

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 23. Algebraic operations of Continuous functions

- We recall:

Lecture 23. Algebraic operations of Continuous functions

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

Lecture 23. Algebraic operations of Continuous functions

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.

Lecture 23. Algebraic operations of Continuous functions

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

Lecture 23. Algebraic operations of Continuous functions

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.

Lecture 23. Algebraic operations of Continuous functions

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Linear combinations, products, ratios

- **Theorem 23.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be functions continuous at c .

Linear combinations, products, ratios

- ▶ **Theorem 23.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be functions continuous at c .
- ▶ (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous at c .

Linear combinations, products, ratios

- ▶ **Theorem 23.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be functions continuous at c .
- ▶ (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous at c .

- ▶ (ii) fg defined by

$$fg(x) = f(x)g(x), \quad \forall x \in A$$

is continuous at c .

Linear combinations, products, ratios

- ▶ **Theorem 23.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be functions continuous at c .
- ▶ (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous at c .

- ▶ (ii) fg defined by

$$fg(x) = f(x)g(x), \quad \forall x \in A$$

is continuous at c .

- ▶ (iii) If $g(x) \neq 0$, $\forall x \in A$, then $\frac{f}{g}$ defined by

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad \forall x \in A,$$

is continuous at c .

First Proof

► **Proof.** (i) For $\epsilon > 0$, using continuity of f at c , choose $\delta_1 > 0$, such that

$$|f(x) - f(c)| < \frac{\epsilon}{2}, \quad \forall x \in (c - \delta_1, c + \delta_1) \cap A.$$

First Proof

► **Proof.** (i) For $\epsilon > 0$, using continuity of f at c , choose $\delta_1 > 0$, such that

$$|f(x) - f(c)| < \frac{\epsilon}{2}, \quad \forall x \in (c - \delta_1, c + \delta_1) \cap A.$$

► Similarly using continuity of g at c , choose $\delta_2 > 0$ such that

$$|g(x) - g(c)| < \frac{\epsilon}{2}, \quad x \in (c - \delta_2, c + \delta_2) \cap A.$$

First Proof

- ▶ **Proof.** (i) For $\epsilon > 0$, using continuity of f at c , choose $\delta_1 > 0$, such that

$$|f(x) - f(c)| < \frac{\epsilon}{2}, \quad \forall x \in (c - \delta_1, c + \delta_1) \cap A.$$

- ▶ Similarly using continuity of g at c , choose $\delta_2 > 0$ such that

$$|g(x) - g(c)| < \frac{\epsilon}{2}, \quad x \in (c - \delta_2, c + \delta_2) \cap A.$$

- ▶ Now take $\delta = \min\{\delta_1, \delta_2\}$. Then for $x \in (c - \delta, c + \delta) \cap A$, we get

$$|f(x) + g(x) - f(c) - g(c)| \leq |f(x) - f(c)| + |g(x) - g(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

First Proof

- ▶ **Proof.** (i) For $\epsilon > 0$, using continuity of f at c , choose $\delta_1 > 0$, such that

$$|f(x) - f(c)| < \frac{\epsilon}{2}, \quad \forall x \in (c - \delta_1, c + \delta_1) \cap A.$$

- ▶ Similarly using continuity of g at c , choose $\delta_2 > 0$ such that

$$|g(x) - g(c)| < \frac{\epsilon}{2}, \quad x \in (c - \delta_2, c + \delta_2) \cap A.$$

- ▶ Now take $\delta = \min\{\delta_1, \delta_2\}$. Then for $x \in (c - \delta, c + \delta) \cap A$, we get

$$|f(x) + g(x) - f(c) - g(c)| \leq |f(x) - f(c)| + |g(x) - g(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- ▶ Therefore $f + g$ is continuous at c .

First Proof

- ▶ **Proof.** (i) For $\epsilon > 0$, using continuity of f at c , choose $\delta_1 > 0$, such that

$$|f(x) - f(c)| < \frac{\epsilon}{2}, \quad \forall x \in (c - \delta_1, c + \delta_1) \cap A.$$

- ▶ Similarly using continuity of g at c , choose $\delta_2 > 0$ such that

$$|g(x) - g(c)| < \frac{\epsilon}{2}, \quad x \in (c - \delta_2, c + \delta_2) \cap A.$$

- ▶ Now take $\delta = \min\{\delta_1, \delta_2\}$. Then for $x \in (c - \delta, c + \delta) \cap A$, we get

$$|f(x) + g(x) - f(c) - g(c)| \leq |f(x) - f(c)| + |g(x) - g(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- ▶ Therefore $f + g$ is continuous at c .
- ▶ It is easy to see that if f is continuous at c , af is continuous at c . Similarly bg is continuous at c . Combining with the previous result, $af + bg$ is continuous at c .

