

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 19. Cauchy criterion

- We recall the following important theorem:

Lecture 19. Cauchy criterion

- ▶ We recall the following important theorem:
- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.

Lecture 19. Cauchy criterion

- ▶ We recall the following important theorem:
- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.

Lecture 19. Cauchy criterion

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.

Lecture 19. Cauchy criterion

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.

Lecture 19. Cauchy criterion

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.
- ▶ As every bounded monotonic sequence is convergent, this subsequence is convergent. This completes the proof.

Cauchy sequences

- ▶ Can we know whether a sequence is convergent without knowing the limit?

Cauchy sequences

- ▶ Can we know whether a sequence is convergent without knowing the limit?
- ▶ **Definition 19.1:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to be **Cauchy** if for every $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_m - a_n| < \epsilon, \quad \forall m, n \geq K.$$

Cauchy sequences

- ▶ Can we know whether a sequence is convergent without knowing the limit?
- ▶ **Definition 19.1:** A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to be **Cauchy** if for every $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|a_m - a_n| < \epsilon, \quad \forall m, n \geq K.$$

- ▶ We may write $|a_m - a_n| < \epsilon$ equivalently as $a_m \in (a_n - \epsilon, a_n + \epsilon)$ or as $(a_m - a_n) \in (-\epsilon, +\epsilon)$.

Convergent sequences are Cauchy

- ▶ **Proposition 19.2:** Convergent sequences of real numbers is Cauchy.

Convergent sequences are Cauchy

- ▶ **Proposition 19.2:** Convergent sequences of real numbers is Cauchy.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to a real number x .

Convergent sequences are Cauchy

- ▶ **Proposition 19.2:** Convergent sequences of real numbers is Cauchy.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to a real number x .
- ▶ For $\epsilon > 0$, take $K \in \mathbb{N}$, such that

$$|a_n - x| < \frac{\epsilon}{2}, \quad \forall n \geq K.$$

Convergent sequences are Cauchy

- ▶ **Proposition 19.2:** Convergent sequences of real numbers is Cauchy.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to a real number x .
- ▶ For $\epsilon > 0$, take $K \in \mathbb{N}$, such that

$$|a_n - x| < \frac{\epsilon}{2}, \quad \forall n \geq K.$$

- ▶ Now for $m, n \geq K$, by triangle inequality,

$$|a_m - a_n| \leq |a_m - x| + |x - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Convergent sequences are Cauchy

- ▶ **Proposition 19.2:** Convergent sequences of real numbers is Cauchy.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers converging to a real number x .
- ▶ For $\epsilon > 0$, take $K \in \mathbb{N}$, such that

$$|a_n - x| < \frac{\epsilon}{2}, \quad \forall n \geq K.$$

- ▶ Now for $m, n \geq K$, by triangle inequality,

$$|a_m - a_n| \leq |a_m - x| + |x - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- ▶ Hence $\{a_n\}_{n \in \mathbb{N}}$ is Cauchy.

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

- ▶ Taking $n = K$, in the inequality above, we get

$$|a_m - a_K| < 1, \quad \forall m \geq K.$$

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

- ▶ Taking $n = K$, in the inequality above, we get

$$|a_m - a_K| < 1, \quad \forall m \geq K.$$

- ▶ In particular, $|a_m| < |a_K| + 1, \quad \forall m \geq K.$

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

- ▶ Taking $n = K$, in the inequality above, we get

$$|a_m - a_K| < 1, \quad \forall m \geq K.$$

- ▶ In particular, $|a_m| < |a_K| + 1, \quad \forall m \geq K.$
- ▶ Take

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |a_K| + 1\}.$$

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

- ▶ Taking $n = K$, in the inequality above, we get

$$|a_m - a_K| < 1, \quad \forall m \geq K.$$

- ▶ In particular, $|a_m| < |a_K| + 1, \quad \forall m \geq K.$
- ▶ Take

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |a_K| + 1\}.$$

- ▶ Then we have $|a_m| \leq M$, for all m .

Cauchy sequences are bounded

- ▶ **Proposition 19.3:** Cauchy sequences of real numbers are bounded.
- ▶ **Proof:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ Take $\epsilon = 1$. Using Cauchy property, choose $K \in \mathbb{N}$ such that

$$|a_m - a_n| < 1, \quad \forall m, n \geq K.$$

- ▶ Taking $n = K$, in the inequality above, we get

$$|a_m - a_K| < 1, \quad \forall m \geq K.$$

- ▶ In particular, $|a_m| < |a_K| + 1, \quad \forall m \geq K.$
- ▶ Take

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |a_K| + 1\}.$$

- ▶ Then we have $|a_m| \leq M$, for all m .
- ▶ Hence $\{a_n\}_{n \in \mathbb{N}}$ is bounded.

