

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 21. Limit inferior and Properly divergent sequences

- ▶ From previous lecture we recall notions of limit point, limit superior and limit inferior.

Lecture 21. Limit inferior and Properly divergent sequences

- ▶ From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .

Lecture 21. Limit inferior and Properly divergent sequences

- ▶ From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

Lecture 21. Limit inferior and Properly divergent sequences

- ▶ From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ **Definition 18.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be **limit point** of $\{a_n\}_{n \in \mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ converging to y .
- ▶ **Theorem 20.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n \in \mathbb{N}}$ if and only if the set

$$\{m : a_m \in (y - \epsilon, y + \epsilon)\}$$

is infinite for every $\epsilon > 0$.

- ▶ In other words, there are infinitely many terms of the sequence in $(y - \epsilon, y + \epsilon)$ for every $\epsilon > 0$.

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \geq b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .

Limsup

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \dots\}$;
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \geq 2\} = \sup\{a_2, a_3, \dots\}$;
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \geq n\} = \sup\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \geq b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .
- ▶ In conclusion, $\{b_n\}$ is a bounded decreasing sequence. Hence $\lim_{n \rightarrow \infty} b_n$ exists.

Continuation

- ▶ **Definition 20.2:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\limsup_{n \rightarrow \infty} b_n$ defined as above is known as the **limit superior** or **limsup** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

Continuation

- ▶ **Definition 20.2:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\limsup_{n \rightarrow \infty} b_n$ defined as above is known as the **limit superior** or **limsup** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n.$$

- ▶ In other words, the 'limsup' is the limit of supremums of tails of the sequence.

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \leq c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .

Liminf

- ▶ Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n .
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \dots\}$;
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \geq 2\} = \inf\{a_2, a_3, \dots\}$;
- ▶ $c_3 = \inf\{a_m : m \in \mathbb{N}, m \geq 3\} = \inf\{a_3, a_4, \dots\}$;
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \dots\}.$$

- ▶ Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \leq c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \leq M$ for every n , as $|a_m| \leq M$ for every m .
- ▶ In conclusion, $\{c_n\}$ is a bounded increasing sequence. Hence $\lim_{n \rightarrow \infty} c_n$ exists.

Continuation

► **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\lim_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

- ▶ Consequently,

$$-M \leq \liminf_{n \rightarrow \infty} a_n \leq \limsup_{n \rightarrow \infty} a_n \leq M.$$

Continuation

- ▶ **Definition 20.3:** For any bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, the $\liminf_{n \rightarrow \infty} c_n$ defined as above is known as the **limit inferior** or **liminf** of the bounded sequence $\{a_n\}_{n \in \mathbb{N}}$, and we write:

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- ▶ Observe that for every n ,

$$-M \leq c_n \leq a_n \leq b_n \leq M.$$

- ▶ Consequently,

$$-M \leq \liminf_{n \rightarrow \infty} a_n \leq \limsup_{n \rightarrow \infty} a_n \leq M.$$

- ▶ A bounded sequence may not be convergent and so it may not have a limit. But it always has liminf and limsup.

A Characterization

- **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

A Characterization

- ▶ **Theorem 20.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $z = \limsup_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$S_+(z, \epsilon) = \{n : a_n > z + \epsilon\} \text{ is finite. } (*)$$

and the set

$$S_-(z, \epsilon) = \{n : a_n > z - \epsilon\} \text{ is infinite. } (**)$$

- ▶ Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with z replaced by v , then $v = z$.

Limit superior as a limit point

- **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.

Limit superior as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.

Limit superior as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.

Limit superior as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.

Limit superior as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n \in \mathbb{N}}$.

Limit superior as a limit point

- ▶ **Theorem 20.7:** Suppose $\{a_n\}_{n \in \mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n \rightarrow \infty} a_n$ is a limit point of $\{a_n\}_{n \in \mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n \in \mathbb{N}}$, then $y \leq \limsup_{n \rightarrow \infty} a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ **Proof:** Take $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ By the previous characterization, $\{m : z - \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n \in \mathbb{N}}$.
- ▶ The fact that z is the largest limit point is also clear from the characterization for if $z < v$, then taking $\epsilon = \frac{v-z}{2}$, $(v - \epsilon, v + \epsilon) \subseteq S_+(z, \epsilon)$ has finitely many terms of the sequence.

