

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 17. Sequences and order

- ▶ Recall the definition of convergence:

Lecture 17. Sequences and order

- ▶ Recall the definition of convergence:
- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ $|a_n - x| < \epsilon$ is equivalent to $x - \epsilon < a_n < x + \epsilon$ or $a_n \in (x - \epsilon, x + \epsilon)$.

Lecture 17. Sequences and order

- ▶ Recall the definition of convergence:
- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ $|a_n - x| < \epsilon$ is equivalent to $x - \epsilon < a_n < x + \epsilon$ or $a_n \in (x - \epsilon, x + \epsilon)$.
- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to be bounded if there exists positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Lecture 17. Sequences and order

- ▶ Recall the definition of convergence:
- ▶ **Definition 15.2:** A sequence of real numbers $\{a_n\}_{n \in \mathbb{N}}$ is said to be **convergent** if there exists a real number x , where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

In such a case, $\{a_n\}_{n \in \mathbb{N}}$ is said to converge to x , and x is said to be the **limit** of $\{a_n\}_{n \in \mathbb{N}}$.

- ▶ $|a_n - x| < \epsilon$ is equivalent to $x - \epsilon < a_n < x + \epsilon$ or $a_n \in (x - \epsilon, x + \epsilon)$.
- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to be bounded if there exists positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ We have seen that every convergent sequence is bounded but the converse is not true.

Recall: Sums and products

- **Theorem 16.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively.

Recall: Sums and products

- **Theorem 16.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively.
- (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx .

Recall: Sums and products

- **Theorem 16.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively.
- (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx .
- (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to $x + y$.

Recall: Sums and products

- **Theorem 16.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively.
- (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx .
- (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to $x + y$.
- (c) For $c, d \in \mathbb{R}$, $\{ca_n + db_n\}_{n \in \mathbb{N}}$ converges to $cx + dy$.
- (d) $\{a_n b_n\}_{n \in \mathbb{N}}$ converges to xy .

Recall: Sums and products

- **Theorem 16.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively.
- (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx .
- (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to $x + y$.
- (c) For $c, d \in \mathbb{R}$, $\{ca_n + db_n\}_{n \in \mathbb{N}}$ converges to $cx + dy$.
- (d) $\{a_n b_n\}_{n \in \mathbb{N}}$ converges to xy .
- (e) If $b_n \neq 0$ for every $n \in \mathbb{N}$ and $y \neq 0$ then $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ converges to $\frac{x}{y}$.

Positivity

- **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.
- ▶ Take $\epsilon = \frac{|x|}{2}$.

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.
- ▶ Take $\epsilon = \frac{|x|}{2}$.
- ▶ As $\{a_n\}_{n \in \mathbb{N}}$ is convergent to x , there exists K , such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.
- ▶ Take $\epsilon = \frac{|x|}{2}$.
- ▶ As $\{a_n\}_{n \in \mathbb{N}}$ is convergent to x , there exists K , such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ That is,

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K.$$

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.
- ▶ Take $\epsilon = \frac{|x|}{2}$.
- ▶ As $\{a_n\}_{n \in \mathbb{N}}$ is convergent to x , there exists K , such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ That is,

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K.$$

- ▶ Clearly this is not possible, as $a_n \geq 0$ and

$$(x - \epsilon, x + \epsilon) \subset (-\infty, 0)$$

Positivity

- ▶ **Theorem 17.1:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x and $a_n \geq 0$ for every $n \in \mathbb{N}$. Then $x \geq 0$.
- ▶ **Proof:** Suppose $x < 0$.
- ▶ Take $\epsilon = \frac{|x|}{2}$.
- ▶ As $\{a_n\}_{n \in \mathbb{N}}$ is convergent to x , there exists K , such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ That is,

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K.$$

- ▶ Clearly this is not possible, as $a_n \geq 0$ and

$$(x - \epsilon, x + \epsilon) \subset (-\infty, 0)$$

- ▶ So we have a contradiction. Hence $x < 0$ is not possible.

Order

- **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.

Order

- ▶ **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.
- ▶ **Proof:** Take $c_n = b_n - a_n, n \in \mathbb{N}$.

Order

- ▶ **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.
- ▶ **Proof:** Take $c_n = b_n - a_n, n \in \mathbb{N}$.
- ▶ We know that $\{c_n\}_{n \in \mathbb{N}}$ converges to $y - x$.

Order

- ▶ **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.
- ▶ **Proof:** Take $c_n = b_n - a_n, n \in \mathbb{N}$.
- ▶ We know that $\{c_n\}_{n \in \mathbb{N}}$ converges to $y - x$.
- ▶ Also $c_n \geq 0, \forall n$.

