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Lecture 24. Continuous functions on intervals

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Boundedness of functions

I Definition 24.1: Let A be a non-empty set and let f : A→ R
be a function. Then f is said to be bounded if

|f (x)| ≤ M, ∀x ∈ A.

In such a case M said to be a bound for f .

I If f : A→ R is a bounded function,

sup(f ) := sup{f (x) : x ∈ A},

inf(f ) = inf{f (x) : x ∈ A}.

I sup(f ) is said to be a maximum if there exists x0 ∈ A such
that f (x0) = sup(f ).

I Similarly, inf(f ) is said to be a minimum if there exists x1 ∈ A
such that f (x1) = inf(f ).
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Examples

I Example 24.2: Let f : [0, 1)→ R be the function
f (x) = x , ∀x ∈ [0, 1). Then f is bounded with bound 1.
sup(f ) is not a maximum. However, inf is a minimum with
inf(f ) = f (0).

I Example 24.3: Let g : (0, 1)→ R be the function
g(x) = 1

x , x ∈ (0, 1). Then f is continuous but not bounded.



Examples

I Example 24.2: Let f : [0, 1)→ R be the function
f (x) = x , ∀x ∈ [0, 1). Then f is bounded with bound 1.
sup(f ) is not a maximum. However, inf is a minimum with
inf(f ) = f (0).

I Example 24.3: Let g : (0, 1)→ R be the function
g(x) = 1

x , x ∈ (0, 1). Then f is continuous but not bounded.



Continuous functions on intervals

I Now we focus on the study of continuous functions on
intervals.

I In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

I Theorem 24.4: Let f : [a, b]→ R be a continuous function.
Then it is bounded.

I Proof: Suppose f : [a, b]→ R is not bounded. We want to
arrive at a contradiction.

I As f is not bounded, for every n ∈ N there exists some xn in
[a, b] such that |f (xn)| ≥ n.

I Now {xn}n∈N is a sequence in [a, b].

I Then by Bolzano-Weierstrass theorem there exists a
convergent subsequence {xnk}k∈N.
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Continuation

I Suppose {xnk}k∈N converges to c ∈ [a, b].

I Then by the continuity of f , {f (xnk )}k∈N converges to f (c).

I In particular, {f (xnk}k∈N is a bounded sequence.

I This contradicts with |f (xnk )| ≥ nk ≥ k, which makes
{f (xnk}k∈N unbounded.

I This is a contradiction and this completes the proof.

I We have already seen that continuous functions on open
intervals need not be bounded. Also examples, such as
f (x) = x , show that continuous functions on R need not be
bounded.
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Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.

I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,
sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.
I Now for n ∈ N, as M − 1

n is not an upper bound of this set,
there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.
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Continuation

I As xn ∈ [a, b] for every n, {xn}n∈N is a bounded sequence.

I By Bolzano-Weierstrass theorem, {xn} has a convergent
sequence, say {xnk}k∈N.

I Take c = limk→∞ xnk .
I Now as limn→∞ f (xn) = M, taking limit along the

subsequence, limk→∞ f (xnk ) = M.
I Then by continuity of f at c ,

f (c) = lim
k→∞

f (xnk ) = M.

I Hence f (c) = sup{f (x) : x ∈ [a, b]}.
I Similar proof works to show the existence of a d such that

f (d) = inf{f (x) : x ∈ [a, b]}, or one may use the continuity of
f and the fact

inf{f (x) : x ∈ [a, b]} = − sup{−f (x) : x ∈ [a, b]}.

I END OF LECTURE 24.
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I END OF LECTURE 24.



Continuation

I As xn ∈ [a, b] for every n, {xn}n∈N is a bounded sequence.
I By Bolzano-Weierstrass theorem, {xn} has a convergent

sequence, say {xnk}k∈N.
I Take c = limk→∞ xnk .
I Now as limn→∞ f (xn) = M, taking limit along the

subsequence, limk→∞ f (xnk ) = M.
I Then by continuity of f at c ,

f (c) = lim
k→∞

f (xnk ) = M.

I Hence f (c) = sup{f (x) : x ∈ [a, b]}.
I Similar proof works to show the existence of a d such that

f (d) = inf{f (x) : x ∈ [a, b]}, or one may use the continuity of
f and the fact

inf{f (x) : x ∈ [a, b]} = − sup{−f (x) : x ∈ [a, b]}.

I END OF LECTURE 24.


