

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 18. Bolzano-Weierstrass theorem

- ▶ We recall a few notions from the previous lecture.
- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

Lecture 18. Bolzano-Weierstrass theorem

- ▶ We recall a few notions from the previous lecture.
- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

Lecture 18. Bolzano-Weierstrass theorem

- ▶ We recall a few notions from the previous lecture.
- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.

Lecture 18. Bolzano-Weierstrass theorem

- ▶ We recall a few notions from the previous lecture.
- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.
- ▶ **Example 17.5:** The sequence $\{\frac{1}{n}\}_{n \in \mathbb{N}}$ is a decreasing sequence. The sequence $\{n\}_{n \in \mathbb{N}}$ is an increasing sequence.

Lecture 18. Bolzano-Weierstrass theorem

- ▶ We recall a few notions from the previous lecture.
- ▶ **Definition 17.4:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **increasing (or non-decreasing)** if

$$a_n \leq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **decreasing (or non-increasing)** if

$$a_n \geq a_{n+1}, \quad \forall n \in \mathbb{N}.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ of real numbers is said to be **monotonic** if it is either increasing or it is decreasing.
- ▶ **Example 17.5:** The sequence $\{\frac{1}{n}\}_{n \in \mathbb{N}}$ is a decreasing sequence. The sequence $\{n\}_{n \in \mathbb{N}}$ is an increasing sequence.
- ▶ Note that an increasing sequence is always bounded below by the first term, that is, $a_1 \leq a_n, \quad \forall n \in \mathbb{N}$ and similarly a decreasing sequence is always bounded above by the first term.

Bounded monotonic sequences

- **Theorem 17.6:** (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

Bounded monotonic sequences

- **Theorem 17.6:** (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

Bounded monotonic sequences

- **Theorem 17.6:** (i) An increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded above. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

- (ii) A decreasing sequence $\{a_n\}_{n \in \mathbb{N}}$ is convergent if and only if it is bounded below. In such a case,

$$\lim_{n \rightarrow \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

- (iii) A monotonic sequence is convergent if and only if it is bounded.

Subsequences

► **Definition 18.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.
Let

$$n_1 < n_2 < n_3 < \dots$$

be a strictly increasing sequence of natural numbers. Then $\{a_{n_k}\}_{k \in \mathbb{N}}$ or equivalently,

$$a_{n_1}, a_{n_2}, a_{n_3}, \dots$$

is called a **sub-sequence** of $\{a_n\}_{n \in \mathbb{N}}$.

Subsequences

► **Definition 18.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.

Let

$$n_1 < n_2 < n_3 < \dots$$

be a strictly increasing sequence of natural numbers. Then $\{a_{n_k}\}_{k \in \mathbb{N}}$ or equivalently,

$$a_{n_1}, a_{n_2}, a_{n_3}, \dots$$

is called a **sub-sequence** of $\{a_n\}_{n \in \mathbb{N}}$.

► It is a sampling of terms from the given sequence.

► **Example 18.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = \frac{1}{n}$. Taking $n_k = k^2$, we get the subsequence

$$\frac{1}{1^2}, \frac{1}{2^2}, \frac{1}{3^2}, \dots$$

Subsequences

► **Definition 18.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Let

$$n_1 < n_2 < n_3 < \dots$$

be a strictly increasing sequence of natural numbers. Then $\{a_{n_k}\}_{k \in \mathbb{N}}$ or equivalently,

$$a_{n_1}, a_{n_2}, a_{n_3}, \dots$$

is called a **sub-sequence** of $\{a_n\}_{n \in \mathbb{N}}$.

► It is a sampling of terms from the given sequence.

► **Example 18.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by $a_n = \frac{1}{n}$. Taking $n_k = k^2$, we get the subsequence

$$\frac{1}{1^2}, \frac{1}{2^2}, \frac{1}{3^2}, \dots$$

► It is the sequence $\{\frac{1}{k^2}\}_{k \in \mathbb{N}}$. Taking $m_k = 2^k$, we get a new subsequence $\{a_{m_k}\}_{k \in \mathbb{N}}$, which is,

$$\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots$$

Tails of sequences

- ▶ Example 18.3: Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence.

Tails of sequences

- ▶ **Example 18.3:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence.
- ▶ Then for any $K \in \mathbb{N}$,

$$a_K, a_{K+1}, a_{K+2}, \dots$$

is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$. Here $n_1 = K, n_2 = K + 1, \dots$

Tails of sequences

- ▶ Example 18.3: Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence.
- ▶ Then for any $K \in \mathbb{N}$,

$$a_K, a_{K+1}, a_{K+2}, \dots$$

is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$. Here $n_1 = K, n_2 = K + 1, \dots$

- ▶ Such subsequences are known as tails of the given sequence.

Subsequences of convergent sequences

- **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .

