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From previous lecture we recall notions of limit point, limit
superior and limit inferior.

Definition 18.5: Let {ap}nen be a sequence of real numbers.
Then y € R is said to be limit point of {a,}nen, if it has a
subsequence {aj, }ken converging to y.

Theorem 20.1: Let {a,}nen be a sequence of real numbers.
Then y € R is a limit point of the sequence {ap}nen if and
only if the set

{m:ame(y—€ey+e)}

is infinite for every € > 0.

In other words, there are infinitely many terms of the
sequence in (y — €,y + €) for every € > 0.
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» In general, b, > b,41 for every n € N. We also have |b,| < M
for every n, as |am| < M for every m.
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lim,— oo by exists.
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» Let {ap}nen be a bounded sequence of real numbers and
suppose |an| < M, for all n.

Take ¢; = inf{ay, : m e N} =inf{a1,a,...};
o =inf{an :meN,m>2} =inf{ay,a3,...};
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vvyyypy

cn =inf{apm : me N, m> n} =inf{a,, ant1,...}.

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
1 < .

» In general, ¢, < cpq1 for every n € N. We also have |¢c,| < M
for every n, as |am| < M for every m.

» In conclusion, {cp} is a bounded increasing sequence. Hence
limp— oo €y EXists.
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» Definition 20.3: For any bounded sequence {a,}qen, the
lim,_ oo ¢, defined as above is known as the limit inferior or
liminf of the bounded sequence {a,}nen, and we write:

liminfa, = lim c,.
n—o0 n—o0

» |n other words, the 'liminf' is the limit of infimums of tails of
the sequence.

» Observe that for every n,
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> Consequently,

—M < liminfa, < limsupa, < M.
n—oo
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» A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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Limit superior as a limit point

» Theorem 20.7: Suppose {a,}nen is a bounded sequence of
real numbers. Then limsup,_,, a, is a limit point of {a,}pen
and if y is any limit point of {a,}nen, then
y <limsup,_, . an.

» In other words, limsup is the largest limit point of a bounded
sequence.

» Proof: Take z = limsup,_, ., an.

» By the previous characterization,
{miz—e<am<z+e} =5 (z,)\(S+(z,e) U{z+¢€}) is
infinite.

» Hence z is a limit point of {ap}nen.

» The fact that z is the largest limit point is also clear from the
characterization for if z < v, then taking ¢ = ";z,
(v —€,v+€) C 5.(z,¢€) has finitely many terms of the

sequence.
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» Results similar to that of limsup hold for liminf. These can be
proved by similar methods or by observing that

liminfa, = — limsup(—ap).
f1—+00 n—00

» Theorem 21.1: Let {a,},en be a bounded sequence of real
numbers and suppose w = liminf,_, a,. Then for every
€ > 0, the set

T_(w,e) ={n:a, <w—e¢} isfinite. (x)
and the set
Ti(w,e) ={n:a, < w+e} isinfinite. (xx)

» Conversely if v € R satisfies (), (xx) for every € > 0, with w
replaced by v, then v = w = liminf,_ . a,.

» Similarly liminf is the smallest limit point of a bounded
sequence.
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Limit points

» Consequently, the set of limit points of a bounded sequence
{an}nen is a subset of [w, z] where w = liminf,_, - a, and
z = limsup,_, an.

» Theorem 21.2: Let {a,}nen be a bounded sequence of real
numbers. Then it is convergent if and only if

liminf a, = limsup a.
n—0o0 n—00

> Proof. If the sequence is convergent then the set of limit
points is a singleton. Now as liminf and limsup are limit
points they have to be equal.

» If liminf and limsup are equal. Then as we have

ch<a,<b, VneN

the result follows by the squeeze theorem.

» This shows that when we do not know whether a sequence is
convergent or not, we may try to compute its liminf and
limsup and see whether they are equal or not.



Properly divergent sequences

» Definition 21.3: Let {a,}nen be a sequence of real numbers.
Then it is said to properly diverge to +oo if for every M € R
there exists K € N such that

ap,> M, Vn> K.

This is written as:

lim a, = +o0.
n—o0

or as

lim a, = co.
n—oo



Properly divergent sequences

» Definition 21.3: Let {a,}nen be a sequence of real numbers.
Then it is said to properly diverge to +oo if for every M € R
there exists K € N such that

ap,> M, Vn> K.

This is written as:

lim a, = +o0.
n—o0

or as

lim a, = co.
n—oo

> A sequence {an}nen is said to properly diverge to —oo, if for
every M € R there exists K € N such that a, < M for all
n > K. This is expressed as: lim,,_, a, = —o0.



Properly divergent sequences

» Definition 21.3: Let {a,}nen be a sequence of real numbers.
Then it is said to properly diverge to +oo if for every M € R
there exists K € N such that

ap,> M, Vn> K.

This is written as:

lim a, = +o0.
n—o0

or as

lim a, = co.
n—oo

> A sequence {an}nen is said to properly diverge to —oo, if for
every M € R there exists K € N such that a, < M for all
n > K. This is expressed as: lim,,_, a, = —o0.

» A sequence is said to properly diverge if it properly diverges to
400 or —o0.
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» Definition 21.3: Let {a,}nen be a sequence of real numbers.
Then it is said to properly diverge to +oo if for every M € R
there exists K € N such that

ap,> M, Vn> K.

This is written as:

lim a, = +o0.
n—o0

or as

lim a, = co.
n—oo

> A sequence {an}nen is said to properly diverge to —oo, if for
every M € R there exists K € N such that a, < M for all
n > K. This is expressed as: lim,,_, a, = —o0.

» A sequence is said to properly diverge if it properly diverges to
+00 or —o0.

» Here +00 and —oo are not real numbers. It is just convenient
notation.
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Continuation

> It is clear that a properly divergent sequence is unbounded.

> Some textbooks may write " {a,} ey converges to oo” to
mean that {a,},en properly diverges to +oo (Similarly, for
—00).

» However, it should be kept in mind that such sequences are
not convergent sequences in a proper sense as +co and —co
are not real numbers.

» Example 21.4: Define:

an = n27 Vn e N.
{ 5 if nis odd.
b, = e .
n if nis even.
o - 5 if nis odd.
"1 6 if nis even.

Here {an}nen is properly divergent to +00, {bp}nen is
unbounded and divergent but it is not properly divergent,
{¢n}nen is bounded and divergent but not properly divergent.
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» Theorem 21.5: Let {ap}neny and {bp}nen be sequences of real
numbers properly diverging to +oo.

» For c € R, {cap}nen properly diverges to +o00 if ¢ > 0,
properly diverges to —oco if ¢ < 0 and converges to 0 if ¢ = 0.

» {a, + bn}nen properly diverges to +oo.

» {a, — bn}neny may or maynot diverge.

v

{anbn}nen properly diverges to +oo.
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» Proof: Without loss of generality, take M > 0. There exists
K1 € N such that a, > M for n > Kj.

» There exists K> € N such that b, > 1 for for n > Kj.
» Take K = max{Ki, Ky}. For n > K,

an+b,>M+1>M.

» Hence {a, + b,} properly diverges to 4.

» Also for n > K, apb, > M.1 = M. Therefore, {a,b,} properly
diverges to +o0.

» Proofs of other claims are left out as exercises.
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diverges to co. If x < 0 and b, # 0 for every n, then {2}
properly diverges to —oo.
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