

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 24. Continuous functions on intervals

- We recall:

Lecture 24. Continuous functions on intervals

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

Lecture 24. Continuous functions on intervals

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.

Lecture 24. Continuous functions on intervals

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

Lecture 24. Continuous functions on intervals

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.

Lecture 24. Continuous functions on intervals

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Boundedness of functions

- ▶ **Definition 24.1:** Let A be a non-empty set and let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be **bounded** if

$$|f(x)| \leq M, \quad \forall x \in A.$$

In such a case M said to be a bound for f .

Boundedness of functions

- ▶ **Definition 24.1:** Let A be a non-empty set and let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be **bounded** if

$$|f(x)| \leq M, \quad \forall x \in A.$$

In such a case M said to be a bound for f .

- ▶ If $f : A \rightarrow \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

Boundedness of functions

- ▶ **Definition 24.1:** Let A be a non-empty set and let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be **bounded** if

$$|f(x)| \leq M, \quad \forall x \in A.$$

In such a case M said to be a bound for f .

- ▶ If $f : A \rightarrow \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

- ▶ $\sup(f)$ is said to be a **maximum** if there exists $x_0 \in A$ such that $f(x_0) = \sup(f)$.

Boundedness of functions

- ▶ **Definition 24.1:** Let A be a non-empty set and let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be **bounded** if

$$|f(x)| \leq M, \quad \forall x \in A.$$

In such a case M said to be a bound for f .

- ▶ If $f : A \rightarrow \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

- ▶ $\sup(f)$ is said to be a **maximum** if there exists $x_0 \in A$ such that $f(x_0) = \sup(f)$.
- ▶ Similarly, $\inf(f)$ is said to be a **minimum** if there exists $x_1 \in A$ such that $f(x_1) = \inf(f)$.

Examples

- ▶ **Example 24.2:** Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function $f(x) = x$, $\forall x \in [0, 1]$. Then f is bounded with bound 1. $\sup(f)$ is not a maximum. However, \inf is a minimum with $\inf(f) = f(0)$.

Examples

- ▶ **Example 24.2:** Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function $f(x) = x$, $\forall x \in [0, 1]$. Then f is bounded with bound 1. $\sup(f)$ is not a maximum. However, \inf is a minimum with $\inf(f) = f(0)$.
- ▶ **Example 24.3:** Let $g : (0, 1) \rightarrow \mathbb{R}$ be the function $g(x) = \frac{1}{x}$, $x \in (0, 1)$. Then f is continuous but not bounded.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ **Proof:** Suppose $f : [a, b] \rightarrow \mathbb{R}$ is not bounded. We want to arrive at a contradiction.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ **Proof:** Suppose $f : [a, b] \rightarrow \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- ▶ As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in $[a, b]$ such that $|f(x_n)| \geq n$.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ **Proof:** Suppose $f : [a, b] \rightarrow \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- ▶ As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in $[a, b]$ such that $|f(x_n)| \geq n$.
- ▶ Now $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $[a, b]$.

Continuous functions on intervals

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ **Proof:** Suppose $f : [a, b] \rightarrow \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- ▶ As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in $[a, b]$ such that $|f(x_n)| \geq n$.
- ▶ Now $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $[a, b]$.
- ▶ Then by Bolzano-Weierstrass theorem there exists a convergent subsequence $\{x_{n_k}\}_{k \in \mathbb{N}}$.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f , $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ converges to $f(c)$.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f , $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ converges to $f(c)$.
- ▶ In particular, $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ is a bounded sequence.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f , $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ converges to $f(c)$.
- ▶ In particular, $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \geq n_k \geq k$, which makes $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ unbounded.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f , $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ converges to $f(c)$.
- ▶ In particular, $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \geq n_k \geq k$, which makes $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ unbounded.
- ▶ This is a contradiction and this completes the proof.

Continuation

- ▶ Suppose $\{x_{n_k}\}_{k \in \mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f , $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ converges to $f(c)$.
- ▶ In particular, $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \geq n_k \geq k$, which makes $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ unbounded.
- ▶ This is a contradiction and this completes the proof.
- ▶ We have already seen that continuous functions on open intervals need not be bounded. Also examples, such as $f(x) = x$, show that continuous functions on \mathbb{R} need not be bounded.

