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Lecture 17. Sequences and order

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I |an − x | < ε is equivalent to x − ε < an < x + ε or
an ∈ (x − ε, x + ε).

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.

I We have seen that every convergent sequence is bounded but
the converse is not true.



Lecture 17. Sequences and order

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I |an − x | < ε is equivalent to x − ε < an < x + ε or
an ∈ (x − ε, x + ε).

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.

I We have seen that every convergent sequence is bounded but
the converse is not true.



Lecture 17. Sequences and order

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I |an − x | < ε is equivalent to x − ε < an < x + ε or
an ∈ (x − ε, x + ε).

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.

I We have seen that every convergent sequence is bounded but
the converse is not true.



Lecture 17. Sequences and order

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I |an − x | < ε is equivalent to x − ε < an < x + ε or
an ∈ (x − ε, x + ε).

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.

I We have seen that every convergent sequence is bounded but
the converse is not true.



Recall: Sums and products

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .
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Positivity

I Theorem 17.1: Suppose {an}n∈N is a sequence converging to
x and an ≥ 0 for every n ∈ N. Then x ≥ 0.

I Proof: Suppose x < 0.

I Take ε = |x |
2 .

I As {an}n∈N is convergent to x , there exists K , such that

|an − x | < ε, ∀n ≥ K .

I That is,
an ∈ (x − ε, x + ε), ∀n ≥ K .

I Clearly this is not possible, as an ≥ 0 and

(x − ε, x + ε) ⊂ (−∞, 0)

I So we have a contradiction. Hence x < 0 is not possible.
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Order

I Theorem 17.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively. Suppose an ≤ bn for every n.
Then x ≤ y .

I Proof: Take cn = bn − an, n ∈ N.
I We know that {cn}n∈N converges to y − x .

I Also cn ≥ 0,∀n.
I Hence by previous theorem y − x ≥ 0, or equivalently x ≤ y .

I Warning: In this Theorem, an < bn for all n does not imply
x < y . For example, take an = 0 and bn = 1

n for all n. Then
x = y = 0 and we don’t have x < y .
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Squeeze theorem

I Theorem 17.3 (Squeeze theorem): Suppose {an}n∈N, {bn}n∈N
and {cn}n∈N are three sequences satisfying
an ≤ bn ≤ cn, ∀n ∈ N.

I Suppose {an}n∈N and {cn}n∈N converge to a real number x .
I Then {bn}n∈N is also convergent and it converges to x .
I Proof: For ε > 0, choose a natural number K1 such that

an ∈ (x − ε, x + ε), ∀n ≥ K1.

I Similarly choose a natural number K2 such that

cn ∈ (x − ε, x + ε), ∀n ≥ K2.

I Take K = max{K1,K2}.
I Now for n ≥ K , as an ≤ bn ≤ cn, we get

x − ε < an ≤ bn ≤ cn < x + ε.

I In particular, bn ∈ (x − ε, x + ε), ∀n ≥ K or
|bn − x | < ε, ∀n ≥ K .

I Hence {bn}n∈N converges to x .
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Monotonicity

I Definition 17.4: A sequence {an}n∈N of real numbers is said
to be increasing (or non-decreasing) if

an ≤ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be decreasing
(or non-increasing) if

an ≥ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

I Example 17.5: The sequence { 1n}n∈N is a decreasing
sequence. The sequence {n}n∈N is an increasing sequence.

I Note that an increasing sequence is always bounded below by
the first term, that is, a1 ≤ an, ∀n ∈ N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

I Theorem 17.6: (i) An increasing sequence {an}n∈N is
convergent if and only if it is bounded above. In such a case,

lim
n→∞

an = sup{an : n ∈ N}.

I (ii) A decreasing sequence {an}n∈N is convergent if and only if
it is bounded below. In such a case,

lim
n→∞

an = inf{an : n ∈ N}.

I (iii) A monotonic sequence is convergent if and only if it is
bounded.

I Proof: Clearly (iii) follows from (i) and (ii).

I Also (ii) follows from (i), by considering {−an}n∈N. So it
suffices to prove (i).
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Bounded increasing sequences

I Proof of (i): Let {an}n∈N be a bounded increasing sequence.

I Take x = sup{an : n ∈ N}.
I We want to show that {an}n∈N converges to x .

I Take any ε > 0. Then x − ε < x .

I As x − ε is not an upper bound for {an : n ∈ N}, there exists
some K ∈ N such that

x − ε < aK ≤ x .

I Then by monotonicity of {an}n∈N and as x is an upper-bound,
we get

x − ε < aK ≤ an ≤ x , ∀n ≥ K

I In particular,

an ∈ (x − ε, x + ε), ∀n ≥ K .

I This shows that {an}n∈N converges to x .
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Binary, decimal expansions

I Theorem 17.7: Fix a natural number d ∈ N with d ≥ 2.

I For a real number y ∈ [0, 1), let

y = 0.b1b2b3 . . .

be the expansion of y in base d .
I Then

y = lim
n→∞

(
b1
d

+
b2
d2

+ · · ·+ bn
dn

).

I Proof: For n ∈ N, take

an =
b1
d

+
b2
d2

+ · · ·+ bn
dn

I Clearly {an}n∈N is an increasing sequence, which is bounded
above by 1.

I By the definition of base-d expansion

y = sup{an : n ∈ N}.
I Now the result y = limn→∞ an, is clear from the previous

theorem.
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Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.

I Define two sequences {an}n∈N and {bn}n∈N recursively by:
a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.
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Continuation

I It follows that limn→∞ an and limn→bn exist.

I Exercise: Show that

lim
n→∞

an = lim
n→∞

bn.

I This value is known as arithmetic-geometric mean of a and b.
7.
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Harmonic sums

I Example 17.9: For n ∈ N, take

hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

I Then {hn}n∈N is unbounded.

I Observe:

1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 1 +

1

2
+

1

2
.

I

1 +
1

2
+ · · ·+ 1

8
> 1 +

1

2
+

1

2
+

1

5
+ · · ·+ 1

8
= 1 + 3.(

1

2
).

I Continue this way, and complete the proof.

I END OF LECTURE 17.
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