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Lecture 18. Bolzano-Weierstrass theorem

> We recall a few notions from the previous lecture.

» Definition 17.4: A sequence {ap}nen of real numbers is said
to be increasing (or non-decreasing) if

an <apt1, VneN.

» A sequence {an}nen of real numbers is said to be decreasing
(or non-increasing) if

an > ant1, VneN.

» A sequence {an}nen of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

» Example 17.5: The sequence {%}nGN is a decreasing
sequence. The sequence {n},en is an increasing sequence.

» Note that an increasing sequence is always bounded below by
the first term, that is, a; < a,, Vn € N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

» Theorem 17.6: (i) An increasing sequence {a,}nen is
convergent if and only if it is bounded above. In such a case,

lim a, =sup{a,: neN}.
n—oo

» (ii) A decreasing sequence {a,}nen is convergent if and only if
it is bounded below. In such a case,

lim a, =inf{a,: ne N}

n—o0

» (iii) A monotonic sequence is convergent if and only if it is
bounded.
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Subsequences

» Definition 18.1: Let {a,}nen be a sequence of real numbers.
Let
n<n<n<:--
be a strictly increasing sequence of natural numbers. Then
{an, } ken or equivalently,
Anys Any,s Angs - - -
is called a sub-sequence of {a,}nen-
» It is a sampling of terms from the given sequence.
» Example 18.2: Let {a,}nen be the sequence defined by
an = % Taking nx = k?, we get get the subsequence
1 1 1
p’ ?7 372’ e e
> |t is the sequence {%}keN. Taking my = 2k, we get a new
subsequence {am, }ken, Which is,

11 1
3”)72,’)737....
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Tails of sequences

» Example 18.3: Let {ap}nen be a sequence.
» Then for any K € N,

aK; dK+15 dK+25 - - -

is a subsequence of {a,}pen. Here mm =K, m=K+1,....
» Such subsequences are known as tails of the given sequence.
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Subsequences of convergent sequences

» Theorem 18.4: Let {a,}qen be a sequence of real numbers
converging to some x € R. Then every subsequence of
{an}nen converges to x. In particular, every tail of this
sequence converges to x.

» Proof: Suppose {ap, }ken is a subsequence of {a,}pen.
» For € > 0, there exists K € N such that
lan — x| <€, Vn> K.
» Note that, as
1< m<m<ny<---,
> n, > k for every k.

» In particular, nx > K and consequently n, > K for all
m > K. So we have

lan, — x| <€, Vm>K.

» Hence {ap, }ken converges to x.
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Limit points

» Definition 18.5: Let {a,}nen be a sequence of real numbers.
Then y € R is said to be limit point of {ap}pen, if it has a
subsequence {aj, }ken converging to y.

» Note that the previous Theorem tells us that if {a,}ncn is a
sequence converging to x, then its set of limit points is the
singleton {x}.

> It is easy to see that the sequence {n} has no limit points. In
other words its set of limit points is empty.

» Example 18.6: Define a sequence {c,}nen by

| 2 ifnisodd
=13 3 ifniseven

Then clearly 2,3 are limit points of this sequence. It is an
exercise to show that there are no other limit points.

» Can a sequence have infinitely many limit points?
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Examples

» Example 18.7: Consider the enumeration of N x N as
(1,1),(1,2), (2,1), (3,1). (2,2), (1,3), (1,4), (2,3). (3,2). (4,1), (5. 1
» The sum of two co-ordinates, are
2,3,3,4,4,4,....

» Now consider the function (m, n) — % + % Applying this
function on the enumeration above we get a sequence of real
numbers as:

11 1 1 1 1 1 1 1 1
it 2t 2t st oty

» It is an exercise to show that the set of limit points of this
sequence is given by

{% :ne N} J{o}.
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Examples Continued

» Can the set of limit points of a sequence be uncountable?

» Example 18.8: Let {r, : n € N} be an enumeration of the
rational numbers in [0, 1], that is n — r, is a bijective function
from N to the set of rational numbers in [0, 1].

P It is an exercise to show that the set of limit points of this
sequence is the whole interval [0, 1].
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Monotone subsequence theorem

> Theorem 18.9: Every sequence of real numbers has a
monotone subsequence.

» Proof: Let {a,}nen be a sequence of real numbers.

» Call a natural number m as a peak for {an}pen if am > aj for
all n > m. In other words m is a peak if a, is an upper bound
for {am, am+1, am+2,---}-

» Let P C N be the set of peaks of {a,}pen-

> It is possible that P is the empty set.
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Continuation

> Now either P is infinite or it is finite.
» Suppose P is infinite and n; < ny < n3 < --- are elements of
P. Then we have

3n123n223n32"'

» In other words, {an, }ken is a decreasing subsequence of
{an}nGN-

» On the other hand suppose P is a finite set. Let M be the
maximal element of P. (If P is empty, take M = 0.).

» Now none of the n > (M + 1) is a peak for {a,}nen.

» Take ny = M+ 1. As (M + 1) is not a peak, there exists a
natural number ny > n; such that a,, > ap41.

> As ny is not a peak, there exists n3 > n» such that a,, > ap,.

» Continuing this way, after choosing ny, we can choose nj1,
where niy1 > ng and ap,,, > ap,.

» In other words, we have an increasing subsequence in:

an < ap, < ap, <
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Bolzano Weirstrass theorem

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}nEN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

» As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Sequential Compactness

» Theorem 18.11: Suppose [a, b] is an interval and {cp}nen is a
sequence of real numbers with ¢, € [a, b]. Then {c,}nen has
a convergent subsequence and any such subsequence
converges to a point in [a, b].

» This is clear from the Bolzano-Weirstrass theorem and is
known as sequential compactness of [a, b].

» Note that the same property does not hold for intervals like
(a, b) as the limit may not be an element of the interval.
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» Alternative proof of Bolzano-Weierstrass theorem:

» Let {a,}nen be a sequence of real numbers with a, € [a, b]
for every n.

» Take /1 = [a, b]. We divide the interval into two parts,
[a, a;b] and [252 b]. At least one of these intervals will have
infinitely many terms of the sequence. Pick that interval as /.

» Now divide / into two equal parts. At least one of them will
have infinitely many terms.

» Continue this way, to get a nested sequence of intervals:

/13/23/33"'
with length of [, = (é’,,__al). Appeal to nested intervals property.

» We know that [,y /n is a singleton, say {x}. We can choose
a subsequence of {a,}nen such that a,, € I for every k.

» Then we can conclude that limy_, an, = x. (Fill in the
details.)

» END OF LECTURE 18.



