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Lecture 21. Limit inferior and Properly divergent
sequences

I From previous lecture we recall notions of limit point, limit
superior and limit inferior.

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}

is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.
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Limsup

I Let {an}n∈N be a bounded sequence of real numbers and
suppose |an| ≤ M, for all n.

I Take b1 = sup{am : m ∈ N} = sup{a1, a2, . . .};
I b2 = sup{am : m ∈ N,m ≥ 2} = sup{a2, a3, . . .};
I b3 = sup{am : m ∈ N,m ≥ 3} = sup{a3, a4, . . .};
I and for any n ∈ N,

bn = sup{am : m ∈ N,m ≥ n} = sup{an, an+1, . . .}.

I Note that as {am : m ∈ N} ⊇ {am : m ∈ N,m ≥ 2}, we have
b1 ≥ b2.

I In general, bn ≥ bn+1 for every n ∈ N. We also have |bn| ≤ M
for every n, as |am| ≤ M for every m.

I In conclusion, {bn} is a bounded decreasing sequence. Hence
limn→∞ bn exists.
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Continuation

I Definition 20.2: For any bounded sequence {an}n∈N, the
limn→∞ bn defined as above is known as the limit superior or
limsup of the bounded sequence {an}n∈N, and we write:

lim sup
n→∞

an = lim
n→∞

bn.

I In other words, the ’limsup’ is the limit of supremums of tails
of the sequence.
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Continuation

I Definition 20.3: For any bounded sequence {an}n∈N, the
limn→∞ cn defined as above is known as the limit inferior or
liminf of the bounded sequence {an}n∈N, and we write:

lim inf
n→∞

an = lim
n→∞

cn.

I In other words, the ’liminf’ is the limit of infimums of tails of
the sequence.

I Observe that for every n,

−M ≤ cn ≤ an ≤ bn ≤ M.

I Consequently,

−M ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ M.

I A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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A Characterization

I Theorem 20.6: Let {an}n∈N be a bounded sequence of real
numbers and suppose z = lim supn→∞ an. Then for every
ε > 0, the set

S+(z , ε) = {n : an > z + ε} is finite. (∗)

and the set

S−(z , ε) = {n : an > z − ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with z
replaced by v , then v = z .



A Characterization

I Theorem 20.6: Let {an}n∈N be a bounded sequence of real
numbers and suppose z = lim supn→∞ an. Then for every
ε > 0, the set

S+(z , ε) = {n : an > z + ε} is finite. (∗)

and the set

S−(z , ε) = {n : an > z − ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with z
replaced by v , then v = z .



Limit superior as a limit point

I Theorem 20.7: Suppose {an}n∈N is a bounded sequence of
real numbers. Then lim supn→∞ an is a limit point of {an}n∈N
and if y is any limit point of {an}n∈N, then
y ≤ lim supn→∞ an.

I In other words, limsup is the largest limit point of a bounded
sequence.

I Proof: Take z = lim supn→∞ an.

I By the previous characterization,
{m : z − ε < am < z + ε} = S−(z , ε)\(S+(z , ε)

⋃
{z + ε}) is

infinite.

I Hence z is a limit point of {an}n∈N.

I The fact that z is the largest limit point is also clear from the
characterization for if z < v , then taking ε = v−z

2 ,
(v − ε, v + ε) ⊆ S+(z , ε) has finitely many terms of the
sequence.
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Limit inferior

I Results similar to that of limsup hold for liminf. These can be
proved by similar methods or by observing that

lim inf
n→∞

an = − lim sup
n→∞

(−an).

I Theorem 21.1: Let {an}n∈N be a bounded sequence of real
numbers and suppose w = lim infn→∞ an. Then for every
ε > 0, the set

T−(w , ε) = {n : an < w − ε} is finite. (∗)

and the set

T+(w , ε) = {n : an < w + ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with w
replaced by v , then v = w = lim infn→∞ an.

I Similarly liminf is the smallest limit point of a bounded
sequence.
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T+(w , ε) = {n : an < w + ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with w
replaced by v , then v = w = lim infn→∞ an.

