

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 20. Limit Superior and Limit Inferior

- We recall the following important theorem:

Lecture 20. Limit Superior and Limit Inferior

- ▶ We recall the following important theorem:
- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.

Lecture 20. Limit Superior and Limit Inferior

- ▶ We recall the following important theorem:
- ▶ Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.

Lecture 20. Limit Superior and Limit Inferior

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.

Lecture 20. Limit Superior and Limit Inferior

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.

Lecture 20. Limit Superior and Limit Inferior

- ▶ We recall the following important theorem:
- ▶ **Theorem 18.10 (Bolzano-Weierstrass theorem):** Every bounded sequence of real numbers has a convergent subsequence.
- ▶ **Proof.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ Obviously, this monotonic subsequence is bounded as the original sequence is bounded.
- ▶ As every bounded monotonic sequence is convergent, this subsequence is convergent. This completes the proof.

Limit points

- ▶ We also recall the notion of limit points:

Limit points

- ▶ We also recall the notion of limit points:
- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ We would like to understand the structure of limit points better. The following theorem is easy to prove.

Terms around a limit point

► **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

Terms around a limit point

- **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

- In other words, there are infinitely many terms of the sequence in $(y - \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- **Proof:** Suppose for $k \in \mathbb{N}$,

$$\{m : a_m \in (y - \frac{1}{k}, y + \frac{1}{k})\}$$

is infinite for every k . Then it is easy to choose a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ such that

$$y - \frac{1}{k} \leq a_{n_k} \leq y + \frac{1}{k}.$$

Terms around a limit point

- **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

- In other words, there are infinitely many terms of the sequence in $(y - \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- **Proof:** Suppose for $k \in \mathbb{N}$,

$$\{m : a_m \in (y - \frac{1}{k}, y + \frac{1}{k})\}$$

is infinite for every k . Then it is easy to choose a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ such that

$$y - \frac{1}{k} \leq a_{n_k} \leq y + \frac{1}{k}.$$

- By the squeeze theorem, $\lim_{k \rightarrow \infty} a_{n_k} = y$.

Terms around a limit point

- **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

- In other words, there are infinitely many terms of the sequence in $(y - \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- **Proof:** Suppose for $k \in \mathbb{N}$,

$$\{m : a_m \in (y - \frac{1}{k}, y + \frac{1}{k})\}$$

is infinite for every k . Then it is easy to choose a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ such that

$$y - \frac{1}{k} \leq a_{n_k} \leq y + \frac{1}{k}.$$

- By the squeeze theorem, $\lim_{k \rightarrow \infty} a_{n_k} = y$.
- The converse is also easy to see.

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \geq b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \geq b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .
- ▶ In conclusion, $\{b_n\}$ is a bounded decreasing sequence. Hence $\lim_{n \rightarrow \infty} b_n$ exists.

Continuation

- ▶ **Definition 20.2:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\limsup_{n \rightarrow \infty} b_n$ defined as above is known as the **limit superior** or **limsup** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

Continuation

- ▶ **Definition 20.2:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\limsup_{n \rightarrow \infty} b_n$ defined as above is known as the **limit superior** or **limsup** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

- ▶ In other words, the 'limsup' is the limit of supremums of tails of the sequence.

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \leq c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \leq c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .
- ▶ In conclusion, $\{c_n\}$ is a bounded increasing sequence. Hence $\lim_{n \rightarrow \infty} c_n$ exists.

Continuation

► **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\lim_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

- ▶ Consequently,

$$-M \leq \liminf_{n \rightarrow \infty} a_n \leq \limsup_{n \rightarrow \infty} a_n \leq M.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

- ▶ Consequently,

$$-M \leq \liminf_{n \rightarrow \infty} a_n \leq \limsup_{n \rightarrow \infty} a_n \leq M.$$

- ▶ A bounded sequence may not be convergent and so it may not have a limit. But it always has liminf and limsup.

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

► Then $b_n = 7$ for every n and $c_n = 5$ for every n .

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

► Then $b_n = 7$ for every n and $c_n = 5$ for every n .
► Hence $\liminf_{n \rightarrow \infty} a_n = 5$ and $\limsup a_n = 7$.

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- Then $b_n = 7$ for every n and $c_n = 5$ for every n .
- Hence $\liminf_{n \rightarrow \infty} a_n = 5$ and $\limsup a_n = 7$.
- It is to be noted that in general b_n, c_n may not be terms of the sequence.

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- Then $b_n = 7$ for every n and $c_n = 5$ for every n .
- Hence $\liminf_{n \rightarrow \infty} a_n = 5$ and $\limsup a_n = 7$.
- It is to be noted that in general b_n, c_n may not be terms of the sequence.
- Example 20.5: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- Then $b_n = 7$ for every n and $c_n = 5$ for every n .
- Hence $\liminf_{n \rightarrow \infty} a_n = 5$ and $\limsup a_n = 7$.
- It is to be noted that in general b_n, c_n may not be terms of the sequence.
- Example 20.5: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

- Then $b_n = 3$ for every n and $c_n = 0$ for every n .

Examples

► Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \cup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \cup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- Then $b_n = 7$ for every n and $c_n = 5$ for every n .
- Hence $\liminf_{n \rightarrow \infty} a_n = 5$ and $\limsup a_n = 7$.
- It is to be noted that in general b_n, c_n may not be terms of the sequence.
- Example 20.5: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

- Then $b_n = 3$ for every n and $c_n = 0$ for every n .
- In particular, it is not immediate that \limsup and \liminf are limit points of the sequence.

A Characterization

► **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

A Characterization

► **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

► Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with z replaced by v , then $v = z$.