Real Cauchy sequences are convergent

- **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ By previous Proposition we know that $\{a_n\}_{n \in \mathbb{N}}$ is bounded.

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ By previous Proposition we know that $\{a_n\}_{n \in \mathbb{N}}$ is bounded.
- ▶ By Bolzano-Weierstrass theorem $\{a_n\}_{n \in \mathbb{N}}$ has a convergent subsequence.

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ By previous Proposition we know that $\{a_n\}_{n \in \mathbb{N}}$ is bounded.
- ▶ By Bolzano-Weierstrass theorem $\{a_n\}_{n \in \mathbb{N}}$ has a convergent subsequence.
- ▶ Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence converging to some $x \in \mathbb{R}$.

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ By previous Proposition we know that $\{a_n\}_{n \in \mathbb{N}}$ is bounded.
- ▶ By Bolzano-Weierstrass theorem $\{a_n\}_{n \in \mathbb{N}}$ has a convergent subsequence.
- ▶ Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence converging to some $x \in \mathbb{R}$.
- ▶ Now using Cauchy property, for $\epsilon > 0$, choose K_1 such that

$$|a_m - a_n| < \frac{\epsilon}{2}, \quad \forall m, n \geq K_1.$$

Real Cauchy sequences are convergent

- ▶ **Theorem 19.4:** A sequence of real numbers is convergent if and only if it is Cauchy.
- ▶ **Proof:** We have seen that every convergent is Cauchy. Now to see the converse, let $\{a_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence.
- ▶ By previous Proposition we know that $\{a_n\}_{n \in \mathbb{N}}$ is bounded.
- ▶ By Bolzano-Weierstrass theorem $\{a_n\}_{n \in \mathbb{N}}$ has a convergent subsequence.
- ▶ Suppose $\{a_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence converging to some $x \in \mathbb{R}$.
- ▶ Now using Cauchy property, for $\epsilon > 0$, choose K_1 such that

$$|a_m - a_n| < \frac{\epsilon}{2}, \quad \forall m, n \geq K_1.$$

- ▶ Using convergence of $\{a_{n_k}\}_{k \in \mathbb{N}}$, choose K_2 such that

$$|a_{n_k} - x| < \frac{\epsilon}{2}, \quad \forall k \geq K_2.$$

Continuation

- ▶ Take $K = \max\{K_1, n_{K_2}\}$. Note that $n_K \geq K \geq K_1$ and $K \geq K_2$.

Continuation

- ▶ Take $K = \max\{K_1, n_{K_2}\}$. Note that $n_K \geq K \geq K_1$ and $K \geq K_2$.
- ▶ Now for $m \geq K$, we have

$$|a_m - x| \leq |a_m - a_{n_K}| + |a_{n_K} - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Continuation

- ▶ Take $K = \max\{K_1, n_{K_2}\}$. Note that $n_K \geq K \geq K_1$ and $K \geq K_2$.
- ▶ Now for $m \geq K$, we have

$$|a_m - x| \leq |a_m - a_{n_K}| + |a_{n_K} - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- ▶ Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to x .

Continuation

- ▶ Take $K = \max\{K_1, n_{K_2}\}$. Note that $n_K \geq K \geq K_1$ and $K \geq K_2$.
- ▶ Now for $m \geq K$, we have

$$|a_m - x| \leq |a_m - a_{n_K}| + |a_{n_K} - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- ▶ Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to x .
- ▶ This completes the proof.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.
- ▶ The idea of convergence of sequences as well as Cauchy property makes sense for metric spaces.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.
- ▶ The idea of convergence of sequences as well as Cauchy property makes sense for metric spaces.
- ▶ A metric space is said to be **complete** if every Cauchy sequence converges to a point in the space.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.
- ▶ The idea of convergence of sequences as well as Cauchy property makes sense for metric spaces.
- ▶ A metric space is said to be **complete** if every Cauchy sequence converges to a point in the space.
- ▶ For instance, $[0, 1]$ is complete, but $(0, 1)$, \mathbb{Q} are not complete.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.
- ▶ The idea of convergence of sequences as well as Cauchy property makes sense for metric spaces.
- ▶ A metric space is said to be **complete** if every Cauchy sequence converges to a point in the space.
- ▶ For instance, $[0, 1]$ is complete, but $(0, 1)$, \mathbb{Q} are not complete.
- ▶ The set of real numbers is complete due to least upper bound axiom, whereas \mathbb{Q} is not complete. For this reason the least upper bound axiom is also known as completeness axiom.

