}.

» (iii) A monotonic sequence is convergent if and only if it is
bounded.

» Proof: Clearly (iii) follows from (i) and (ii).

» Also (ii) follows from (i), by considering {—ap}nen. So it
suffices to prove (i).
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Proof of (i): Let {a,}nen be a bounded increasing sequence.
Take x = sup{a, : n € N}.

We want to show that {a,}hen converges to x.

Take any € > 0. Then x — € < x.

As x — € is not an upper bound for {a, : n € N}, there exists
some K € N such that
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X —€e<ak < Xx.

» Then by monotonicity of {a,}nen and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K
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X —€e<ak < Xx.

» Then by monotonicity of {a,}nen and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K

» In particular,
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Proof of (i): Let {a,}nen be a bounded increasing sequence.
Take x = sup{a, : n € N}.

We want to show that {a,}hen converges to x.

Take any € > 0. Then x — € < x.

As x — € is not an upper bound for {a, : n € N}, there exists
some K € N such that

X —€e<ak < Xx.

Then by monotonicity of {a,},en and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K

In particular,
an € (x—€e,x+e€), Yn>K.

This shows that {a,},en converges to x.
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Binary, decimal expansions

» Theorem 17.7: Fix a natural number d € N with d > 2.
» For a real number y € [0,1), let

y = 0.b1b2b3 ..
be the expansion of y in base d.
» Then b by b
— lim(2 L2 5
y—nll_@O(d Tt +dn).
» Proof: For n € N, take
b b by
an = + 72 + -t pr
» Clearly {a,}nen is an increasing sequence, which is bounded
above by 1.

» By the definition of base-d expansion
y =sup{a,: ne N}

» Now the result y = lim,_,o0 an, is clear from the previous
theorem.
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> Example 17.8: Let a, b be real numbers with 0 < a < b.
» Define two sequences {ap}nen and {b,}nen recursively by:
ay =a,b; = band

a+b
dn+l1 = Van bp, bn+1 n2 n>1.

» Note that for any positive t, v/t is the unique positive real
number x such that x2 = t. The existence of 1/t can be
proved just as we proved the existence of v/2.

» Making use of AM-GM inequality, it is easy to see

a<+Vva <7<b

» In other words,
ar < ax < by < by.

» Inductively, one can show that

a=ar<a<--ra,<b,<---<bh<b =b



Continuation

» It follows that lim,_, a, and lim,_,;, exist.



Continuation

» It follows that lim,_, a, and lim,_,;, exist.
» Exercise: Show that

lim a, = lim b,.
n—oo n—o0



Continuation

» It follows that lim,_, a, and lim,_,;, exist.
» Exercise: Show that

lim a, = lim b,.
n—oo n—o0

» This value is known as arithmetic-geometric mean of a and b.
7.
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» Then {hp}nen is unbounded.
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» Then {hp}nen is unbounded.
» Observe:
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2 3 4 2 4 4 2 2
>

1 1 1 1 1 1 1
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Fotetg > lE S F ottt g =143(3)
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Continue this way, and complete the proof.
» END OF LECTURE 17.