Subsequences of convergent sequences

- ▶ **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .
- ▶ **Proof:** Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$.

Subsequences of convergent sequences

- ▶ **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .
- ▶ **Proof:** Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ For $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

Subsequences of convergent sequences

- ▶ **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .
- ▶ **Proof:** Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ For $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ Note that, as

$$1 \leq n_1 < n_2 < n_3 < \dots,$$

- ▶ $n_k \geq k$ for every k .

Subsequences of convergent sequences

- ▶ **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .
- ▶ **Proof:** Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ For $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ Note that, as

$$1 \leq n_1 < n_2 < n_3 < \dots,$$

- ▶ $n_k \geq k$ for every k .
- ▶ In particular, $n_K \geq K$ and consequently $n_m \geq K$ for all $m \geq K$. So we have

$$|a_{n_m} - x| < \epsilon, \quad \forall m \geq K.$$

Subsequences of convergent sequences

- ▶ **Theorem 18.4:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to some $x \in \mathbb{R}$. Then every subsequence of $\{a_n\}_{n \in \mathbb{N}}$ converges to x . In particular, every tail of this sequence converges to x .
- ▶ **Proof:** Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ For $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \geq K.$$

- ▶ Note that, as

$$1 \leq n_1 < n_2 < n_3 < \dots,$$

- ▶ $n_k \geq k$ for every k .
- ▶ In particular, $n_K \geq K$ and consequently $n_m \geq K$ for all $m \geq K$. So we have

$$|a_{n_m} - x| < \epsilon, \quad \forall m \geq K.$$

- ▶ Hence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converges to x .

Limit points

- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .

Limit points

- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ Note that the previous Theorem tells us that if $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x , then its set of limit points is the singleton $\{x\}$.

Limit points

- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ Note that the previous Theorem tells us that if $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x , then its set of limit points is the singleton $\{x\}$.
- ▶ It is easy to see that the sequence $\{n\}$ has no limit points. In other words its set of limit points is empty.

Limit points

- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ Note that the previous Theorem tells us that if $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x , then its set of limit points is the singleton $\{x\}$.
- ▶ It is easy to see that the sequence $\{n\}$ has no limit points. In other words its set of limit points is empty.
- ▶ **Example 18.6:** Define a sequence $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 3 & \text{if } n \text{ is even} \end{cases}$$

Then clearly 2, 3 are limit points of this sequence. It is an exercise to show that there are no other limit points.

Limit points

- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ Note that the previous Theorem tells us that if $\{a_n\}_{n \in \mathbb{N}}$ is a sequence converging to x , then its set of limit points is the singleton $\{x\}$.
- ▶ It is easy to see that the sequence $\{n\}$ has no limit points. In other words its set of limit points is empty.
- ▶ **Example 18.6:** Define a sequence $\{c_n\}_{n \in \mathbb{N}}$ by

$$c_n = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 3 & \text{if } n \text{ is even} \end{cases}$$

Then clearly 2, 3 are limit points of this sequence. It is an exercise to show that there are no other limit points.

- ▶ Can a sequence have infinitely many limit points?

Examples

- **Example 18.7:** Consider the enumeration of $\mathbb{N} \times \mathbb{N}$ as

$(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1)$

Examples

- ▶ **Example 18.7:** Consider the enumeration of $\mathbb{N} \times \mathbb{N}$ as

$(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1)$

- ▶ The sum of two co-ordinates, are

$2, 3, 3, 4, 4, 4, \dots$

Examples

- **Example 18.7:** Consider the enumeration of $\mathbb{N} \times \mathbb{N}$ as

$(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1)$

- The sum of two co-ordinates, are

$2, 3, 3, 4, 4, 4, \dots$

- Now consider the function $(m, n) \mapsto \frac{1}{m} + \frac{1}{n}$. Applying this function on the enumeration above we get a sequence of real numbers as:

$$\frac{1}{1} + \frac{1}{1}, \quad \frac{1}{2} + \frac{1}{1}, \quad \frac{1}{2} + \frac{1}{1}, \quad \frac{1}{3} + \frac{1}{1}, \quad \frac{1}{1} + \frac{1}{4}, \quad \dots$$

Examples

- ▶ **Example 18.7:** Consider the enumeration of $\mathbb{N} \times \mathbb{N}$ as

$(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1)$

- ▶ The sum of two co-ordinates, are

$2, 3, 3, 4, 4, 4, \dots$

- ▶ Now consider the function $(m, n) \mapsto \frac{1}{m} + \frac{1}{n}$. Applying this function on the enumeration above we get a sequence of real numbers as:

$$\frac{1}{1} + \frac{1}{1}, \quad \frac{1}{2} + \frac{1}{1}, \quad \frac{1}{2} + \frac{1}{1}, \quad \frac{1}{3} + \frac{1}{1}, \quad \frac{1}{1} + \frac{1}{4}, \quad \dots$$

- ▶ It is an exercise to show that the set of limit points of this sequence is given by

$$\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \bigcup \{0\}.$$

Examples Continued

- ▶ Can the set of limit points of a sequence be uncountable?