Limit inferior

- ▶ Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n \rightarrow \infty} a_n = - \limsup_{n \rightarrow \infty} (-a_n).$$

Limit inferior

- ▶ Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n \rightarrow \infty} a_n = - \limsup_{n \rightarrow \infty} (-a_n).$$

- ▶ **Theorem 21.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $w = \liminf_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$T_-(w, \epsilon) = \{n : a_n < w - \epsilon\} \text{ is finite. } (*)$$

and the set

$$T_+(w, \epsilon) = \{n : a_n < w + \epsilon\} \text{ is infinite. } (**)$$

Limit inferior

- ▶ Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n \rightarrow \infty} a_n = - \limsup_{n \rightarrow \infty} (-a_n).$$

- ▶ **Theorem 21.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $w = \liminf_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$T_-(w, \epsilon) = \{n : a_n < w - \epsilon\} \text{ is finite. } (*)$$

and the set

$$T_+(w, \epsilon) = \{n : a_n < w + \epsilon\} \text{ is infinite. } (**)$$

- ▶ Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with w replaced by v , then $v = w = \liminf_{n \rightarrow \infty} a_n$.

Limit inferior

- ▶ Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n \rightarrow \infty} a_n = - \limsup_{n \rightarrow \infty} (-a_n).$$

- ▶ **Theorem 21.1:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers and suppose $w = \liminf_{n \rightarrow \infty} a_n$. Then for every $\epsilon > 0$, the set

$$T_-(w, \epsilon) = \{n : a_n < w - \epsilon\} \text{ is finite. } (*)$$

and the set

$$T_+(w, \epsilon) = \{n : a_n < w + \epsilon\} \text{ is infinite. } (**)$$

- ▶ Conversely if $v \in \mathbb{R}$ satisfies $(*)$, $(**)$ for every $\epsilon > 0$, with w replaced by v , then $v = w = \liminf_{n \rightarrow \infty} a_n$.
- ▶ Similarly liminf is the smallest limit point of a bounded sequence.

Limit points

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a subset of $[w, z]$ where $w = \liminf_{n \rightarrow \infty} a_n$ and $z = \limsup_{n \rightarrow \infty} a_n$.

Limit points

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a subset of $[w, z]$ where $w = \liminf_{n \rightarrow \infty} a_n$ and $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ **Theorem 21.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n.$$

Limit points

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a subset of $[w, z]$ where $w = \liminf_{n \rightarrow \infty} a_n$ and $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ **Theorem 21.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n.$$

- ▶ **Proof.** If the sequence is convergent then the set of limit points is a singleton. Now as \liminf and \limsup are limit points they have to be equal.

Limit points

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a subset of $[w, z]$ where $w = \liminf_{n \rightarrow \infty} a_n$ and $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ **Theorem 21.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n.$$

- ▶ **Proof.** If the sequence is convergent then the set of limit points is a singleton. Now as \liminf and \limsup are limit points they have to be equal.
- ▶ If \liminf and \limsup are equal. Then as we have

$$c_n \leq a_n \leq b_n, \quad \forall n \in \mathbb{N}$$

the result follows by the squeeze theorem.

Limit points

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a subset of $[w, z]$ where $w = \liminf_{n \rightarrow \infty} a_n$ and $z = \limsup_{n \rightarrow \infty} a_n$.
- ▶ **Theorem 21.2:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n.$$

- ▶ **Proof.** If the sequence is convergent then the set of limit points is a singleton. Now as \liminf and \limsup are limit points they have to be equal.
- ▶ If \liminf and \limsup are equal. Then as we have

$$c_n \leq a_n \leq b_n, \quad \forall n \in \mathbb{N}$$

the result follows by the squeeze theorem.

