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Lecture 22. Continuous functions

» Definition 22.1: Let A C R and let ¢ € A. Then a function
f : A— R is said to be continuous at c, if for every € > 0
there exists § > 0 such that

|f(x) — f(c)| <e, VXE(C—&,C—HS)ﬂA,
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» Definition 22.1: Let A C R and let ¢ € A. Then a function
f : A— R is said to be continuous at c, if for every € > 0
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|f(x) — f(c)| <e, Vxe(c—é,c+5)ﬂA,
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» Therefore f is continuous at c.
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Discontinuous functions

» Example 22.3: Define f : [0,1] — R by

0 ifo<xx«l
f(X)_{ 5 if x=1.

» Then f is not continuous at 1.
» For any € < 5, there is no § > 0 such that

f(x) = f(c)l <e, Vx€(c—6,c+8)[)0,1].
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Sequential form of continuity

» Theorem 22.4: Let AC R and let ¢ € A. Then a function
f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

nhj;o f(xn) = f(c).

» Proof: Suppose f is continuous at c.
Let {xn}nen be a sequence in A, converging to c.
» For € > 0, choose § > 0 such that

f(x) = f(c)l <&, Vx€(c—6,c+0)[)A

v

» As {xp} is converging to c, there exists K € N such that
|xn — c| <0, Vn>K.
» Hence for n > K, x, € (c —6,c+6)[)A. Hence
|f(xn) — f(c)| <€ Vn>K.

» This shows that {f(x,)}nen converges to f(c).
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Now to prove the only if part, suppose that f is not
continuous at c.
Then for some ¢y > 0

f(x) = f(c)| <eo, Vxe(c—0b,c+6)[)A

is not true for any § > 0.
In particular, for all n € N,
1 1
fx) = f(e)l <o, Vxe(c——.c+)[A
is not true.
This means that for every n € N we can choose
Xn € (c — %, c+ 1) A such that

[f(xn) = ()| = e
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> Now to prove the only if part, suppose that f is not
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» Then for some ¢g > 0
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Continuation

> Now to prove the only if part, suppose that f is not
continuous at c.
» Then for some ¢g > 0

f(x) = f(c)| <eo, Vxe(c—0b,c+6)[)A

is not true for any § > 0.
» In particular, for all n € N,
1 1
f(x)—f(c)|<e, Vxe(c——,c+— A
[f(x) = f(c)] < e, Vxe( n+n)ﬂ
is not true.
» This means that for every n € N we can choose
Xn € (c — %, c+ 1) A such that
|f(xn) — f(c)| > €o.
> As c— % <Xp<cCc+ % for every n, lim,_,o X, = c.
» However, as |f(x,) — f(c)| > e, for every n, {f(x,)} does not

converge to f(c).

» Thic rcomnleteec +the nranf
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Example 22.5: Suppose A= {1}J[2,3]andg: A— R is
defined by
(x) = 0 if x=1;

EXIZU 7 i xe 23]
Is g continuous at 17
Ans: Yes.
This is because there are no ‘non-trivial’ sequences in A
converging to 1.

Definition 22.6: Let A be a subset of R and suppose ¢ € A.
Then c is said to be isolated in A, if there exists 6 > 0 such
that

(c—d,c+08)[A={c}

Remark 22.6: Suppose A C R and ¢ € A is isolated in A.
Then every function f : A — R is continuous at c.
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