Maximum and minimum

► **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

Maximum and minimum

- **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- **Proof:** Since $\{f(x) : x \in [a, b]\}$ is a non-empty bounded set, $\sup\{f(x) : x \in [a, b]\}$ exists.

Maximum and minimum

- **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- **Proof:** Since $\{f(x) : x \in [a, b]\}$ is a non-empty bounded set, $\sup\{f(x) : x \in [a, b]\}$ exists.
- Take $M = \sup\{f(x) : x \in [a, b]\}.$

Maximum and minimum

- **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- **Proof:** Since $\{f(x) : x \in [a, b]\}$ is a non-empty bounded set, $\sup\{f(x) : x \in [a, b]\}$ exists.
- Take $M = \sup\{f(x) : x \in [a, b]\}$.
- Now for $n \in \mathbb{N}$, as $M - \frac{1}{n}$ is not an upper bound of this set, there exists $x_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(x_n) \leq M.$$

Maximum and minimum

- **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- **Proof:** Since $\{f(x) : x \in [a, b]\}$ is a non-empty bounded set, $\sup\{f(x) : x \in [a, b]\}$ exists.
- Take $M = \sup\{f(x) : x \in [a, b]\}$.
- Now for $n \in \mathbb{N}$, as $M - \frac{1}{n}$ is not an upper bound of this set, there exists $x_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(x_n) \leq M.$$

- By squeeze theorem,

$$\lim_{n \rightarrow \infty} f(x_n) = M.$$

Continuation

- As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.
- ▶ Now as $\lim_{n \rightarrow \infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k \rightarrow \infty} f(x_{n_k}) = M$.

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.
- ▶ Now as $\lim_{n \rightarrow \infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k \rightarrow \infty} f(x_{n_k}) = M$.
- ▶ Then by continuity of f at c ,

$$f(c) = \lim_{k \rightarrow \infty} f(x_{n_k}) = M.$$

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.
- ▶ Now as $\lim_{n \rightarrow \infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k \rightarrow \infty} f(x_{n_k}) = M$.
- ▶ Then by continuity of f at c ,

$$f(c) = \lim_{k \rightarrow \infty} f(x_{n_k}) = M.$$

- ▶ Hence $f(c) = \sup\{f(x) : x \in [a, b]\}$.

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.
- ▶ Now as $\lim_{n \rightarrow \infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k \rightarrow \infty} f(x_{n_k}) = M$.
- ▶ Then by continuity of f at c ,

$$f(c) = \lim_{k \rightarrow \infty} f(x_{n_k}) = M.$$

- ▶ Hence $f(c) = \sup\{f(x) : x \in [a, b]\}$.
- ▶ Similar proof works to show the existence of a d such that $f(d) = \inf\{f(x) : x \in [a, b]\}$, or one may use the continuity of f and the fact

$$\inf\{f(x) : x \in [a, b]\} = -\sup\{-f(x) : x \in [a, b]\}.$$

Continuation

- ▶ As $x_n \in [a, b]$ for every n , $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k \in \mathbb{N}}$.
- ▶ Take $c = \lim_{k \rightarrow \infty} x_{n_k}$.
- ▶ Now as $\lim_{n \rightarrow \infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k \rightarrow \infty} f(x_{n_k}) = M$.
- ▶ Then by continuity of f at c ,

$$f(c) = \lim_{k \rightarrow \infty} f(x_{n_k}) = M.$$

- ▶ Hence $f(c) = \sup\{f(x) : x \in [a, b]\}$.
- ▶ Similar proof works to show the existence of a d such that $f(d) = \inf\{f(x) : x \in [a, b]\}$, or one may use the continuity of f and the fact

$$\inf\{f(x) : x \in [a, b]\} = -\sup\{-f(x) : x \in [a, b]\}.$$

- ▶ END OF LECTURE 24.