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Lecture 23. Algebraic operations of Continuous functions

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Linear combinations, products, ratios

I Theorem 23.1: Let A ⊆ R and let c ∈ A. Let f : A→ R and
g : A→ R be functions continuous at c .

I (i) For a, b ∈ R, af + bg defined by

(af + bg)(x) = af (x) + bg(x), ∀x ∈ A,

is continuous at c .

I (ii) fg defined by

fg(x) = f (x)g(x), ∀x ∈ A

is continuous at c .

I (iii) If g(x) 6= 0, ∀x ∈ A, then f
g defined by

f

g
(x) =

f (x)

g(x)
, ∀x ∈ A,

is continuous at c .
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First Proof

I Proof. (i) For ε > 0, using continuity of f at c , choose
δ1 > 0, such that

|f (x)− f (c)| < ε

2
, ∀x ∈ (c − δ1, c + δ1)

⋂
A.

I Similarly using continuity of g at c , choose δ2 > 0 such that

|g(x)− g(c)| < ε

2
, x ∈ (c − δ2, c + δ2)

⋂
A.

I Now take δ = min{δ1, δ2}. Then for x ∈ (c − δ, c + δ)
⋂

A,
we get

|f (x)+g(x)−f (c)−g(c)| ≤ |f (x)−f (c)|+|g(x)−g(c)| < ε

2
+
ε

2
= ε.

I Therefore f + g is continuous at c .

I It is easy to see that if f is continuous at c , af is continuous
at c . Similarly bg is continuous at c . Combining with the
previous result, af + bg is continuous at c .
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Alternative Proof

I Alternative Proof: Suppose {xn}n∈N is a sequence in A
converging to c .

I As f , g are continuous at c, {f (xn)}, {g(xn)} converge to
f (c), g(c) respectively.

I Hence, {af (xn) + bg(xn)}n∈N converges to af (c) + bg(c).

I This proves that af + bg is continuous.

I Similarly, {f (xn)g(xn)} converges to f (c)g(c) and if g(x) 6= 0

for every x , { f (xn)g(xn)
} converges to f (c)

g(c) .

I Hence fg and f
g are continuous. This completes the proof.
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Algebra of continuous functions

I Theorem 23.2: Let A ⊆ R. Let f : A→ R and g : A→ R be
continuous functions.

I (i) For a, b ∈ R, af + bg defined by

(af + bg)(x) = af (x) + bg(x), ∀x ∈ A,

is continuous.
I (ii) fg defined by

fg(x) = f (x)g(x), ∀x ∈ R

is continuous.
I (iii) If g(x) 6= 0, ∀x ∈ A, then f

g defined by

f

g
(x) =

f (x)

g(x)
, ∀x ∈ A,

is continuous.
I Proof: This is clear from the previous theorem and the

definition of continuous functions.
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Restrictions of continuous functions

I Theorem 23.3: Let A ⊆ R and let B be a subset of A and let
c ∈ B. Suppose f : A→ R is a function continuous at c.
Then g : B → R defined by

g(x) = f (x), ∀x ∈ B,

is continuous at c . If f is continuous, then g is continuous.

I Proof: This is obvious from the definition of continuity.

I Notation: The function g of this theorem is called the
restriction of f to B and is denoted by f |B .



Restrictions of continuous functions

I Theorem 23.3: Let A ⊆ R and let B be a subset of A and let
c ∈ B. Suppose f : A→ R is a function continuous at c.
Then g : B → R defined by

g(x) = f (x), ∀x ∈ B,

is continuous at c . If f is continuous, then g is continuous.

I Proof: This is obvious from the definition of continuity.

I Notation: The function g of this theorem is called the
restriction of f to B and is denoted by f |B .



Restrictions of continuous functions

I Theorem 23.3: Let A ⊆ R and let B be a subset of A and let
c ∈ B. Suppose f : A→ R is a function continuous at c.
Then g : B → R defined by

g(x) = f (x), ∀x ∈ B,

is continuous at c . If f is continuous, then g is continuous.

I Proof: This is obvious from the definition of continuity.

I Notation: The function g of this theorem is called the
restriction of f to B and is denoted by f |B .



Continuity of polynomials

I Theorem 23.4: Let p : R→ R be a polynomial defined by

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n, ∀x ∈ R,

I where n ∈ N
⋃
{0} and a0, a1, . . . , an are real numbers. Then

p is continuous.
I Proof: It is easy to see that the constant function

p0(x) = a0, x ∈ R

and the identity function,

p1(x) = x , x ∈ R

are continuous. Now by (ii) of Theorem 23.2, and
mathematical induction, the polynomials

pk(x) = xk , ∀x ∈ R

k ∈ N, are continuous. The proof is complete by a simple
application of (i) of Theorem 23.2.
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Rational functions

I Corollary 23.5: For any non-empty subset B of R and any real
polynomial p, p|B , defined by

p|B(x) = p(x), x ∈ B

is continuous.

I If q is another polynomial such that q(x) 6= 0 for x ∈ B, then
p|B
q|B is a continuous function on B.

I Such functions are known as rational functions.

I Example 23.6: The function g : R\{0} → R defined by
g(x) = 1

x , ∀x ∈ R\{0} is continuous.
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Composition of continuous functions

I Theorem 23.7: Let A,B be subsets of R and c ∈ A. Suppose
f , g are real valued functions on A,B respectively and
f (A) ⊆ B. Suppose f is continuous at c and g is continuous
at f (c). Then h = g ◦ f is continuous at c .

I Proof: Suppose {xn}n∈N in A converges to c . Then as f is
continuous, {f (xn)} converges to f (c).

I As f (A) ⊆ B, {f (xn)} is a sequence in B.

I Now as g is continuous at f (c), {g(f (xn)} converges to
g(f (c)).

I In other words {h(xn)} converges to h(c). This proves that h
is continuous at c .

I Exercise 23.8: Prove the previous theorem directly using the
definition of continuity.
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I In other words {h(xn)} converges to h(c). This proves that h
is continuous at c .

I Exercise 23.8: Prove the previous theorem directly using the
definition of continuity.
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Composition of continuous functions

I Theorem 23.9: Let A,B be subsets of R. Suppose f , g are
continuous real valued functions on A,B respectively and
f (A) ⊆ B. Then h = g ◦ f is a continuous function.

I Proof: Clear from the previous theorem.
I Example 23.10 (Dirichlet function): Define d : R→ R by

d(x) =

{
1 if x is rational;
0 if x is irrational.

I Then d is discontinuous at every x ∈ R.
I Example 23.11: Define g : [1, 2]→ R by

g(x) =


0 if x is irrational;

1
q if x = p

q , p, q ∈ N
p, q relatively prime.

Then g is continuous at irrational points in [1, 2], but is
discontinuous at rational points in [1, 2].

I END OF LECTURE 23.
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