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Lecture 19. Cauchy criterion

I We recall the following important theorem:

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Cauchy sequences

I Can we know whether a sequence is convergent without
knowing the limit?

I Definition 19.1: A sequence {an}n∈N is said to be Cauchy if
for every ε > 0, there exists K ∈ N such that

|am − an| < ε, ∀m, n ≥ K .

I We may write |am − an| < ε equivalently as
am ∈ (an − ε, an + ε) or as (am − an) ∈ (−ε,+ε).
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Convergent sequences are Cauchy

I Proposition 19.2: Convergent sequences of real numbers is
Cauchy.

I Proof: Let {an}n∈N be a sequence of real numbers converging
to a real number x .

I For ε > 0, take K ∈ N, such that

|an − x | < ε

2
, ∀n ≥ K .

I Now for m, n ≥ K , by triangle inequality,

|am − an| ≤ |am − x |+ |x − an| <
ε

2
+
ε

2
= ε.

I Hence {an}n∈N is Cauchy.
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Cauchy sequences are bounded

I Proposition 19.3: Cauchy sequences of real numbers are
bounded.

I Proof: Let {an}n∈N be a Cauchy sequence.

I Take ε = 1. Using Cauchy property, choose K ∈ N such that

|am − an| < 1, ∀m, n ≥ K .

I Taking n = K , in the inequality above, we get

|am − aK | < 1, ∀m ≥ K .

I In particular, |am| < |aK |+ 1, ∀m ≥ K .

I Take
M = max{|a1|, |a2|, . . . , |ak−1|, |aK |+ 1}.

I Then we have |am| ≤ M, for all m.

I Hence {an}n∈N is bounded.
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Real Cauchy sequences are convergent

I Theorem 19.4: A sequence of real numbers is convergent if
and only it is Cauchy.

I Proof: We have seen that every convergent is Cauchy. Now to
see the converse, let {an}n∈N be a Cauchy sequence.

I By previous Proposition we know that {an}n∈N is bounded.

I By Bolzano-Weierstrass theorem {an}n∈N has a convergent
subsequence.

I Suppose {ank}k∈N is a subsequence converging to some
x ∈ R.

I Now using Cauchy property, for ε > 0, choose K1 such that

|am − an| <
ε

2
, ∀m, n ≥ K1.

I Using convergence of {ank}k∈N, choose K2 such that

|ank − x | < ε

2
, ∀k ≥ K2.
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Continuation

I Take K = max{K1, nK2}. Note that nK ≥ K ≥ K1 and
K ≥ K2.

I Now for m ≥ K , we have

|am − x | ≤ |am − anK |+ |anK − x | < ε

2
+
ε

2
= ε.

I Hence {an}n∈N converges to x .

I This completes the proof.
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Cauchy sequences and completeness

I Here are some general comments for your information.

I Later on you would see that the notion of distance:

d(a, b) = |a− b|
on the real line can be generalized to more general spaces. It
is then called ‘metric’.

I There is a large theory of metric spaces.
I The idea of convergence of sequences as well as Cauchy

property makes sense for metric spaces.
I A metric space is said to be complete if every Cauchy

sequence converges to a point in the space.
I For instance, [0, 1] is complete, but (0, 1),Q are not complete.
I The set of real numbers is complete due to least upper bound

axiom, where as Q is not complete. For this reason the least
upper bound axiom is also known as completeness axiom.

I There is a way of completing every metric space and if we
complete Q by this procedure we get the set of real numbers
R. This is one way of constructing R.
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Infinite series

I We know that finite sums like
∑n

j=1 aj = a1 + a2 + · · ·+ an are
well-defined for real numbers due to associativity of addition.

I It is a natural question as to when
∑∞

j=1 aj or

a1 + a2 + a3 + · · ·

is meaningful.

I Definition 19.5: Suppose a1, a2, . . . are real numbers. Take
sn =

∑n
j=1 aj . Here {sn}n∈N are known as partial sums of the

series. If limn→∞ sn exists then the series,
∑∞

j=1 aj is said to
converge and

∞∑
j=1

aj := lim
n→∞

sn.

If limn→∞ sn does not exist, the series
∑∞

j=1 aj is said to
diverge.
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sn.

If limn→∞ sn does not exist, the series
∑∞

j=1 aj is said to
diverge.



Geometric Series

I Example 19.6 (Geometric series):
∑∞

j=1
1
2j

= 1.

I Proof: Recall that for any real number r 6= 1 and n ∈ N,

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

I This can be proved by induction.
I Now

sn :=
n∑

j=1

1

2j

=
1

2
+

1

22
+ · · ·+ 1

2n

=
1

2
[1 +

1

2
+ · · ·+ (

1

2
)(n−1)]

=
1

2
.
1− (12)n

1− 1
2

= 1− 1

2n
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Continuation

I Using Bernoulli’s inequality, we have seen that 1
2n <

1
n+1 and

hence limn→∞
1
2n = 0. Hence limn→∞ sn = 1.

I Similarly, one can show that for any |r | < 1, limn→∞ rn−1 = 0
and

1 + r + r2 + · · · =
1

1− r
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Convergence

I Theorem 19.7: Suppose a series
∑∞

j=1 aj converges. Then

lim
n→∞

an = 0.

However, the converse is not true.

I Proof: Suppose sn =
∑n

j=1 aj . Assuming that
∑∞

j=1 aj
converges, limn→∞ sn exists.

I By Cauchy property, for ε > 0, there exists K ∈ N such that

|sm − sn| < ε, ∀m, n ≥ K .

I By taking m = n + 1, we get |an+1| = |sn+1 − sn| < ε for
n ≥ K .

I Equivalently, |an| < ε for n ≥ K + 1. Hence {an}n∈N
converges to 0.

I The converse is not true is seen by considering the ‘Harmonic
series’ :

I
∑∞

j=1
1
j diverges as the corresponding partial sums are

unbounded.
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Alternating sum

I Theorem 19.8: A series
∑∞

j=1 aj , where aj = (−1)j+1bj , with
a decreasing sequence {bj}j∈N of positive real numbers is
convergent if and only if limn→∞ bn = 0.

I Proof: Since |aj | = bj , the necessity of limn→∞ an = 0 for
convergence implies limn→∞ bn = 0. Hence the necessity of
this condition for the convergence of

∑∞
j=1 aj is clear from the

previous theorem.

I Now suppose limn→∞ bn = 0.

I Consider the partial sums

sn =
n∑

j=1

aj = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn.

I First look at the even terms, s2, s4, . . ..

I We have, s2k+2 = s2k + b2k+1 − b2k+2.
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Continuation

I Since {bj}j∈N is a decreasing sequence, b2k+1 − b2k+2 ≥ 0.
Consequently, s2k ≤ s2k+2

I Therefore {s2k}k∈N is an increasing sequence.

I Similarly {s2k−1}k∈N is a decreasing sequence. In particular
s1 ≥ s2k−1 for every k ∈ N.

I Also s2k+2 = s2k+1 − b2k+2 ≤ s2k+1 ≤ s1
I Therefore {s2k}k∈N is bounded above by s1.

I Similarly {s2k−1}k∈N is bounded below by s2 = b1 − b2.

I That is,

b1 − b2 = s2 ≤ s4 ≤ · · · ≤ s2k ≤ s2k−1 ≤ · · · s3 ≤ s1 = b1
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Continuation

I So limk→∞ s2k and limk→∞ s2k−1 exist.

I It is an exercise to see that these limits are same.

I It follows that ∑
j∈N

aj

converges to the same value.

I END OF LECTURE 19.
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