A Characterization

► **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

► Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with z replaced by v , then $v = z$.

► **Proof:** Suppose $z = \limsup_{n \rightarrow \infty} a_n$.

A Characterization

► **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

► Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with z replaced by v , then $v = z$.

► **Proof:** Suppose $z = \limsup_{n \rightarrow \infty} a_n$.

► Fix $\epsilon > 0$. Take $b_n = \sup\{a_m : m \geq n\}$. By the definition of limsup, $z = \lim_{n \rightarrow \infty} b_n$.

A Characterization

- **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

- Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with z replaced by v , then $v = z$.
- **Proof:** Suppose $z = \limsup_{n \rightarrow \infty} a_n$.
- Fix $\epsilon > 0$. Take $b_n = \sup\{a_m : m \geq n\}$. By the definition of \limsup , $z = \lim_{n \rightarrow \infty} b_n$.
- Hence there exists $K \in \mathbb{N}$ such that

$$b_n \in (z - \epsilon, z + \epsilon), \quad \forall n \geq K.$$

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.
- ▶ This implies that $S_+(z, \epsilon) \subseteq \{1, 2, \dots, (K - 1)\}$ and hence it is a finite set.

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.
- ▶ This implies that $S_+(z, \epsilon) \subseteq \{1, 2, \dots, (K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \left(z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}\right), \quad \forall n \geq K_r.$$

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.
- ▶ This implies that $S_+(z, \epsilon) \subseteq \{1, 2, \dots, (K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \left(z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}\right), \quad \forall n \geq K_r.$$

- ▶ In particular, $z - \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \geq K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z - \frac{\epsilon}{r} < b_m$.

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.
- ▶ This implies that $S_+(z, \epsilon) \subseteq \{1, 2, \dots, (K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \left(z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}\right), \quad \forall n \geq K_r.$$

- ▶ In particular, $z - \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \geq K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z - \frac{\epsilon}{r} < b_m$.
- ▶ Inductively we can choose $m_1 < m_2 < \dots$ such that $z - \frac{\epsilon}{r} < b_{m_r}$.

Continuation

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \geq K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \geq K$.
- ▶ This implies that $S_+(z, \epsilon) \subseteq \{1, 2, \dots, (K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \left(z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}\right), \quad \forall n \geq K_r.$$

- ▶ In particular, $z - \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \geq K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z - \frac{\epsilon}{r} < b_m$.
- ▶ Inductively we can choose $m_1 < m_2 < \dots$ such that $z - \frac{\epsilon}{r} < b_{m_r}$.
- ▶ Now it is clear that $S_-(z, \epsilon)$ is infinite.

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .
- ▶ Now $S_+(v, \epsilon)$ is finite, means that there exists, M_ϵ , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_\epsilon$.

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .
- ▶ Now $S_+(v, \epsilon)$ is finite, means that there exists, M_ϵ , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_\epsilon$.
- ▶ Therefore $b_n \leq v + \epsilon$ for $n \geq M_\epsilon$. Hence $z = \lim_{n \rightarrow \infty} b_n \leq v + \epsilon$.

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .
- ▶ Now $S_+(v, \epsilon)$ is finite, means that there exists, M_ϵ , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_\epsilon$.
- ▶ Therefore $b_n \leq v + \epsilon$ for $n \geq M_\epsilon$. Hence $z = \lim_{n \rightarrow \infty} b_n \leq v + \epsilon$.
- ▶ As this is true for every $\epsilon > 0$, we get $z \leq v$.

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .
- ▶ Now $S_+(v, \epsilon)$ is finite, means that there exists, M_ϵ , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_\epsilon$.
- ▶ Therefore $b_n \leq v + \epsilon$ for $n \geq M_\epsilon$. Hence $z = \lim_{n \rightarrow \infty} b_n \leq v + \epsilon$.
- ▶ As this is true for every $\epsilon > 0$, we get $z \leq v$.
- ▶ Similarly, $S_-(v, \epsilon)$ is infinite, for every $\epsilon > 0$, means that $S_-(v, \frac{1}{r}) = \{m : v - \frac{1}{r} < a_m\}$ is infinite for every r .

Continuation

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that $(*)$ and $(**)$ are satisfied for every $\epsilon > 0$ with z replaced by v .
- ▶ Now $S_+(v, \epsilon)$ is finite, means that there exists, M_ϵ , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_\epsilon$.
- ▶ Therefore $b_n \leq v + \epsilon$ for $n \geq M_\epsilon$. Hence $z = \lim_{n \rightarrow \infty} b_n \leq v + \epsilon$.
- ▶ As this is true for every $\epsilon > 0$, we get $z \leq v$.
- ▶ Similarly, $S_-(v, \epsilon)$ is infinite, for every $\epsilon > 0$, means that $S_-(v, \frac{1}{r}) = \{m : v - \frac{1}{r} < a_m\}$ is infinite for every r .
- ▶ This allows us to choose a subsequence $\{a_{n_r}\}_{r \in \mathbb{N}}$, where $v - \frac{1}{r} < a_{n_r}$. Then $v - \frac{1}{r} < b_{n_r}$, and hence on taking limit as $r \rightarrow \infty$, $v \leq \lim_{r \rightarrow \infty} b_{n_r} = z$. That is, $v \leq z$. Combining the two statements we have $v = z$.

limsup as a limit point

- Theorem 20.7: Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n \in \mathbb{N}}$.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ The fact that z is the largest limit point is also clear from the characterization.

limsup as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ The fact that z is the largest limit point is also clear from the characterization.
- ▶ **END OF LECTURE 20**