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» We recall the following important theorem:

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}neN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

P> As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Limit points

» We also recall the notion of limit points:

» Definition 18.5: Let {a,}nen be a sequence of real numbers.
Then y € R is said to be limit point of {a,}nen, if it has a
subsequence {aj, }ken converging to y.

> We would like to understand the structure of limit points
better. The following theorem is easy to prove.
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around a limit point

Theorem 20.1: Let {a,}nen be a sequence of real numbers.
Then y € R is a limit point of the sequence {ap}nen if and
only if the set

{m:ame(y—ey+e)}
is infinite for every € > 0.
In other words, there are infinitely many terms of the
sequence in (y — €,y + €) for every € > 0.
Proof: Suppose for k € N,

1 1
is infinite for every k. Then it is easy to choose a subsequence

{an, } ken such that

{m:ame(y—

1 1

By the squeeze theorem, limy_,c an, = y.
The converse is also easy to see.
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» Let {ap}nen be a bounded sequence of real numbers and
suppose |an| < M, for all n.

Take ¢; = inf{ay, : m e N} =inf{a1,a,...};
o =inf{an :meN,m>2} =inf{ay,a3,...};
cz =inf{ap : me N, m>3} =inf{as,as,...};
and for any n € N,

vvyyypy

cn =inf{apm : me N, m> n} =inf{a,, ant1,...}.

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
1 < .

» In general, ¢, < cpq1 for every n € N. We also have |¢c,| < M
for every n, as |am| < M for every m.

» In conclusion, {cp} is a bounded increasing sequence. Hence
limp— oo €y EXists.
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» Definition 20.3: For any bounded sequence {a,}qen, the
lim,_ oo ¢, defined as above is known as the limit inferior or
liminf of the bounded sequence {a,}nen, and we write:

liminfa, = lim c,.
n—o0 n—o0

» |n other words, the 'liminf' is the limit of infimums of tails of
the sequence.

» Observe that for every n,
_MgcngangbnSM-
> Consequently,

—M < liminfa, < limsupa, < M.
n—oo

n—o0

» A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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» Example 20.4: Consider the sequence {a,} where,

5 if n=3k+1,k e N{0}
apn=<¢ 6 ifn=3k+2keNU{0}
7 ifn=3kkeN.

» Then b, =7 for every n and ¢, =5 for every n.
» Hence liminf, o, a, =5 and limsupa, = 7.

> It is to be noted that in general b,, ¢, may not be terms of
the sequence.

» Example 20.5: Consider the sequence {a,}, where
{ % if nis odd.
an = 1 . .
3—+ ifniseven.

» Then b, = 3 for every n and ¢, = 0 for every n.

» In particular, it is not immediate that limsup and liminf are
limit points of the sequence.
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In particular, bx < z+¢€, or sup{am : m> K} < z+¢, and
consequently a,, < z+ € for m > K.

This implies that Sy(z,¢) € {1,2,...,(K — 1)} and hence it
is a finite set.

Now for r € N, by considering ¢, there exists K, € N such that
€ €
by € (z — ;7z+;), Vn> K,.

In particular, z — £ < bk, = sup{am : m > K, }.

This means that, there exists m > K,, such that z — % < bp.
Inductively we can choose m; < mp < --- such that

z— ¢ < bp,.

Now it is clear that S_(z, €) is infinite.
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» Conversely, suppose v € R is such that (%) and (xx) are
satisfied for every € > 0 with z replaced by v.

» Now Si(v,e€) is finite, means that there exists, M, such that
for |ap| < v+ € for n > M..

» Therefore b, < v + ¢ for n > M,. Hence
Z = liMp—oo bn < v +e.

» As this is true for every ¢ > 0, we get z < v.

» Similarly, S_(v, €) is infinite, for every ¢ > 0, means that
S (v,Yy={m:v—1<ap} is infinite for every r.

» This allows us to choose a subsequence {ap, }ren, where
v — % < ap,. Then v — % < bp,, and hence on taking limit as
r— 00, v <limi o by, = z. That is, v < z. Combining the
two statements we have v = z.
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» Theorem 20.7: Suppose {a,}nen is a bounded sequence of
real numbers. Then limsup,_, ., an is a limit point of {a,}pen
and if y is any limit point of {a,}nen, then
y <limsup,_ o an-

» In other words, limsup is the largest limit point of a bounded
sequence.

» Proof: Take z = limsup,_,., an.

» By the previous characterization,
{m:iz—e<am<z+e}=5(z,e)\(S+(z,€)U{z+€}) is
infinite.

» Hence z is a limit point of {ap}nen.

» The fact that z is the largest limit point is also clear from the
characterization.

» END OF LETCURE 20