I Similarly liminf is the smallest limit point of a bounded
sequence.
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Limit points

I Consequently, the set of limit points of a bounded sequence
{an}n∈N is a subset of [w , z ] where w = lim infn→∞ an and
z = lim supn→∞ an.

I Theorem 21.2: Let {an}n∈N be a bounded sequence of real
numbers. Then it is convergent if and only if

lim inf
n→∞

an = lim sup
n→∞

an.

I Proof. If the sequence is convergent then the set of limit
points is a singleton. Now as liminf and limsup are limit
points they have to be equal.

I If liminf and limsup are equal. Then as we have

cn ≤ an ≤ bn, ∀n ∈ N

the result follows by the squeeze theorem.
I This shows that when we do not know whether a sequence is

convergent or not, we may try to compute its liminf and
limsup and see whether they are equal or not.
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Properly divergent sequences

I Definition 21.3: Let {an}n∈N be a sequence of real numbers.
Then it is said to properly diverge to +∞ if for every M ∈ R
there exists K ∈ N such that

an ≥ M, ∀n ≥ K .

This is written as:
lim
n→∞

an = +∞.
or as

lim
n→∞

an =∞.

I A sequence {an}n∈N is said to properly diverge to −∞, if for
every M ∈ R there exists K ∈ N such that an < M for all
n ≥ K . This is expressed as: limn→∞ an = −∞.

I A sequence is said to properly diverge if it properly diverges to
+∞ or −∞.

I Here +∞ and −∞ are not real numbers. It is just convenient
notation.
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Continuation

I It is clear that a properly divergent sequence is unbounded.

I Some textbooks may write ”{an}n∈N converges to ∞” to
mean that {an}n∈N properly diverges to +∞ (Similarly, for
−∞).

I However, it should be kept in mind that such sequences are
not convergent sequences in a proper sense as +∞ and −∞
are not real numbers.

I Example 21.4: Define:

an = n2, ∀n ∈ N.

bn =

{
5 if n is odd.
n if n is even.

cn =

{
5 if n is odd.
6 if n is even.

Here {an}n∈N is properly divergent to +∞, {bn}n∈N is
unbounded and divergent but it is not properly divergent,
{cn}n∈N is bounded and divergent but not properly divergent.
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Basic properties

I Theorem 21.5: Let {an}n∈N and {bn}n∈N be sequences of real
numbers properly diverging to +∞.

I For c ∈ R, {can}n∈N properly diverges to +∞ if c > 0,
properly diverges to −∞ if c < 0 and converges to 0 if c = 0.

I {an + bn}n∈N properly diverges to +∞.
I {an − bn}n∈N may or maynot diverge.

I {anbn}n∈N properly diverges to +∞.
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Continuation

I Proof: Without loss of generality, take M > 0. There exists
K1 ∈ N such that an ≥ M for n ≥ K1.

I There exists K2 ∈ N such that bn ≥ 1 for for n ≥ K2.

I Take K = max{K1,K2}. For n ≥ K ,

an + bn ≥ M + 1 > M.

I Hence {an + bn} properly diverges to +∞.
I Also for n ≥ K , anbn ≥ M.1 = M. Therefore, {anbn} properly

diverges to +∞.
I Proofs of other claims are left out as exercises.
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Some more properties

I Theorem 21.6: Let {an}n∈N be a sequences of real numbers
properly diverging to +∞ and let {bn}n∈N be a sequence
converging to some real number x .

I (i) {an + bn}n∈N properly diverges to +∞.
I (ii) If x > 0, {anbn}n∈N properly diverges to +∞. If x < 0,
{anbn}n∈N properly diverges to −∞.

I (iii) If x > 0 and bn 6= 0 for every n, then { anbn } properly
diverges to ∞. If x < 0 and bn 6= 0 for every n, then { anbn }
properly diverges to −∞.

I (iv) If an 6= 0 for every n, then {bnan } converges to 0.
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Continuation

I If {an}n∈N and {bn}n∈N properly diverge to +∞,
{an − bn}n→∞ may not converge. Similarly { anbn }n∈N need not
converge.

I If {an}n∈N properly diverges to ∞ and {bn}n∈N converges to
0, then {anbn}n∈N may not converge to 0 or to any other real
number.

I Give examples to illustrate such phenomenon.

I END OF LECTURE 21
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