Examples Continued

- ▶ Can the set of limit points of a sequence be uncountable?
- ▶ **Example 18.8:** Let $\{r_n : n \in \mathbb{N}\}$ be an enumeration of the rational numbers in $[0, 1]$, that is $n \mapsto r_n$ is a bijective function from \mathbb{N} to the set of rational numbers in $[0, 1]$.

Examples Continued

- ▶ Can the set of limit points of a sequence be uncountable?
- ▶ **Example 18.8:** Let $\{r_n : n \in \mathbb{N}\}$ be an enumeration of the rational numbers in $[0, 1]$, that is $n \mapsto r_n$ is a bijective function from \mathbb{N} to the set of rational numbers in $[0, 1]$.
- ▶ It is an exercise to show that the set of limit points of this sequence is the whole interval $[0, 1]$.

Monotone subsequence theorem

- **Theorem 18.9:** Every sequence of real numbers has a monotone subsequence.

Monotone subsequence theorem

- **Theorem 18.9:** Every sequence of real numbers has a monotone subsequence.
- **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.

Monotone subsequence theorem

- ▶ **Theorem 18.9:** Every sequence of real numbers has a monotone subsequence.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.
- ▶ Call a natural number m as a **peak** for $\{a_n\}_{n \in \mathbb{N}}$ if $a_m \geq a_n$ for all $n \geq m$. In other words m is a peak if a_m is an upper bound for $\{a_m, a_{m+1}, a_{m+2}, \dots\}$.

Monotone subsequence theorem

- ▶ **Theorem 18.9:** Every sequence of real numbers has a monotone subsequence.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.
- ▶ Call a natural number m as a **peak** for $\{a_n\}_{n \in \mathbb{N}}$ if $a_m \geq a_n$ for all $n \geq m$. In other words m is a peak if a_m is an upper bound for $\{a_m, a_{m+1}, a_{m+2}, \dots\}$.
- ▶ Let $P \subseteq \mathbb{N}$ be the set of peaks of $\{a_n\}_{n \in \mathbb{N}}$.

Monotone subsequence theorem

- ▶ **Theorem 18.9:** Every sequence of real numbers has a monotone subsequence.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.
- ▶ Call a natural number m as a **peak** for $\{a_n\}_{n \in \mathbb{N}}$ if $a_m \geq a_n$ for all $n \geq m$. In other words m is a peak if a_m is an upper bound for $\{a_m, a_{m+1}, a_{m+2}, \dots\}$.
- ▶ Let $P \subseteq \mathbb{N}$ be the set of peaks of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ It is possible that P is the empty set.

Continuation

- ▶ Now either P is infinite or it is finite.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$.)

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$).
- ▶ Now none of the $n \geq (M + 1)$ is a peak for $\{a_n\}_{n \in \mathbb{N}}$.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$).
- ▶ Now none of the $n \geq (M + 1)$ is a peak for $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Take $n_1 = M + 1$. As $(M + 1)$ is not a peak, there exists a natural number $n_2 > n_1$ such that $a_{n_2} > a_{M+1}$.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$).
- ▶ Now none of the $n \geq (M + 1)$ is a peak for $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Take $n_1 = M + 1$. As $(M + 1)$ is not a peak, there exists a natural number $n_2 > n_1$ such that $a_{n_2} > a_{M+1}$.
- ▶ As n_2 is not a peak, there exists $n_3 > n_2$ such that $a_{n_3} > a_{n_2}$.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$).
- ▶ Now none of the $n \geq (M + 1)$ is a peak for $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Take $n_1 = M + 1$. As $(M + 1)$ is not a peak, there exists a natural number $n_2 > n_1$ such that $a_{n_2} > a_{M+1}$.
- ▶ As n_2 is not a peak, there exists $n_3 > n_2$ such that $a_{n_3} > a_{n_2}$.
- ▶ Continuing this way, after choosing n_k , we can choose n_{k+1} , where $n_{k+1} > n_k$ and $a_{n_{k+1}} > a_{n_k}$.

