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» We recall the following important theorem:

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}neN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

P> As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Cauchy sequences

» Can we know whether a sequence is convergent without
knowing the limit?

» Definition 19.1: A sequence {ap}nen is said to be Cauchy if
for every € > 0, there exists K € N such that

lam — anl <€, Vm,n> K.

» We may write |a, — a,| < € equivalently as
am € (an—€,an+¢€) or as (am — an) € (—¢, +¢).
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Convergent sequences are Cauchy

» Proposition 19.2: Convergent sequences of real numbers is
Cauchy.

» Proof: Let {a,}nen be a sequence of real numbers converging
to a real number x.

» For ¢ > 0, take K € N, such that
lan — x| < g, Vn> K.
» Now for m, n > K, by triangle inequality,
€ €
lam — an| < lam — x| + |x — an| <§+§:e.

» Hence {ap}qen is Cauchy.
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Proposition 19.3: Cauchy sequences of real numbers are
bounded.

Proof: Let {a,},en be a Cauchy sequence.
Take € = 1. Using Cauchy property, choose K € N such that

lam —an| <1, Vm,n> K.
Taking n = K, in the inequality above, we get
lam —ak| <1, Vm> K.
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Then we have |a,| < M, for all m.
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Proposition 19.3: Cauchy sequences of real numbers are
bounded.

Proof: Let {a,},en be a Cauchy sequence.
Take € = 1. Using Cauchy property, choose K € N such that

lam —an| <1, Vm,n> K.
Taking n = K, in the inequality above, we get
lam —ak| <1, Vm> K.

In particular, |am| < |ak| +1, Ym> K.
Take

M = max{|a1], a2, .- -, |ak-1], |ak| + 1}.
Then we have |a,| < M, for all m.

Hence {ap}nen is bounded.
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Real Cauchy sequences are convergent

» Theorem 19.4: A sequence of real numbers is convergent if
and only it is Cauchy.

» Proof: We have seen that every convergent is Cauchy. Now to
see the converse, let {a,}nen be a Cauchy sequence.

» By previous Proposition we know that {a,},cn is bounded.

» By Bolzano-Weierstrass theorem {ap}hen has a convergent
subsequence.

» Suppose {ap, }ken is a subsequence converging to some
x € R.

» Now using Cauchy property, for € > 0, choose K such that
lam — an| < g, VYm,n > Kj.
» Using convergence of {ay, }ken, choose K> such that

lan, — x| < g, Vk > Ka.
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» Take K = max{Ki, nk,}. Note that nx > K > Kj and
K > K>.

» Now for m > K, we have

€ €
]am—x\§]am—anK]+\anK—x]<§+§:e.

» Hence {ap}qen converges to x.
» This completes the proof.
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Here are some general comments for your information.
Later on you would see that the notion of distance:

d(a, b) = |a — b

on the real line can be generalized to more general spaces. It
is then called ‘metric’.

There is a large theory of metric spaces.

The idea of convergence of sequences as well as Cauchy
property makes sense for metric spaces.

A metric space is said to be complete if every Cauchy
sequence converges to a point in the space.

For instance, [0, 1] is complete, but (0,1),Q are not complete.
The set of real numbers is complete due to least upper bound
axiom, where as QQ is not complete. For this reason the least
upper bound axiom is also known as completeness axiom.
There is a way of completing every metric space and if we
complete Q by this procedure we get the set of real numbers

® Thic ic ane wav of conctriictinoe R
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We know that finite sums like Zf:l aj=aita+---+a,are

well-defined for real numbers due to associativity of addition.

It is a natural question as to when }772, a; or

agta+a+---
is meaningful.
Definition 19.5: Suppose a1, az, . .. are real numbers. Take
Sp = Zf:l aj. Here {s,}nen are known as partial sums of the

) ] k . oo L
series. If lim,_oo Sp exists then the series, ijl aj is said to
converge and
o
E aj = lim s,.
n—0o0
j=1

If lim,— oo S, does not exist, the series Zj'il a;j is said to
diverge.
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Geometric Series

> Example 19.6 (Geometric series): >.°°, & = 1.

» Proof: Recall that for any real numbjerlrz;é land neN,
1—|—r—|—r2—i—---—|—r”_1:1_7rn.
1—r
» This can be proved by induction.
> Now
1
Sp = o
j=1
1 1
Syt EtT Y,
1. 1 1. 1
= 5[1_|_§+...+(§)( )]
_ 11-()
o2 11
1
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» Using Bernoulli's inequality, we have seen that % < ﬁ and
hence lim,_, 2%, = 0. Hence lim, s, = 1.
» Similarly, one can show that for any |r| < 1, lim, 0o r" 1 =0

and
1

1—r

T4r+rP4.. =
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> Theorem 19.7: Suppose a series ) *; a; converges. Then

lim a, =0.
n—o0

However, the converse is not true.
. —_ n . 1 oo .
» Proof: Suppose s, = Zj:1 aj. Assuming that Zj:l aj
converges, lim,_, ., s, exists.

» By Cauchy property, for € > 0, there exists K € N such that
|Sm — sn| <€, Vm,n> K.

» By taking m = n+ 1, we get |ap11| = |Sp+1 — Sn| < € for
n> K.

» Equivalently, |a,| < € for n > K 4 1. Hence {ap}nen
converges to 0.

P> The converse is not true is seen by considering the ‘Harmonic
series’ :

> 3 1 diverges as the corresponding partial sums are

j=1j
unbounded.
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Alternating sum

> Theorem 19.8: A series > X, aj, where a; = (—1Y"1b;, with
a decreasing sequence {b;}jcy of positive real numbers is
convergent if and only if lim,_. b, = 0.

» Proof: Since |aj| = bj, the necessity of lim,_,oc a, = 0 for
convergence implies lim,_, b, = 0. Hence the necessity of
this condition for the convergence of Zj’il a;j is clear from the
previous theorem.

» Now suppose lim, o b, = 0.

» Consider the partial sums
n
Sn = Zaj = by —by+ b3 — by +---+(=1)""b,.
j=1

> First look at the even terms, s, 54, .. ..

» We have, spxi2 = Spk + boky1 — bokgo.
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» Since {bj}jcn is a decreasing sequence, boyxy1 — boky2 > 0.
Consequently, sox < Sppio

» Therefore {syk }ken is an increasing sequence.

» Similarly {spx—1}ken is a decreasing sequence. In particular
S1 > Soi_1 for every k € N.

» Also Sox12 = Sokt1 — bokt2 < Sokq1 < 51

v

Therefore {spx }ken is bounded above by s;.
» Similarly {spx—1}ken is bounded below by s, = b; — by.
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vvvyyypy

Since {bj}jcn is a decreasing sequence, boyy1 — boky2 > 0.
Consequently, sox < Sppio

Therefore {sy }ken is an increasing sequence.

Similarly {s>k—1}ken is a decreasing sequence. In particular
S1 > Soi_1 for every k € N.

Also s 42 = Sokt1 — bakt2 < o1 < 51

Therefore {spx }ken is bounded above by s;.

Similarly {s>k—1}ken is bounded below by s, = by — bs.
That is,

b —bh=5<5 < - <5 <5y 1<---53<s1=bh
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> So limg_so0 Sok and limy_,o Sok—1 exist.
P> It is an exercise to see that these limits are same.

» It follows that
>
JjEeN

converges to the same value.
» END OF LECTURE 19.