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .
- ▶ As f, g are continuous at c , $\{f(x_n)\}, \{g(x_n)\}$ converge to $f(c), g(c)$ respectively.

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .
- ▶ As f, g are continuous at c , $\{f(x_n)\}, \{g(x_n)\}$ converge to $f(c), g(c)$ respectively.
- ▶ Hence, $\{af(x_n) + bg(x_n)\}_{n \in \mathbb{N}}$ converges to $af(c) + bg(c)$.

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .
- ▶ As f, g are continuous at c , $\{f(x_n)\}, \{g(x_n)\}$ converge to $f(c), g(c)$ respectively.
- ▶ Hence, $\{af(x_n) + bg(x_n)\}_{n \in \mathbb{N}}$ converges to $af(c) + bg(c)$.
- ▶ This proves that $af + bg$ is continuous.

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .
- ▶ As f, g are continuous at c , $\{f(x_n)\}, \{g(x_n)\}$ converge to $f(c), g(c)$ respectively.
- ▶ Hence, $\{af(x_n) + bg(x_n)\}_{n \in \mathbb{N}}$ converges to $af(c) + bg(c)$.
- ▶ This proves that $af + bg$ is continuous.
- ▶ Similarly, $\{f(x_n)g(x_n)\}$ converges to $f(c)g(c)$ and if $g(x) \neq 0$ for every x , $\{\frac{f(x_n)}{g(x_n)}\}$ converges to $\frac{f(c)}{g(c)}$.

Alternative Proof

- ▶ **Alternative Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in A converging to c .
- ▶ As f, g are continuous at c , $\{f(x_n)\}, \{g(x_n)\}$ converge to $f(c), g(c)$ respectively.
- ▶ Hence, $\{af(x_n) + bg(x_n)\}_{n \in \mathbb{N}}$ converges to $af(c) + bg(c)$.
- ▶ This proves that $af + bg$ is continuous.
- ▶ Similarly, $\{f(x_n)g(x_n)\}$ converges to $f(c)g(c)$ and if $g(x) \neq 0$ for every x , $\{\frac{f(x_n)}{g(x_n)}\}$ converges to $\frac{f(c)}{g(c)}$.
- ▶ Hence fg and $\frac{f}{g}$ are continuous. This completes the proof.

Algebra of continuous functions

- **Theorem 23.2:** Let $A \subseteq \mathbb{R}$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be continuous functions.

Algebra of continuous functions

- **Theorem 23.2:** Let $A \subseteq \mathbb{R}$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be continuous functions.
- (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous.

Algebra of continuous functions

- **Theorem 23.2:** Let $A \subseteq \mathbb{R}$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be continuous functions.
- (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous.

- (ii) fg defined by

$$fg(x) = f(x)g(x), \quad \forall x \in \mathbb{R}$$

is continuous.

Algebra of continuous functions

- **Theorem 23.2:** Let $A \subseteq \mathbb{R}$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be continuous functions.
- (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous.

- (ii) fg defined by

$$fg(x) = f(x)g(x), \quad \forall x \in \mathbb{R}$$

is continuous.

- (iii) If $g(x) \neq 0$, $\forall x \in A$, then $\frac{f}{g}$ defined by

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad \forall x \in A,$$

is continuous.

Algebra of continuous functions

- **Theorem 23.2:** Let $A \subseteq \mathbb{R}$. Let $f : A \rightarrow \mathbb{R}$ and $g : A \rightarrow \mathbb{R}$ be continuous functions.
- (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by

$$(af + bg)(x) = af(x) + bg(x), \quad \forall x \in A,$$

is continuous.

- (ii) fg defined by

$$fg(x) = f(x)g(x), \quad \forall x \in \mathbb{R}$$

is continuous.

- (iii) If $g(x) \neq 0$, $\forall x \in A$, then $\frac{f}{g}$ defined by

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad \forall x \in A,$$

is continuous.

- **Proof:** This is clear from the previous theorem and the definition of continuous functions.

Restrictions of continuous functions

- **Theorem 23.3:** Let $A \subseteq \mathbb{R}$ and let B be a subset of A and let $c \in B$. Suppose $f : A \rightarrow \mathbb{R}$ is a function continuous at c . Then $g : B \rightarrow \mathbb{R}$ defined by

$$g(x) = f(x), \quad \forall x \in B,$$

is continuous at c . If f is continuous, then g is continuous.

