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Lecture 20. Limit Superior and Limit Inferior

I We recall the following important theorem:

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Limit points

I We also recall the notion of limit points:

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I We would like to understand the structure of limit points
better. The following theorem is easy to prove.
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Terms around a limit point

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}
is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.

I Proof: Suppose for k ∈ N,

{m : am ∈ (y − 1

k
, y +

1

k
)}

is infinite for every k. Then it is easy to choose a subsequence
{ank}k∈N such that

y − 1

k
≤ ank ≤ y +

1

k
.

I By the squeeze theorem, limk→∞ ank = y .
I The converse is also easy to see.
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Limsup

I Let {an}n∈N be a bounded sequence of real numbers and
suppose |an| ≤ M, for all n.

I Take b1 = sup{am : m ∈ N} = sup{a1, a2, . . .};
I b2 = sup{am : m ∈ N,m ≥ 2} = sup{a2, a3, . . .};
I b3 = sup{am : m ∈ N,m ≥ 3} = sup{a3, a4, . . .};
I and for any n ∈ N,

bn = sup{am : m ∈ N,m ≥ n} = sup{an, an+1, . . .}.

I Note that as {am : m ∈ N} ⊇ {am : m ∈ N,m ≥ 2}, we have
b1 ≥ b2.

I In general, bn ≥ bn+1 for every n ∈ N. We also have |bn| ≤ M
for every n, as |am| ≤ M for every m.

I In conclusion, {bn} is a bounded decreasing sequence. Hence
limn→∞ bn exists.
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Continuation

I Definition 20.2: For any bounded sequence {an}n∈N, the
limn→∞ bn defined as above is known as the limit superior or
limsup of the bounded sequence {an}n∈N, and we write:

lim sup
n→∞

an = lim
n→∞

bn.

I In other words, the ’limsup’ is the limit of supremums of tails
of the sequence.
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Liminf

I Let {an}n∈N be a bounded sequence of real numbers and
suppose |an| ≤ M, for all n.

I Take c1 = inf{am : m ∈ N} = inf{a1, a2, . . .};
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I In general, cn ≤ cn+1 for every n ∈ N. We also have |cn| ≤ M
for every n, as |am| ≤ M for every m.

I In conclusion, {cn} is a bounded increasing sequence. Hence
limn→∞ cn exists.
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Continuation

I Definition 20.3: For any bounded sequence {an}n∈N, the
limn→∞ cn defined as above is known as the limit inferior or
liminf of the bounded sequence {an}n∈N, and we write:

lim inf
n→∞

an = lim
n→∞

cn.

I In other words, the ’liminf’ is the limit of infimums of tails of
the sequence.

I Observe that for every n,

−M ≤ cn ≤ an ≤ bn ≤ M.

I Consequently,

−M ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ M.

I A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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Examples

I Example 20.4: Consider the sequence {an} where,

an =


5 if n = 3k + 1, k ∈ N

⋃
{0}

6 if n = 3k + 2, k ∈ N
⋃
{0}

7 if n = 3k , k ∈ N.

I Then bn = 7 for every n and cn = 5 for every n.

I Hence lim infn→∞ an = 5 and lim sup an = 7.

I It is to be noted that in general bn, cn may not be terms of
the sequence.

I Example 20.5: Consider the sequence {an}, where

an =

{
1
n if n is odd.

3− 1
n if n is even.

I Then bn = 3 for every n and cn = 0 for every n.

I In particular, it is not immediate that limsup and liminf are
limit points of the sequence.
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{0}
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{0}

7 if n = 3k , k ∈ N.

I Then bn = 7 for every n and cn = 5 for every n.

I Hence lim infn→∞ an = 5 and lim sup an = 7.
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A Characterization

I Theorem 20.6: Let {an}n∈N be a bounded sequence of real
numbers and suppose z = lim supn→∞ an. Then for every
ε > 0, the set

S+(z , ε) = {n : an > z + ε} is finite. (∗)

and the set

S−(z , ε) = {n : an > z − ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with z
replaced by v , then v = z .

I Proof: Suppose z = lim supn→∞ an.
I Fix ε > 0. Take bn = sup{am : m ≥ n}. By the definition of

limsup, z = limn→∞ bn.
I Hence there exists K ∈ N such that

bn ∈ (z − ε, z + ε), ∀n ≥ K .
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Continuation

I In particular, bK < z + ε, or sup{am : m ≥ K} < z + ε, and
consequently am < z + ε for m ≥ K .

I This implies that S+(z , ε) ⊆ {1, 2, . . . , (K − 1)} and hence it
is a finite set.

I Now for r ∈ N, by considering ε
r , there exists Kr ∈ N such that

bn ∈ (z − ε

r
, z +

ε

r
), ∀n ≥ Kr .

I In particular, z − ε
r < bKr = sup{am : m ≥ Kr}.

I This means that, there exists m > Kr , such that z − ε
r < bm.

I Inductively we can choose m1 < m2 < · · · such that
z − ε

r < bmr .

I Now it is clear that S−(z , ε) is infinite.
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Continuation

I Conversely, suppose v ∈ R is such that (∗) and (∗∗) are
satisfied for every ε > 0 with z replaced by v .

I Now S+(v , ε) is finite, means that there exists, Mε, such that
for |an| ≤ v + ε for n ≥ Mε.

I Therefore bn ≤ v + ε for n ≥ Mε. Hence
z = limn→∞ bn ≤ v + ε.

I As this is true for every ε > 0, we get z ≤ v .

I Similarly, S−(v , ε) is infinite, for every ε > 0, means that
S−(v , 1r ) = {m : v − 1

r < am} is infinite for every r .

I This allows us to choose a subsequence {anr }r∈N, where
v − 1

r < anr . Then v − 1
r < bnr , and hence on taking limit as

r →∞, v ≤ limr→∞ bnr = z . That is, v ≤ z . Combining the
two statements we have v = z .
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limsup as a limit point

I Theorem 20.7: Suppose {an}n∈N is a bounded sequence of
real numbers. Then lim supn→∞ an is a limit point of {an}n∈N
and if y is any limit point of {an}n∈N, then
y ≤ lim supn→∞ an.

I In other words, limsup is the largest limit point of a bounded
sequence.

I Proof: Take z = lim supn→∞ an.

I By the previous characterization,
{m : z − ε < am < z + ε} = S−(z , ε)\(S+(z , ε)

⋃
{z + ε}) is

infinite.

I Hence z is a limit point of {an}n∈N.

I The fact that z is the largest limit point is also clear from the
characterization.
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