Cauchy sequences and completeness

- ▶ Here are some general comments for your information.
- ▶ Later on you would see that the notion of distance:

$$d(a, b) = |a - b|$$

on the real line can be generalized to more general spaces. It is then called 'metric'.

- ▶ There is a large theory of metric spaces.
- ▶ The idea of convergence of sequences as well as Cauchy property makes sense for metric spaces.
- ▶ A metric space is said to be **complete** if every Cauchy sequence converges to a point in the space.
- ▶ For instance, $[0, 1]$ is complete, but $(0, 1)$, \mathbb{Q} are not complete.
- ▶ The set of real numbers is complete due to least upper bound axiom, whereas \mathbb{Q} is not complete. For this reason the least upper bound axiom is also known as completeness axiom.
- ▶ There is a way of completing every metric space and if we complete \mathbb{Q} by this procedure we get the set of real numbers \mathbb{R} . This is one way of constructing \mathbb{R}

Infinite series

- We know that finite sums like $\sum_{j=1}^n a_j = a_1 + a_2 + \cdots + a_n$ are well-defined for real numbers due to associativity of addition.

Infinite series

- ▶ We know that finite sums like $\sum_{j=1}^n a_j = a_1 + a_2 + \cdots + a_n$ are well-defined for real numbers due to associativity of addition.
- ▶ It is a natural question as to when $\sum_{j=1}^{\infty} a_j$ or

$$a_1 + a_2 + a_3 + \cdots$$

is meaningful.

Infinite series

- ▶ We know that finite sums like $\sum_{j=1}^n a_j = a_1 + a_2 + \cdots + a_n$ are well-defined for real numbers due to associativity of addition.
- ▶ It is a natural question as to when $\sum_{j=1}^{\infty} a_j$ or

$$a_1 + a_2 + a_3 + \cdots$$

is meaningful.

- ▶ **Definition 19.5:** Suppose a_1, a_2, \dots are real numbers. Take $s_n = \sum_{j=1}^n a_j$. Here $\{s_n\}_{n \in \mathbb{N}}$ are known as **partial sums** of the series. If $\lim_{n \rightarrow \infty} s_n$ exists then the **series**, $\sum_{j=1}^{\infty} a_j$ is said to converge and

$$\sum_{j=1}^{\infty} a_j := \lim_{n \rightarrow \infty} s_n.$$

If $\lim_{n \rightarrow \infty} s_n$ does not exist, the series $\sum_{j=1}^{\infty} a_j$ is said to diverge.

Geometric Series

- ▶ Example 19.6 (Geometric series): $\sum_{j=1}^{\infty} \frac{1}{2^j} = 1$.

Geometric Series

- ▶ Example 19.6 (Geometric series): $\sum_{j=1}^{\infty} \frac{1}{2^j} = 1$.
- ▶ Proof: Recall that for any real number $r \neq 1$ and $n \in \mathbb{N}$,

$$1 + r + r^2 + \cdots + r^{n-1} = \frac{1 - r^n}{1 - r}.$$

Geometric Series

- ▶ Example 19.6 (Geometric series): $\sum_{j=1}^{\infty} \frac{1}{2^j} = 1$.
- ▶ Proof: Recall that for any real number $r \neq 1$ and $n \in \mathbb{N}$,

$$1 + r + r^2 + \cdots + r^{n-1} = \frac{1 - r^n}{1 - r}.$$

- ▶ This can be proved by induction.

Geometric Series

- ▶ Example 19.6 (Geometric series): $\sum_{j=1}^{\infty} \frac{1}{2^j} = 1$.
- ▶ Proof: Recall that for any real number $r \neq 1$ and $n \in \mathbb{N}$,

$$1 + r + r^2 + \cdots + r^{n-1} = \frac{1 - r^n}{1 - r}.$$

- ▶ This can be proved by induction.
- ▶ Now

$$\begin{aligned}s_n &:= \sum_{j=1}^n \frac{1}{2^j} \\&= \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n} \\&= \frac{1}{2} \left[1 + \frac{1}{2} + \cdots + \left(\frac{1}{2}\right)^{(n-1)} \right] \\&= \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \\&= 1 - \frac{1}{2^n}\end{aligned}$$

Continuation

- ▶ Using Bernoulli's inequality, we have seen that $\frac{1}{2^n} < \frac{1}{n+1}$ and hence $\lim_{n \rightarrow \infty} \frac{1}{2^n} = 0$. Hence $\lim_{n \rightarrow \infty} s_n = 1$.