Continuation

- ▶ Now either P is infinite or it is finite.
- ▶ Suppose P is infinite and $n_1 < n_2 < n_3 < \dots$ are elements of P . Then we have

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \dots$$

- ▶ In other words, $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a decreasing subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ On the other hand suppose P is a finite set. Let M be the maximal element of P . (If P is empty, take $M = 0$).
- ▶ Now none of the $n \geq (M + 1)$ is a peak for $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Take $n_1 = M + 1$. As $(M + 1)$ is not a peak, there exists a natural number $n_2 > n_1$ such that $a_{n_2} > a_{M+1}$.
- ▶ As n_2 is not a peak, there exists $n_3 > n_2$ such that $a_{n_3} > a_{n_2}$.
- ▶ Continuing this way, after choosing n_k , we can choose n_{k+1} , where $n_{k+1} > n_k$ and $a_{n_{k+1}} > a_{n_k}$.
- ▶ In other words, we have an increasing subsequence in:

$$a_{n_1} < a_{n_2} < a_{n_3} < \dots$$

Bolzano Weirstrass theorem

- Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.

Bolzano Weirstrass theorem

- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.

Bolzano Weirstrass theorem

- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.

Bolzano Weirstrass theorem

- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.

Bolzano Weirstrass theorem

- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.
- ▶ As every bounded monotonic sequence is convergent, this subsequence is convergent. This completes the proof.

Sequential Compactness

- ▶ **Theorem 18.11:** Suppose $[a, b]$ is an interval and $\{c_n\}_{n \in \mathbb{N}}$ is a sequence of real numbers with $c_n \in [a, b]$. Then $\{c_n\}_{n \in \mathbb{N}}$ has a convergent subsequence and any such subsequence converges to a point in $[a, b]$.

Sequential Compactness

- ▶ **Theorem 18.11:** Suppose $[a, b]$ is an interval and $\{c_n\}_{n \in \mathbb{N}}$ is a sequence of real numbers with $c_n \in [a, b]$. Then $\{c_n\}_{n \in \mathbb{N}}$ has a convergent subsequence and any such subsequence converges to a point in $[a, b]$.
- ▶ This is clear from the Bolzano-Weirstrass theorem and is known as **sequential compactness** of $[a, b]$.

Sequential Compactness

- ▶ **Theorem 18.11:** Suppose $[a, b]$ is an interval and $\{c_n\}_{n \in \mathbb{N}}$ is a sequence of real numbers with $c_n \in [a, b]$. Then $\{c_n\}_{n \in \mathbb{N}}$ has a convergent subsequence and any such subsequence converges to a point in $[a, b]$.
- ▶ This is clear from the Bolzano-Weirstrass theorem and is known as **sequential compactness** of $[a, b]$.
- ▶ Note that the same property does not hold for intervals like (a, b) as the limit may not be an element of the interval.

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .
- ▶ Now divide I_2 into two equal parts. At least one of them will have infinitely many terms.

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .
- ▶ Now divide I_2 into two equal parts. At least one of them will have infinitely many terms.
- ▶ Continue this way, to get a nested sequence of intervals:

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

with length of $I_n = \frac{(b-a)}{2^{n-1}}$. Appeal to nested intervals property.

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .
- ▶ Now divide I_2 into two equal parts. At least one of them will have infinitely many terms.
- ▶ Continue this way, to get a nested sequence of intervals:

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

with length of $I_n = \frac{(b-a)}{2^{n-1}}$. Appeal to nested intervals property.

- ▶ We know that $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton, say $\{x\}$. We can choose a subsequence of $\{a_n\}_{n \in \mathbb{N}}$ such that $a_{n_k} \in I_k$ for every k .

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .
- ▶ Now divide I_2 into two equal parts. At least one of them will have infinitely many terms.
- ▶ Continue this way, to get a nested sequence of intervals:

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

with length of $I_n = \frac{(b-a)}{2^{n-1}}$. Appeal to nested intervals property.

- ▶ We know that $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton, say $\{x\}$. We can choose a subsequence of $\{a_n\}_{n \in \mathbb{N}}$ such that $a_{n_k} \in I_k$ for every k .
- ▶ Then we can conclude that $\lim_{k \rightarrow \infty} a_{n_k} = x$. (Fill in the details.)

Alternative Proof

- ▶ Alternative proof of Bolzano-Weierstrass theorem:
- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with $a_n \in [a, b]$ for every n .
- ▶ Take $I_1 = [a, b]$. We divide the interval into two parts, $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$. At least one of these intervals will have infinitely many terms of the sequence. Pick that interval as I_2 .
- ▶ Now divide I_2 into two equal parts. At least one of them will have infinitely many terms.
- ▶ Continue this way, to get a nested sequence of intervals:

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

with length of $I_n = \frac{(b-a)}{2^{n-1}}$. Appeal to nested intervals property.

- ▶ We know that $\bigcap_{n \in \mathbb{N}} I_n$ is a singleton, say $\{x\}$. We can choose a subsequence of $\{a_n\}_{n \in \mathbb{N}}$ such that $a_{n_k} \in I_k$ for every k .
- ▶ Then we can conclude that $\lim_{k \rightarrow \infty} a_{n_k} = x$. (Fill in the details.)
- ▶ **END OF LECTURE 18.**