Restrictions of continuous functions

- **Theorem 23.3:** Let $A \subseteq \mathbb{R}$ and let B be a subset of A and let $c \in B$. Suppose $f : A \rightarrow \mathbb{R}$ is a function continuous at c . Then $g : B \rightarrow \mathbb{R}$ defined by

$$g(x) = f(x), \quad \forall x \in B,$$

is continuous at c . If f is continuous, then g is continuous.

- **Proof:** This is obvious from the definition of continuity.

Restrictions of continuous functions

- **Theorem 23.3:** Let $A \subseteq \mathbb{R}$ and let B be a subset of A and let $c \in B$. Suppose $f : A \rightarrow \mathbb{R}$ is a function continuous at c . Then $g : B \rightarrow \mathbb{R}$ defined by

$$g(x) = f(x), \quad \forall x \in B,$$

is continuous at c . If f is continuous, then g is continuous.

- **Proof:** This is obvious from the definition of continuity.
- **Notation:** The function g of this theorem is called the restriction of f to B and is denoted by $f|_B$.

Continuity of polynomials

► **Theorem 23.4:** Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial defined by

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \quad \forall x \in \mathbb{R},$$

Continuity of polynomials

- **Theorem 23.4:** Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial defined by

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \quad \forall x \in \mathbb{R},$$

- where $n \in \mathbb{N} \cup \{0\}$ and a_0, a_1, \dots, a_n are real numbers. Then p is continuous.

Continuity of polynomials

- **Theorem 23.4:** Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial defined by

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \quad \forall x \in \mathbb{R},$$

- where $n \in \mathbb{N} \cup \{0\}$ and a_0, a_1, \dots, a_n are real numbers. Then p is continuous.
- **Proof:** It is easy to see that the constant function

$$p_0(x) = a_0, \quad x \in \mathbb{R}$$

and the identity function,

$$p_1(x) = x, \quad x \in \mathbb{R}$$

are continuous. Now by (ii) of Theorem 23.2, and mathematical induction, the polynomials

$$p_k(x) = x^k, \quad \forall x \in \mathbb{R}$$

$k \in \mathbb{N}$, are continuous. The proof is complete by a simple application of (i) of Theorem 23.2.

Rational functions

- **Corollary 23.5:** For any non-empty subset B of \mathbb{R} and any real polynomial p , $p|_B$, defined by

$$p|_B(x) = p(x), \quad x \in B$$

is continuous.

Rational functions

- **Corollary 23.5:** For any non-empty subset B of \mathbb{R} and any real polynomial p , $p|_B$, defined by

$$p|_B(x) = p(x), \quad x \in B$$

is continuous.

- If q is another polynomial such that $q(x) \neq 0$ for $x \in B$, then $\frac{p|_B}{q|_B}$ is a continuous function on B .

Rational functions

- **Corollary 23.5:** For any non-empty subset B of \mathbb{R} and any real polynomial p , $p|_B$, defined by

$$p|_B(x) = p(x), \quad x \in B$$

is continuous.

- If q is another polynomial such that $q(x) \neq 0$ for $x \in B$, then $\frac{p|_B}{q|_B}$ is a continuous function on B .
- Such functions are known as rational functions.

Rational functions

- **Corollary 23.5:** For any non-empty subset B of \mathbb{R} and any real polynomial p , $p|_B$, defined by

$$p|_B(x) = p(x), \quad x \in B$$

is continuous.

- If q is another polynomial such that $q(x) \neq 0$ for $x \in B$, then $\frac{p|_B}{q|_B}$ is a continuous function on B .
- Such functions are known as rational functions.
- **Example 23.6:** The function $g : \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}$ defined by $g(x) = \frac{1}{x}$, $\forall x \in \mathbb{R} \setminus \{0\}$ is continuous.

Composition of continuous functions

- **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .

Composition of continuous functions

- ▶ **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .
- ▶ **Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ in A converges to c . Then as f is continuous, $\{f(x_n)\}$ converges to $f(c)$.

Composition of continuous functions

- ▶ **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .
- ▶ **Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ in A converges to c . Then as f is continuous, $\{f(x_n)\}$ converges to $f(c)$.
- ▶ As $f(A) \subseteq B$, $\{f(x_n)\}$ is a sequence in B .

Composition of continuous functions

- ▶ **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .
- ▶ **Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ in A converges to c . Then as f is continuous, $\{f(x_n)\}$ converges to $f(c)$.
- ▶ As $f(A) \subseteq B$, $\{f(x_n)\}$ is a sequence in B .
- ▶ Now as g is continuous at $f(c)$, $\{g(f(x_n))\}$ converges to $g(f(c))$.