Order

- ▶ **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.
- ▶ **Proof:** Take $c_n = b_n - a_n, n \in \mathbb{N}$.
- ▶ We know that $\{c_n\}_{n \in \mathbb{N}}$ converges to $y - x$.
- ▶ Also $c_n \geq 0, \forall n$.
- ▶ Hence by previous theorem $y - x \geq 0$, or equivalently $x \leq y$.

Order

- ▶ **Theorem 17.2:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are sequences converging to x, y respectively. Suppose $a_n \leq b_n$ for every n . Then $x \leq y$.
- ▶ **Proof:** Take $c_n = b_n - a_n, n \in \mathbb{N}$.
- ▶ We know that $\{c_n\}_{n \in \mathbb{N}}$ converges to $y - x$.
- ▶ Also $c_n \geq 0, \forall n$.
- ▶ Hence by previous theorem $y - x \geq 0$, or equivalently $x \leq y$.
- ▶ **Warning:** In this Theorem, $a_n < b_n$ for all n does not imply $x < y$. For example, take $a_n = 0$ and $b_n = \frac{1}{n}$ for all n . Then $x = y = 0$ and we don't have $x < y$.

Squeeze theorem

- Theorem 17.3 (Squeeze theorem): Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n$, $\forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

- ▶ Similarly choose a natural number K_2 such that

$$c_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_2.$$

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

- ▶ Similarly choose a natural number K_2 such that

$$c_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

- ▶ Similarly choose a natural number K_2 such that

$$c_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.
- ▶ Now for $n \geq K$, as $a_n \leq b_n \leq c_n$, we get

$$x - \epsilon < a_n \leq b_n \leq c_n < x + \epsilon.$$

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

- ▶ Similarly choose a natural number K_2 such that

$$c_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.
- ▶ Now for $n \geq K$, as $a_n \leq b_n \leq c_n$, we get

$$x - \epsilon < a_n \leq b_n \leq c_n < x + \epsilon.$$

- ▶ In particular, $b_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K$ or $|b_n - x| < \epsilon, \quad \forall n \geq K$.

Squeeze theorem

- ▶ **Theorem 17.3 (Squeeze theorem):** Suppose $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ are three sequences satisfying $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$.
- ▶ Suppose $\{a_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$ converge to a real number x .
- ▶ Then $\{b_n\}_{n \in \mathbb{N}}$ is also convergent and it converges to x .
- ▶ **Proof:** For $\epsilon > 0$, choose a natural number K_1 such that

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_1.$$

- ▶ Similarly choose a natural number K_2 such that

$$c_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.
- ▶ Now for $n \geq K$, as $a_n \leq b_n \leq c_n$, we get

$$x - \epsilon < a_n \leq b_n \leq c_n < x + \epsilon.$$

- ▶ In particular, $b_n \in (x - \epsilon, x + \epsilon), \forall n \geq K$ or $|b_n - x| < \epsilon, \forall n \geq K$.
- ▶ Hence $\{b_n\}_{n \in \mathbb{N}}$ converges to x .

Monotonicity

- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

Monotonicity

- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

Monotonicity

- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.

Monotonicity

- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.
- ▶ **Example 17.5:** The sequence $\{\frac{1}{n}\}_{n \in \mathbb{N}}$ is a decreasing sequence. The sequence $\{n\}_{n \in \mathbb{N}}$ is an increasing sequence.

Monotonicity

- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.
- ▶ **Example 17.5:** The sequence $\{\frac{1}{n}\}_{n \in \mathbb{N}}$ is a decreasing sequence. The sequence $\{n\}_{n \in \mathbb{N}}$ is an increasing sequence.
- ▶ Note that an increasing sequence is always bounded below by the first term, that is, $a_1 \leq a_n, \quad \forall n \in \mathbb{N}$ and similarly a decreasing sequence is always bounded above by the first term.

Bounded monotonic sequences

- Theorem 17.6: (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

Bounded monotonic sequences

- Theorem 17.6: (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

Bounded monotonic sequences

- Theorem 17.6: (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

- (iii) A monotonic sequence is convergent if and only if it is bounded.

Bounded monotonic sequences

- Theorem 17.6: (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

- (iii) A monotonic sequence is convergent if and only if it is bounded.
- Proof: Clearly (iii) follows from (i) and (ii).

Bounded monotonic sequences

- **Theorem 17.6:** (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

- (iii) A monotonic sequence is convergent if and only if it is bounded.
- **Proof:** Clearly (iii) follows from (i) and (ii).
- Also (ii) follows from (i), by considering $\{-a_n\}_{n \in \mathbb{N}}$. So it suffices to prove (i).

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take any $\epsilon > 0$. Then $x - \epsilon < x$.