Continuation

- ▶ Using Bernoulli's inequality, we have seen that $\frac{1}{2^n} < \frac{1}{n+1}$ and hence $\lim_{n \rightarrow \infty} \frac{1}{2^n} = 0$. Hence $\lim_{n \rightarrow \infty} s_n = 1$.
- ▶ Similarly, one can show that for any $|r| < 1$, $\lim_{n \rightarrow \infty} r^{n-1} = 0$ and

$$1 + r + r^2 + \dots = \frac{1}{1 - r}$$

Convergence

► Theorem 19.7: Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.
- By Cauchy property, for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|s_m - s_n| < \epsilon, \quad \forall m, n \geq K.$$

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.
- By Cauchy property, for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|s_m - s_n| < \epsilon, \quad \forall m, n \geq K.$$

- By taking $m = n + 1$, we get $|a_{n+1}| = |s_{n+1} - s_n| < \epsilon$ for $n \geq K$.

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.
- By Cauchy property, for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|s_m - s_n| < \epsilon, \quad \forall m, n \geq K.$$

- By taking $m = n + 1$, we get $|a_{n+1}| = |s_{n+1} - s_n| < \epsilon$ for $n \geq K$.
- Equivalently, $|a_n| < \epsilon$ for $n \geq K + 1$. Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to 0.

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.
- By Cauchy property, for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|s_m - s_n| < \epsilon, \quad \forall m, n \geq K.$$

- By taking $m = n + 1$, we get $|a_{n+1}| = |s_{n+1} - s_n| < \epsilon$ for $n \geq K$.
- Equivalently, $|a_n| < \epsilon$ for $n \geq K + 1$. Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to 0.
- The converse is not true is seen by considering the 'Harmonic series' :

Convergence

- **Theorem 19.7:** Suppose a series $\sum_{j=1}^{\infty} a_j$ converges. Then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

However, the converse is not true.

- **Proof:** Suppose $s_n = \sum_{j=1}^n a_j$. Assuming that $\sum_{j=1}^{\infty} a_j$ converges, $\lim_{n \rightarrow \infty} s_n$ exists.
- By Cauchy property, for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|s_m - s_n| < \epsilon, \quad \forall m, n \geq K.$$

- By taking $m = n + 1$, we get $|a_{n+1}| = |s_{n+1} - s_n| < \epsilon$ for $n \geq K$.
- Equivalently, $|a_n| < \epsilon$ for $n \geq K + 1$. Hence $\{a_n\}_{n \in \mathbb{N}}$ converges to 0.
- The converse is not true is seen by considering the 'Harmonic series' :
- $\sum_{j=1}^{\infty} \frac{1}{j}$ diverges as the corresponding partial sums are unbounded.

Alternating sum

- **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.

Alternating sum

- ▶ **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ **Proof:** Since $|a_j| = b_j$, the necessity of $\lim_{n \rightarrow \infty} a_n = 0$ for convergence implies $\lim_{n \rightarrow \infty} b_n = 0$. Hence the necessity of this condition for the convergence of $\sum_{j=1}^{\infty} a_j$ is clear from the previous theorem.

Alternating sum

- ▶ **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ **Proof:** Since $|a_j| = b_j$, the necessity of $\lim_{n \rightarrow \infty} a_n = 0$ for convergence implies $\lim_{n \rightarrow \infty} b_n = 0$. Hence the necessity of this condition for the convergence of $\sum_{j=1}^{\infty} a_j$ is clear from the previous theorem.
- ▶ Now suppose $\lim_{n \rightarrow \infty} b_n = 0$.

Alternating sum

- ▶ **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ **Proof:** Since $|a_j| = b_j$, the necessity of $\lim_{n \rightarrow \infty} a_n = 0$ for convergence implies $\lim_{n \rightarrow \infty} b_n = 0$. Hence the necessity of this condition for the convergence of $\sum_{j=1}^{\infty} a_j$ is clear from the previous theorem.
- ▶ Now suppose $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ Consider the partial sums

$$s_n = \sum_{j=1}^n a_j = b_1 - b_2 + b_3 - b_4 + \cdots + (-1)^{n+1} b_n.$$

Alternating sum

- ▶ **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ **Proof:** Since $|a_j| = b_j$, the necessity of $\lim_{n \rightarrow \infty} a_n = 0$ for convergence implies $\lim_{n \rightarrow \infty} b_n = 0$. Hence the necessity of this condition for the convergence of $\sum_{j=1}^{\infty} a_j$ is clear from the previous theorem.
- ▶ Now suppose $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ Consider the partial sums