Composition of continuous functions

- ▶ **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .
- ▶ **Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ in A converges to c . Then as f is continuous, $\{f(x_n)\}$ converges to $f(c)$.
- ▶ As $f(A) \subseteq B$, $\{f(x_n)\}$ is a sequence in B .
- ▶ Now as g is continuous at $f(c)$, $\{g(f(x_n))\}$ converges to $g(f(c))$.
- ▶ In other words $\{h(x_n)\}$ converges to $h(c)$. This proves that h is continuous at c .

Composition of continuous functions

- ▶ **Theorem 23.7:** Let A, B be subsets of \mathbb{R} and $c \in A$. Suppose f, g are real valued functions on A, B respectively and $f(A) \subseteq B$. Suppose f is continuous at c and g is continuous at $f(c)$. Then $h = g \circ f$ is continuous at c .
- ▶ **Proof:** Suppose $\{x_n\}_{n \in \mathbb{N}}$ in A converges to c . Then as f is continuous, $\{f(x_n)\}$ converges to $f(c)$.
- ▶ As $f(A) \subseteq B$, $\{f(x_n)\}$ is a sequence in B .
- ▶ Now as g is continuous at $f(c)$, $\{g(f(x_n))\}$ converges to $g(f(c))$.
- ▶ In other words $\{h(x_n)\}$ converges to $h(c)$. This proves that h is continuous at c .
- ▶ **Exercise 23.8:** Prove the previous theorem directly using the definition of continuity.

Composition of continuous functions

- **Theorem 23.9:** Let A, B be subsets of \mathbb{R} . Suppose f, g are continuous real valued functions on A, B respectively and $f(A) \subseteq B$. Then $h = g \circ f$ is a continuous function.

Composition of continuous functions

- ▶ **Theorem 23.9:** Let A, B be subsets of \mathbb{R} . Suppose f, g are continuous real valued functions on A, B respectively and $f(A) \subseteq B$. Then $h = g \circ f$ is a continuous function.
- ▶ **Proof:** Clear from the previous theorem.

Composition of continuous functions

- ▶ **Theorem 23.9:** Let A, B be subsets of \mathbb{R} . Suppose f, g are continuous real valued functions on A, B respectively and $f(A) \subseteq B$. Then $h = g \circ f$ is a continuous function.
- ▶ **Proof:** Clear from the previous theorem.
- ▶ **Example 23.10 (Dirichlet function):** Define $d : \mathbb{R} \rightarrow \mathbb{R}$ by

$$d(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Composition of continuous functions

- ▶ **Theorem 23.9:** Let A, B be subsets of \mathbb{R} . Suppose f, g are continuous real valued functions on A, B respectively and $f(A) \subseteq B$. Then $h = g \circ f$ is a continuous function.
- ▶ **Proof:** Clear from the previous theorem.
- ▶ **Example 23.10 (Dirichlet function):** Define $d : \mathbb{R} \rightarrow \mathbb{R}$ by

$$d(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- ▶ Then d is discontinuous at every $x \in \mathbb{R}$.
- ▶ **Example 23.11:** Define $g : [1, 2] \rightarrow \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is irrational;} \\ \frac{1}{q} & \text{if } x = \frac{p}{q}, \quad p, q \in \mathbb{N} \\ & \quad p, q \text{ relatively prime.} \end{cases}$$

Then g is continuous at irrational points in $[1, 2]$, but is discontinuous at rational points in $[1, 2]$.

Composition of continuous functions

- ▶ **Theorem 23.9:** Let A, B be subsets of \mathbb{R} . Suppose f, g are continuous real valued functions on A, B respectively and $f(A) \subseteq B$. Then $h = g \circ f$ is a continuous function.
- ▶ **Proof:** Clear from the previous theorem.
- ▶ **Example 23.10 (Dirichlet function):** Define $d : \mathbb{R} \rightarrow \mathbb{R}$ by

$$d(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- ▶ Then d is discontinuous at every $x \in \mathbb{R}$.
- ▶ **Example 23.11:** Define $g : [1, 2] \rightarrow \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is irrational;} \\ \frac{1}{q} & \text{if } x = \frac{p}{q}, \quad p, q \in \mathbb{N} \\ & \quad p, q \text{ relatively prime.} \end{cases}$$

Then g is continuous at irrational points in $[1, 2]$, but is discontinuous at rational points in $[1, 2]$.

- ▶ **END OF LECTURE 23.**