- ▶ This shows that when we do not know whether a sequence is convergent or not, we may try to compute its \liminf and \limsup and see whether they are equal or not.

Properly divergent sequences

► **Definition 21.3:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then it is said to **properly diverge** to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n \rightarrow \infty} a_n = +\infty.$$

or as

$$\lim_{n \rightarrow \infty} a_n = \infty.$$

Properly divergent sequences

► **Definition 21.3:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then it is said to **properly diverge** to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n \rightarrow \infty} a_n = +\infty.$$

or as

$$\lim_{n \rightarrow \infty} a_n = \infty.$$

► A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to **properly diverge** to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \geq K$. This is expressed as: $\lim_{n \rightarrow \infty} a_n = -\infty$.

Properly divergent sequences

► **Definition 21.3:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then it is said to **properly diverge** to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n \rightarrow \infty} a_n = +\infty.$$

or as

$$\lim_{n \rightarrow \infty} a_n = \infty.$$

► A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to **properly diverge** to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \geq K$. This is expressed as: $\lim_{n \rightarrow \infty} a_n = -\infty$.

► A sequence is said to **properly diverge** if it properly diverges to $+\infty$ or $-\infty$.

Properly divergent sequences

- ▶ **Definition 21.3:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Then it is said to **properly diverge** to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n \rightarrow \infty} a_n = +\infty.$$

or as

$$\lim_{n \rightarrow \infty} a_n = \infty.$$

- ▶ A sequence $\{a_n\}_{n \in \mathbb{N}}$ is said to **properly diverge** to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \geq K$. This is expressed as: $\lim_{n \rightarrow \infty} a_n = -\infty$.
- ▶ A sequence is said to **properly diverge** if it properly diverges to $+\infty$ or $-\infty$.
- ▶ Here $+\infty$ and $-\infty$ are not real numbers. It is just convenient notation.

Continuation

- ▶ It is clear that a properly divergent sequence is unbounded.

Continuation

- ▶ It is clear that a properly divergent sequence is unbounded.
- ▶ Some textbooks may write " $\{a_n\}_{n \in \mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).

Continuation

- ▶ It is clear that a properly divergent sequence is unbounded.
- ▶ Some textbooks may write " $\{a_n\}_{n \in \mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).
- ▶ However, it should be kept in mind that such sequences are not convergent sequences in a proper sense as $+\infty$ and $-\infty$ are not real numbers.

Continuation

- ▶ It is clear that a properly divergent sequence is unbounded.
- ▶ Some textbooks may write " $\{a_n\}_{n \in \mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).
- ▶ However, it should be kept in mind that such sequences are not convergent sequences in a proper sense as $+\infty$ and $-\infty$ are not real numbers.
- ▶ **Example 21.4:** Define:

$$a_n = n^2, \quad \forall n \in \mathbb{N}.$$

$$b_n = \begin{cases} 5 & \text{if } n \text{ is odd.} \\ n & \text{if } n \text{ is even.} \end{cases}$$

$$c_n = \begin{cases} 5 & \text{if } n \text{ is odd.} \\ 6 & \text{if } n \text{ is even.} \end{cases}$$

Here $\{a_n\}_{n \in \mathbb{N}}$ is properly divergent to $+\infty$, $\{b_n\}_{n \in \mathbb{N}}$ is unbounded and divergent but it is not properly divergent, $\{c_n\}_{n \in \mathbb{N}}$ is bounded and divergent but not properly divergent.

Basic properties

- **Theorem 21.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.

Basic properties

- ▶ **Theorem 21.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if $c > 0$, properly diverges to $-\infty$ if $c < 0$ and converges to 0 if $c = 0$.

Basic properties

- ▶ **Theorem 21.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if $c > 0$, properly diverges to $-\infty$ if $c < 0$ and converges to 0 if $c = 0$.
- ▶ $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.

Basic properties

- ▶ **Theorem 21.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if $c > 0$, properly diverges to $-\infty$ if $c < 0$ and converges to 0 if $c = 0$.
- ▶ $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ $\{a_n - b_n\}_{n \in \mathbb{N}}$ may or maynot diverge.