$$s_n = \sum_{j=1}^n a_j = b_1 - b_2 + b_3 - b_4 + \cdots + (-1)^{n+1} b_n.$$

- ▶ First look at the even terms, s_2, s_4, \dots

Alternating sum

- ▶ **Theorem 19.8:** A series $\sum_{j=1}^{\infty} a_j$, where $a_j = (-1)^{j+1} b_j$, with a decreasing sequence $\{b_j\}_{j \in \mathbb{N}}$ of positive real numbers is convergent if and only if $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ **Proof:** Since $|a_j| = b_j$, the necessity of $\lim_{n \rightarrow \infty} a_n = 0$ for convergence implies $\lim_{n \rightarrow \infty} b_n = 0$. Hence the necessity of this condition for the convergence of $\sum_{j=1}^{\infty} a_j$ is clear from the previous theorem.
- ▶ Now suppose $\lim_{n \rightarrow \infty} b_n = 0$.
- ▶ Consider the partial sums

$$s_n = \sum_{j=1}^n a_j = b_1 - b_2 + b_3 - b_4 + \cdots + (-1)^{n+1} b_n.$$

- ▶ First look at the even terms, s_2, s_4, \dots
- ▶ We have, $s_{2k+2} = s_{2k} + b_{2k+1} - b_{2k+2}$.

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is a decreasing sequence. In particular $s_1 \geq s_{2k-1}$ for every $k \in \mathbb{N}$.

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is a decreasing sequence. In particular $s_1 \geq s_{2k-1}$ for every $k \in \mathbb{N}$.
- ▶ Also $s_{2k+2} = s_{2k+1} - b_{2k+2} \leq s_{2k+1} \leq s_1$

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is a decreasing sequence. In particular $s_1 \geq s_{2k-1}$ for every $k \in \mathbb{N}$.
- ▶ Also $s_{2k+2} = s_{2k+1} - b_{2k+2} \leq s_{2k+1} \leq s_1$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is bounded above by s_1 .

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is a decreasing sequence. In particular $s_1 \geq s_{2k-1}$ for every $k \in \mathbb{N}$.
- ▶ Also $s_{2k+2} = s_{2k+1} - b_{2k+2} \leq s_{2k+1} \leq s_1$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is bounded above by s_1 .
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is bounded below by $s_2 = b_1 - b_2$.

Continuation

- ▶ Since $\{b_j\}_{j \in \mathbb{N}}$ is a decreasing sequence, $b_{2k+1} - b_{2k+2} \geq 0$. Consequently, $s_{2k} \leq s_{2k+2}$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is an increasing sequence.
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is a decreasing sequence. In particular $s_1 \geq s_{2k-1}$ for every $k \in \mathbb{N}$.
- ▶ Also $s_{2k+2} = s_{2k+1} - b_{2k+2} \leq s_{2k+1} \leq s_1$
- ▶ Therefore $\{s_{2k}\}_{k \in \mathbb{N}}$ is bounded above by s_1 .
- ▶ Similarly $\{s_{2k-1}\}_{k \in \mathbb{N}}$ is bounded below by $s_2 = b_1 - b_2$.
- ▶ That is,

$$b_1 - b_2 = s_2 \leq s_4 \leq \cdots \leq s_{2k} \leq s_{2k-1} \leq \cdots s_3 \leq s_1 = b_1$$

Continuation

- ▶ So $\lim_{k \rightarrow \infty} s_{2k}$ and $\lim_{k \rightarrow \infty} s_{2k-1}$ exist.

Continuation

- ▶ So $\lim_{k \rightarrow \infty} s_{2k}$ and $\lim_{k \rightarrow \infty} s_{2k-1}$ exist.
- ▶ It is an exercise to see that these limits are same.

Continuation

- ▶ So $\lim_{k \rightarrow \infty} s_{2k}$ and $\lim_{k \rightarrow \infty} s_{2k-1}$ exist.
- ▶ It is an exercise to see that these limits are same.
- ▶ It follows that

$$\sum_{j \in \mathbb{N}} a_j$$

converges to the same value.

Continuation

- ▶ So $\lim_{k \rightarrow \infty} s_{2k}$ and $\lim_{k \rightarrow \infty} s_{2k-1}$ exist.
- ▶ It is an exercise to see that these limits are same.
- ▶ It follows that

$$\sum_{j \in \mathbb{N}} a_j$$

converges to the same value.

- ▶ END OF LECTURE 19.