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take any $\epsilon > 0$. Then $x - \epsilon < x$.
- ▶ As $x - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$, there exists some $K \in \mathbb{N}$ such that

$$x - \epsilon < a_K \leq x.$$

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take any $\epsilon > 0$. Then $x - \epsilon < x$.
- ▶ As $x - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$, there exists some $K \in \mathbb{N}$ such that

$$x - \epsilon < a_K \leq x.$$

- ▶ Then by monotonicity of $\{a_n\}_{n \in \mathbb{N}}$ and as x is an upper-bound, we get

$$x - \epsilon < a_K \leq a_n \leq x, \quad \forall n \geq K$$

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take any $\epsilon > 0$. Then $x - \epsilon < x$.
- ▶ As $x - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$, there exists some $K \in \mathbb{N}$ such that

$$x - \epsilon < a_K \leq x.$$

- ▶ Then by monotonicity of $\{a_n\}_{n \in \mathbb{N}}$ and as x is an upper-bound, we get

$$x - \epsilon < a_K \leq a_n \leq x, \quad \forall n \geq K$$

- ▶ In particular,

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K.$$

Bounded increasing sequences

- ▶ Proof of (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded increasing sequence.
- ▶ Take $x = \sup\{a_n : n \in \mathbb{N}\}$.
- ▶ We want to show that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ Take any $\epsilon > 0$. Then $x - \epsilon < x$.
- ▶ As $x - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$, there exists some $K \in \mathbb{N}$ such that

$$x - \epsilon < a_K \leq x.$$

- ▶ Then by monotonicity of $\{a_n\}_{n \in \mathbb{N}}$ and as x is an upper-bound, we get

$$x - \epsilon < a_K \leq a_n \leq x, \quad \forall n \geq K$$

- ▶ In particular,

$$a_n \in (x - \epsilon, x + \epsilon), \quad \forall n \geq K.$$

- ▶ This shows that $\{a_n\}_{n \in \mathbb{N}}$ converges to x .

Binary, decimal expansions

- Theorem 17.7: Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.

Binary, decimal expansions

- ▶ **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- ▶ For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

Binary, decimal expansions

- ▶ **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- ▶ For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

- ▶ Then

$$y = \lim_{n \rightarrow \infty} \left(\frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n} \right).$$

Binary, decimal expansions

- ▶ **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- ▶ For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

- ▶ Then

$$y = \lim_{n \rightarrow \infty} \left(\frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n} \right).$$

- ▶ **Proof:** For $n \in \mathbb{N}$, take

$$a_n = \frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n}$$

Binary, decimal expansions

- **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

- Then

$$y = \lim_{n \rightarrow \infty} \left(\frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n} \right).$$

- **Proof:** For $n \in \mathbb{N}$, take

$$a_n = \frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n}$$

- Clearly $\{a_n\}_{n \in \mathbb{N}}$ is an increasing sequence, which is bounded above by 1.

Binary, decimal expansions

- **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

- Then

$$y = \lim_{n \rightarrow \infty} \left(\frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n} \right).$$

- **Proof:** For $n \in \mathbb{N}$, take

$$a_n = \frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n}$$

- Clearly $\{a_n\}_{n \in \mathbb{N}}$ is an increasing sequence, which is bounded above by 1.
- By the definition of base- d expansion

$$y = \sup\{a_n : n \in \mathbb{N}\}.$$

Binary, decimal expansions

- **Theorem 17.7:** Fix a natural number $d \in \mathbb{N}$ with $d \geq 2$.
- For a real number $y \in [0, 1)$, let

$$y = 0.b_1 b_2 b_3 \dots$$

be the expansion of y in base d .

- Then

$$y = \lim_{n \rightarrow \infty} \left(\frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n} \right).$$

- **Proof:** For $n \in \mathbb{N}$, take

$$a_n = \frac{b_1}{d} + \frac{b_2}{d^2} + \dots + \frac{b_n}{d^n}$$

- Clearly $\{a_n\}_{n \in \mathbb{N}}$ is an increasing sequence, which is bounded above by 1.
- By the definition of base- d expansion

$$y = \sup\{a_n : n \in \mathbb{N}\}.$$

- Now the result $y = \lim_{n \rightarrow \infty} a_n$, is clear from the previous theorem.

Arithmetic-Geometric Mean

- ▶ Example 17.8: Let a, b be real numbers with $0 < a < b$.

