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Lecture 22. Continuous functions

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I Informally, for continuity of f at c , we want f (x) to be close
to f (c), whenever x is in A and is sufficiently close to c .

I Example 22.2: Let f : [0, 1]→ R be the function,

f (x) = x2, ∀x ∈ [0, 1].

I Fix c ∈ [0, 1]. We want to show that f is continuous at c . For
ε > 0, take δ = ε

2 .
I Now for x ∈ (c − δ, c + δ)

⋂
[0, 1], note that |x − c | < δ = ε

2 .
Hence

|f (x)−f (c)| ≤ |x2−c2| = |x−c||x+c| < ε

2
.(|x |+|c |) ≤ ε

2
.2 = ε.

I Therefore f is continuous at c .
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Discontinuous functions

I Example 22.3: Define f : [0, 1]→ R by

f (x) =

{
0 if 0 ≤ x < 1
5 if x = 1.

I Then f is not continuous at 1.

I For any ε < 5, there is no δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

[0, 1].
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Sequential form of continuity

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I Proof: Suppose f is continuous at c.
I Let {xn}n∈N be a sequence in A, converging to c .
I For ε > 0, choose δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I As {xn} is converging to c , there exists K ∈ N such that

|xn − c | < δ, ∀n ≥ K .

I Hence for n ≥ K , xn ∈ (c − δ, c + δ)
⋂
A. Hence

|f (xn)− f (c)| < ε, ∀n ≥ K .

I This shows that {f (xn)}n∈N converges to f (c).
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Continuation

I Now to prove the only if part, suppose that f is not
continuous at c.

I Then for some ε0 > 0

|f (x)− f (c)| < ε0, ∀x ∈ (c − δ, c + δ)
⋂

A

is not true for any δ > 0.
I In particular, for all n ∈ N,

|f (x)− f (c)| < ε0, ∀x ∈ (c − 1

n
, c +

1

n
)
⋂

A

is not true.
I This means that for every n ∈ N we can choose

xn ∈ (c − 1
n , c + 1

n )
⋂
A such that

|f (xn)− f (c)| ≥ ε0.
I As c − 1

n < xn < c + 1
n , for every n, limn→∞ xn = c .

I However, as |f (xn)− f (c)| ≥ ε0, for every n, {f (xn)} does not
converge to f (c).

I This completes the proof.
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More Examples

I Example 22.5: Suppose A = {1}
⋃

[2, 3] and g : A→ R is
defined by

g(x) =

{
0 if x = 1;
7 if x ∈ [2, 3].

I Is g continuous at 1?

I Ans: Yes.

I This is because there are no ‘non-trivial’ sequences in A
converging to 1.

I Definition 22.6: Let A be a subset of R and suppose c ∈ A.
Then c is said to be isolated in A, if there exists δ > 0 such
that

(c − δ, c + δ)
⋂

A = {c}.

I Remark 22.6: Suppose A ⊂ R and c ∈ A is isolated in A.
Then every function f : A→ R is continuous at c .
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Continuous functions

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.

I Example 22.8: The function f (x) = x2, defined on [0, 1] is
continuous.

I Exmaple 22.9: Any function on N is continuous as every point
of N is isolated.

I Exercise 22.10: Give an example of a function on [0, 1] which
is discontinuous at every point of [0, 1].

I END OF LECTURE 22
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