

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ Informally, for continuity of f at c , we want $f(x)$ to be close to $f(c)$, whenever x is in A and is sufficiently close to c .

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ Informally, for continuity of f at c , we want $f(x)$ to be close to $f(c)$, whenever x is in A and is sufficiently close to c .
- ▶ Example 22.2: Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ Informally, for continuity of f at c , we want $f(x)$ to be close to $f(c)$, whenever x is in A and is sufficiently close to c .
- ▶ Example 22.2: Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

- ▶ Fix $c \in [0, 1]$. We want to show that f is continuous at c . For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ Informally, for continuity of f at c , we want $f(x)$ to be close to $f(c)$, whenever x is in A and is sufficiently close to c .
- ▶ Example 22.2: Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

- ▶ Fix $c \in [0, 1]$. We want to show that f is continuous at c . For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.
- ▶ Now for $x \in (c - \delta, c + \delta) \cap [0, 1]$, note that $|x - c| < \delta = \frac{\epsilon}{2}$. Hence

$$|f(x) - f(c)| \leq |x^2 - c^2| = |x - c||x + c| < \frac{\epsilon}{2} \cdot (|x| + |c|) \leq \frac{\epsilon}{2} \cdot 2 = \epsilon.$$

Lecture 22. Continuous functions

- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ Informally, for continuity of f at c , we want $f(x)$ to be close to $f(c)$, whenever x is in A and is sufficiently close to c .
- ▶ Example 22.2: Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

- ▶ Fix $c \in [0, 1]$. We want to show that f is continuous at c . For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.
- ▶ Now for $x \in (c - \delta, c + \delta) \cap [0, 1]$, note that $|x - c| < \delta = \frac{\epsilon}{2}$. Hence

$$|f(x) - f(c)| \leq |x^2 - c^2| = |x - c||x + c| < \frac{\epsilon}{2} \cdot (|x| + |c|) \leq \frac{\epsilon}{2} \cdot 2 = \epsilon.$$

- ▶ Therefore f is continuous at c .

Discontinuous functions

► Example 22.3: Define $f : [0, 1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

Discontinuous functions

- ▶ Example 22.3: Define $f : [0, 1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

- ▶ Then f is not continuous at 1.

Discontinuous functions

- ▶ Example 22.3: Define $f : [0, 1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

- ▶ Then f is not continuous at 1.
- ▶ For any $\epsilon < 5$, there is no $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap [0, 1].$$

Sequential form of continuity

► **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

Sequential form of continuity

► **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

► **Proof:** Suppose f is continuous at c .

Sequential form of continuity

- **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- **Proof:** Suppose f is continuous at c .
- Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in A , converging to c .

Sequential form of continuity

► **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

► **Proof:** Suppose f is continuous at c .

► Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in A , converging to c .

► For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

Sequential form of continuity

- **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- **Proof:** Suppose f is continuous at c .
- Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in A , converging to c .
- For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- As $\{x_n\}$ is converging to c , there exists $K \in \mathbb{N}$ such that

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

Sequential form of continuity

- **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- **Proof:** Suppose f is continuous at c .
- Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in A , converging to c .
- For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- As $\{x_n\}$ is converging to c , there exists $K \in \mathbb{N}$ such that

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

- Hence for $n \geq K$, $x_n \in (c - \delta, c + \delta) \cap A$. Hence

$$|f(x_n) - f(c)| < \epsilon, \quad \forall n \geq K.$$

Sequential form of continuity

- **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- **Proof:** Suppose f is continuous at c .
- Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in A , converging to c .
- For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- As $\{x_n\}$ is converging to c , there exists $K \in \mathbb{N}$ such that

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

- Hence for $n \geq K$, $x_n \in (c - \delta, c + \delta) \cap A$. Hence

$$|f(x_n) - f(c)| < \epsilon, \quad \forall n \geq K.$$

- This shows that $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to $f(c)$.

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

- ▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$$

is not true.

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

- ▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$$

is not true.

- ▶ This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n) - f(c)| \geq \epsilon_0.$$

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

- ▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$$

is not true.

- ▶ This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n) - f(c)| \geq \epsilon_0.$$

- ▶ As $c - \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n , $\lim_{n \rightarrow \infty} x_n = c$.

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

- ▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$$

is not true.

- ▶ This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n) - f(c)| \geq \epsilon_0.$$

- ▶ As $c - \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n , $\lim_{n \rightarrow \infty} x_n = c$.
- ▶ However, as $|f(x_n) - f(c)| \geq \epsilon_0$, for every n , $\{f(x_n)\}$ does not converge to $f(c)$.

Continuation

- ▶ Now to prove the only if part, suppose that f is not continuous at c .
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

- ▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$$

is not true.

- ▶ This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n) - f(c)| \geq \epsilon_0.$$

- ▶ As $c - \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n , $\lim_{n \rightarrow \infty} x_n = c$.
- ▶ However, as $|f(x_n) - f(c)| \geq \epsilon_0$, for every n , $\{f(x_n)\}$ does not converge to $f(c)$.
- ▶ This completes the proof

More Examples

► Example 22.5: Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

More Examples

- ▶ Example 22.5: Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?

More Examples

- ▶ **Example 22.5:** Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?
- ▶ **Ans:** Yes.

More Examples

- ▶ **Example 22.5:** Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?
- ▶ **Ans:** Yes.
- ▶ This is because there are no 'non-trivial' sequences in A converging to 1.

More Examples

- ▶ **Example 22.5:** Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?
- ▶ **Ans:** Yes.
- ▶ This is because there are no 'non-trivial' sequences in A converging to 1.
- ▶ **Definition 22.6:** Let A be a subset of \mathbb{R} and suppose $c \in A$. Then c is said to be **isolated** in A , if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \cap A = \{c\}.$$

More Examples

- ▶ **Example 22.5:** Suppose $A = \{1\} \cup [2, 3]$ and $g : A \rightarrow \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?
- ▶ **Ans:** Yes.
- ▶ This is because there are no 'non-trivial' sequences in A converging to 1.
- ▶ **Definition 22.6:** Let A be a subset of \mathbb{R} and suppose $c \in A$. Then c is said to be **isolated** in A , if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \cap A = \{c\}.$$

- ▶ **Remark 22.6:** Suppose $A \subset \mathbb{R}$ and $c \in A$ is isolated in A . Then every function $f : A \rightarrow \mathbb{R}$ is continuous at c .

Continuous functions

- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Continuous functions

- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- ▶ **Example 22.8:** The function $f(x) = x^2$, defined on $[0, 1]$ is continuous.

Continuous functions

- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- ▶ **Example 22.8:** The function $f(x) = x^2$, defined on $[0, 1]$ is continuous.
- ▶ **Exmaple 22.9:** Any function on \mathbb{N} is continuous as every point of \mathbb{N} is isolated.

Continuous functions

- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- ▶ **Example 22.8:** The function $f(x) = x^2$, defined on $[0, 1]$ is continuous.
- ▶ **Exmaple 22.9:** Any function on \mathbb{N} is continuous as every point of \mathbb{N} is isolated.
- ▶ **Exercise 22.10:** Give an example of a function on $[0, 1]$ which is discontinuous at every point of $[0, 1]$.

Continuous functions

- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- ▶ **Example 22.8:** The function $f(x) = x^2$, defined on $[0, 1]$ is continuous.
- ▶ **Exmaple 22.9:** Any function on \mathbb{N} is continuous as every point of \mathbb{N} is isolated.
- ▶ **Exercise 22.10:** Give an example of a function on $[0, 1]$ which is discontinuous at every point of $[0, 1]$.
- ▶ **END OF LECTURE 22**