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» This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Definition 24.1: Let A be a non-empty set and let f : A— R
be a function. Then f is said to be bounded if

If(x)| < M, ¥xeA.

In such a case M said to be a bound for f.
» If f: A— R is a bounded function,

sup(f) := sup{f(x) : x € A},

inf(f) = inf{f(x) : x € A}.
» sup(f) is said to be a maximum if there exists xop € A such
that f(xg) = sup(f).

» Similarly, inf(f) is said to be a minimum if there exists x; € A
such that f(x1) = inf(f).
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Examples

» Example 24.2: Let f : [0,1) — R be the function
f(x) =x, Vx€][0,1). Then f is bounded with bound 1.
sup(f) is not a maximum. However, inf is a minimum with
inf(f) = £(0).

» Example 24.3: Let g : (0,1) — R be the function
g(x) =1, x€(0,1). Then f is continuous but not bounded.
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Now we focus on the study of continuous functions on
intervals.

In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

Theorem 24.4: Let f : [a, b] — R be a continuous function.
Then it is bounded.

Proof: Suppose f : [a, b] — R is not bounded. We want to
arrive at a contradiction.

As f is not bounded, for every n € N there exists some x, in
[a, b] such that |[f(x,)| > n.

Now {xp}nen is a sequence in [a, b].
Then by Bolzano-Weierstrass theorem there exists a
convergent subsequence {x,, }ken-
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Continuation

Suppose {x,, }keny converges to ¢ € [a, b].
Then by the continuity of f, {f(xs, ) }ken converges to f(c).
In particular, {f(xs, }ken is a bounded sequence.

This contradicts with |f(xp, )| > nx > k, which makes
{f(Xn, }ken unbounded.

vvyyy

v

This is a contradiction and this completes the proof.

v

We have already seen that continuous functions on open
intervals need not be bounded. Also examples, such as
f(x) = x, show that continuous functions on R need not be
bounded.
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» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that

f(c) =sup{f(x): x € [a, b]};
f(d) = inf{f(x) : x € [a, b]}.

» Proof: Since {f(x): x € [a, b]} is a non-empty bounded set,
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» Take M = sup{f(x) : x € [a, b]}.

» Now for ne€ N, as M — % is not an upper bound of this set,
there exists x, € [a, b] such that

1
M~ < f(m) < M.

P> By squeeze theorem,

lim £(x,) = M.

n—o0
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Continuation

» As x, € [a, b] for every n, {xp}nen is a bounded sequence.

» By Bolzano-Weierstrass theorem, {x,} has a convergent
sequence, say {xp, }ken-

» Take ¢ = limy_,o0 Xp, -

» Now as lim,_,~ f(xn) = M, taking limit along the
subsequence, limy_,o (X5, ) = M.

» Then by continuity of f at c,

f(c)= lim f(x, )= M.
k—o00
» Hence f(c) = sup{f(x): x € [a, b]}.
» Similar proof works to show the existence of a d such that

f(d) = inf{f(x) : x € [a, b]}, or one may use the continuity of
f and the fact

inf{f(x) : x € [a, b]} = —sup{—f(x): x € [a, b]}.
» END OF LECTURE 24.