Basic properties

- ▶ **Theorem 21.5:** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if $c > 0$, properly diverges to $-\infty$ if $c < 0$ and converges to 0 if $c = 0$.
- ▶ $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ $\{a_n - b_n\}_{n \in \mathbb{N}}$ may or maynot diverge.
- ▶ $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for $n \geq K_2$.

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for $n \geq K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \geq K$,

$$a_n + b_n \geq M + 1 > M.$$

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for $n \geq K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \geq K$,

$$a_n + b_n \geq M + 1 > M.$$

- ▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for $n \geq K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \geq K$,

$$a_n + b_n \geq M + 1 > M.$$

- ▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.
- ▶ Also for $n \geq K$, $a_n b_n \geq M \cdot 1 = M$. Therefore, $\{a_n b_n\}$ properly diverges to $+\infty$.

Continuation

- ▶ **Proof:** Without loss of generality, take $M > 0$. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for $n \geq K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \geq K$,

$$a_n + b_n \geq M + 1 > M.$$

- ▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.
- ▶ Also for $n \geq K$, $a_n b_n \geq M \cdot 1 = M$. Therefore, $\{a_n b_n\}$ properly diverges to $+\infty$.
- ▶ Proofs of other claims are left out as exercises.

Some more properties

- ▶ **Theorem 21.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n \in \mathbb{N}}$ be a sequence converging to some real number x .

Some more properties

- ▶ **Theorem 21.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n \in \mathbb{N}}$ be a sequence converging to some real number x .
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.

Some more properties

- ▶ **Theorem 21.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n \in \mathbb{N}}$ be a sequence converging to some real number x .
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If $x > 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If $x < 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.

Some more properties

- ▶ **Theorem 21.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n \in \mathbb{N}}$ be a sequence converging to some real number x .
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If $x > 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If $x < 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.
- ▶ (iii) If $x > 0$ and $b_n \neq 0$ for every n , then $\{\frac{a_n}{b_n}\}$ properly diverges to ∞ . If $x < 0$ and $b_n \neq 0$ for every n , then $\{\frac{a_n}{b_n}\}$ properly diverges to $-\infty$.

Some more properties

- ▶ **Theorem 21.6:** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n \in \mathbb{N}}$ be a sequence converging to some real number x .
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If $x > 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If $x < 0$, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.
- ▶ (iii) If $x > 0$ and $b_n \neq 0$ for every n , then $\{\frac{a_n}{b_n}\}$ properly diverges to ∞ . If $x < 0$ and $b_n \neq 0$ for every n , then $\{\frac{a_n}{b_n}\}$ properly diverges to $-\infty$.
- ▶ (iv) If $a_n \neq 0$ for every n , then $\{\frac{b_n}{a_n}\}$ converges to 0.

Continuation

- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ properly diverge to $+\infty$, $\{a_n - b_n\}_{n \rightarrow \infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ need not converge.

Continuation

- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ properly diverge to $+\infty$, $\{a_n - b_n\}_{n \rightarrow \infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n \in \mathbb{N}}$ converges to 0, then $\{a_n b_n\}_{n \in \mathbb{N}}$ may not converge to 0 or to any other real number.

Continuation

- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ properly diverge to $+\infty$, $\{a_n - b_n\}_{n \rightarrow \infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n \in \mathbb{N}}$ converges to 0, then $\{a_n b_n\}_{n \in \mathbb{N}}$ may not converge to 0 or to any other real number.
- ▶ Give examples to illustrate such phenomenon.

Continuation

- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ properly diverge to $+\infty$, $\{a_n - b_n\}_{n \rightarrow \infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n \in \mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n \in \mathbb{N}}$ converges to 0, then $\{a_n b_n\}_{n \in \mathbb{N}}$ may not converge to 0 or to any other real number.
- ▶ Give examples to illustrate such phenomenon.
- ▶ **END OF LECTURE 21**