Arithmetic-Geometric Mean

- ▶ **Example 17.8:** Let a, b be real numbers with $0 < a < b$.
- ▶ Define two sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ recursively by:
 $a_1 = a, b_1 = b$ and

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \geq 1.$$

Arithmetic-Geometric Mean

- ▶ **Example 17.8:** Let a, b be real numbers with $0 < a < b$.
- ▶ Define two sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ recursively by:
 $a_1 = a, b_1 = b$ and

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \geq 1.$$

- ▶ Note that for any positive t , \sqrt{t} is the unique positive real number x such that $x^2 = t$. The existence of \sqrt{t} can be proved just as we proved the existence of $\sqrt{2}$.

Arithmetic-Geometric Mean

- ▶ **Example 17.8:** Let a, b be real numbers with $0 < a < b$.
- ▶ Define two sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ recursively by:
 $a_1 = a, b_1 = b$ and

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \geq 1.$$

- ▶ Note that for any positive t , \sqrt{t} is the unique positive real number x such that $x^2 = t$. The existence of \sqrt{t} can be proved just as we proved the existence of $\sqrt{2}$.
- ▶ Making use of AM-GM inequality, it is easy to see

$$a \leq \sqrt{ab} \leq \frac{a+b}{2} \leq b.$$

Arithmetic-Geometric Mean

- ▶ **Example 17.8:** Let a, b be real numbers with $0 < a < b$.
- ▶ Define two sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ recursively by:
 $a_1 = a, b_1 = b$ and

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \geq 1.$$

- ▶ Note that for any positive t , \sqrt{t} is the unique positive real number x such that $x^2 = t$. The existence of \sqrt{t} can be proved just as we proved the existence of $\sqrt{2}$.
- ▶ Making use of AM-GM inequality, it is easy to see

$$a \leq \sqrt{ab} \leq \frac{a+b}{2} \leq b.$$

- ▶ In other words,

$$a_1 \leq a_2 \leq b_2 \leq b_1.$$

Arithmetic-Geometric Mean

- ▶ **Example 17.8:** Let a, b be real numbers with $0 < a < b$.
- ▶ Define two sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ recursively by:
 $a_1 = a, b_1 = b$ and

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \geq 1.$$

- ▶ Note that for any positive t , \sqrt{t} is the unique positive real number x such that $x^2 = t$. The existence of \sqrt{t} can be proved just as we proved the existence of $\sqrt{2}$.
- ▶ Making use of AM-GM inequality, it is easy to see

$$a \leq \sqrt{ab} \leq \frac{a+b}{2} \leq b.$$

- ▶ In other words,

$$a_1 \leq a_2 \leq b_2 \leq b_1.$$

- ▶ Inductively, one can show that

$$a = a_1 \leq a_2 \leq \cdots a_n \leq b_n \leq \cdots \leq b_2 \leq b_1 = b.$$

Continuation

- ▶ It follows that $\lim_{n \rightarrow \infty} a_n$ and $\lim_{n \rightarrow b_n}$ exist.

Continuation

- ▶ It follows that $\lim_{n \rightarrow \infty} a_n$ and $\lim_{n \rightarrow \infty} b_n$ exist.
- ▶ **Exercise:** Show that

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

Continuation

- ▶ It follows that $\lim_{n \rightarrow \infty} a_n$ and $\lim_{n \rightarrow \infty} b_n$ exist.
- ▶ **Exercise:** Show that

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

- ▶ This value is known as **arithmetic-geometric mean** of a and b .
7.

Harmonic sums

► Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

Harmonic sums

- ▶ Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

- ▶ Then $\{h_n\}_{n \in \mathbb{N}}$ is unbounded.

Harmonic sums

- ▶ Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

- ▶ Then $\{h_n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ Observe:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2}.$$

Harmonic sums

- Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

- Then $\{h_n\}_{n \in \mathbb{N}}$ is unbounded.
- Observe:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2}.$$

-

$$1 + \frac{1}{2} + \cdots + \frac{1}{8} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{5} + \cdots + \frac{1}{8} = 1 + 3.(\frac{1}{2}).$$

Harmonic sums

- ▶ Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

- ▶ Then $\{h_n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ Observe:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2}.$$

- ▶

$$1 + \frac{1}{2} + \cdots + \frac{1}{8} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{5} + \cdots + \frac{1}{8} = 1 + 3.(\frac{1}{2}).$$

- ▶ Continue this way, and complete the proof.

Harmonic sums

- ▶ Example 17.9: For $n \in \mathbb{N}$, take

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

- ▶ Then $\{h_n\}_{n \in \mathbb{N}}$ is unbounded.
- ▶ Observe:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2}.$$

- ▶

$$1 + \frac{1}{2} + \cdots + \frac{1}{8} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{5} + \cdots + \frac{1}{8} = 1 + 3.(\frac{1}{2}).$$

- ▶ Continue this way, and complete the proof.
- ▶ END OF LECTURE 17.