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Lecture 18. Bolzano-Weierstrass theorem

I We recall a few notions from the previous lecture.

I Definition 17.4: A sequence {an}n∈N of real numbers is said
to be increasing (or non-decreasing) if

an ≤ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be decreasing
(or non-increasing) if

an ≥ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

I Example 17.5: The sequence { 1n}n∈N is a decreasing
sequence. The sequence {n}n∈N is an increasing sequence.

I Note that an increasing sequence is always bounded below by
the first term, that is, a1 ≤ an, ∀n ∈ N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

I Theorem 17.6: (i) An increasing sequence {an}n∈N is
convergent if and only if it is bounded above. In such a case,

lim
n→∞

an = sup{an : n ∈ N}.

I (ii) A decreasing sequence {an}n∈N is convergent if and only if
it is bounded below. In such a case,

lim
n→∞

an = inf{an : n ∈ N}.

I (iii) A monotonic sequence is convergent if and only if it is
bounded.
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Subsequences

I Definition 18.1: Let {an}n∈N be a sequence of real numbers.
Let

n1 < n2 < n3 < · · ·
be a strictly increasing sequence of natural numbers. Then
{ank}k∈N or equivalently,

an1 , an2 , an3 , . . .

is called a sub-sequence of {an}n∈N.

I It is a sampling of terms from the given sequence.
I Example 18.2: Let {an}n∈N be the sequence defined by

an = 1
n . Taking nk = k2, we get get the subsequence

1

12
,

1

22
,

1

32
, . . . .

I It is the sequence { 1
k2 }k∈N. Taking mk = 2k , we get a new

subsequence {amk
}k∈N, which is,

1

2
,

1

22
,

1

23
, . . . .
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Tails of sequences

I Example 18.3: Let {an}n∈N be a sequence.

I Then for any K ∈ N,

aK , aK+1, aK+2, . . .

is a subsequence of {an}n∈N. Here n1 = K , n2 = K + 1, . . . .

I Such subsequences are known as tails of the given sequence.
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Subsequences of convergent sequences

I Theorem 18.4: Let {an}n∈N be a sequence of real numbers
converging to some x ∈ R. Then every subsequence of
{an}n∈N converges to x . In particular, every tail of this
sequence converges to x .

I Proof: Suppose {ank}k∈N is a subsequence of {an}n∈N.
I For ε > 0, there exists K ∈ N such that

|an − x | < ε, ∀n ≥ K .

I Note that, as
1 ≤ n1 < n2 < n3 < · · · ,

I nk ≥ k for every k.
I In particular, nK ≥ K and consequently nm ≥ K for all

m ≥ K . So we have

|anm − x | < ε, ∀m ≥ K .

I Hence {ank}k∈N converges to x .
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Limit points

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Note that the previous Theorem tells us that if {an}n∈N is a
sequence converging to x , then its set of limit points is the
singleton {x}.

I It is easy to see that the sequence {n} has no limit points. In
other words its set of limit points is empty.

I Example 18.6: Define a sequence {cn}n∈N by

cn =

{
2 if n is odd
3 if n is even

Then clearly 2, 3 are limit points of this sequence. It is an
exercise to show that there are no other limit points.

I Can a sequence have infinitely many limit points?
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Examples

I Example 18.7: Consider the enumeration of N× N as

(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1), . . . ,

I The sum of two co-ordinates, are

2, 3, 3, 4, 4, 4, . . . .

I Now consider the function (m, n) 7→ 1
m + 1

n . Applying this
function on the enumeration above we get a sequence of real
numbers as:

1

1
+

1

1
,

1

2
+

1

1
,

1

2
+

1

1
,

1

3
+

1

1
,

1

1
+

1

4
, . . . .

I It is an exercise to show that the set of limit points of this
sequence is given by

{1

n
: n ∈ N}

⋃
{0}.
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Examples Continued

I Can the set of limit points of a sequence be uncountable?

I Example 18.8: Let {rn : n ∈ N} be an enumeration of the
rational numbers in [0, 1], that is n 7→ rn is a bijective function
from N to the set of rational numbers in [0, 1].

I It is an exercise to show that the set of limit points of this
sequence is the whole interval [0, 1].
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Monotone subsequence theorem

I Theorem 18.9: Every sequence of real numbers has a
monotone subsequence.

I Proof: Let {an}n∈N be a sequence of real numbers.

I Call a natural number m as a peak for {an}n∈N if am ≥ an for
all n ≥ m. In other words m is a peak if am is an upper bound
for {am, am+1, am+2, . . .}.

I Let P ⊆ N be the set of peaks of {an}n∈N.

I It is possible that P is the empty set.
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Continuation

I Now either P is infinite or it is finite.

I Suppose P is infinite and n1 < n2 < n3 < · · · are elements of
P. Then we have

an1 ≥ an2 ≥ an3 ≥ · · · .
I In other words, {ank}k∈N is a decreasing subsequence of
{an}n∈N.

I On the other hand suppose P is a finite set. Let M be the
maximal element of P. (If P is empty, take M = 0.).

I Now none of the n ≥ (M + 1) is a peak for {an}n∈N.
I Take n1 = M + 1. As (M + 1) is not a peak, there exists a

natural number n2 > n1 such that an2 > aM+1.
I As n2 is not a peak, there exists n3 > n2 such that an3 > an2 .
I Continuing this way, after choosing nk , we can choose nk+1,

where nk+1 > nk and ank+1
> ank .

I In other words, we have an increasing subsequence in:

an1 < an2 < an3 < · · ·
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Bolzano Weirstrass theorem

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Sequential Compactness

I Theorem 18.11: Suppose [a, b] is an interval and {cn}n∈N is a
sequence of real numbers with cn ∈ [a, b]. Then {cn}n∈N has
a convergent subsequence and any such subsequence
converges to a point in [a, b].

I This is clear from the Bolzano-Weirstrass theorem and is
known as sequential compactness of [a, b].

I Note that the same property does not hold for intervals like
(a, b) as the limit may not be an element of the interval.
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Alternative Proof

I Alternative proof of Bolzano-Weierstrass theorem:

I Let {an}n∈N be a sequence of real numbers with an ∈ [a, b]
for every n.

I Take I1 = [a, b]. We divide the interval into two parts,
[a, a+b

2 ] and [a+b
2 , b]. At least one of these intervals will have

infinitely many terms of the sequence. Pick that interval as I2.
I Now divide I2 into two equal parts. At least one of them will

have infinitely many terms.
I Continue this way, to get a nested sequence of intervals:

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

with length of In = (b−a)
2n−1 . Appeal to nested intervals property.

I We know that
⋂

n∈N In is a singleton, say {x}. We can choose
a subsequence of {an}n∈N such that ank ∈ Ik for every k .

I Then we can conclude that limk→∞ ank = x . (Fill in the
details.)

I END OF LECTURE 18.
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