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Lecture 25. Intermediate value theorem

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Maximum and minimum

I Now we focus on the study of continuous functions on
intervals.

I In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

I Theorem 24.4: Let f : [a, b]→ R be a continuous function.
Then it is bounded.

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
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Existence of roots: Bisection method

I Theorem 25.1: Let f : [a, b]→ R be a continuous function.
Suppose f (a) < 0 < f (b). Then there exists c ∈ (a, b) such
that f (c) = 0.

I Proof: Take a1 = a and b1 = b and I1 = [a1, b1].

I Consider the value of f at the mid-point a1+b1
2 .

I If f (a1+b1
2 ) = 0, we can take c = a1+b1

2 , and we are done.

I If f (a1+b1
2 ) > 0, take a2 = a1 and b2 = a1+b1

2 .

I On the other hand, if f (a1+b1
2 ) < 0, take a2 = a1+b1

2 and
b2 = b1.
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Continuation

I In either case, we have f (a2) < 0 < f (b2) and with
I2 = [a2, b2], I1 ⊃ I2.

I Now consider the value of f at a2+b2
2 .

I If f (a2+b2
2 ) = 0, we can take c = a2+b2

2 , and we are done.

I If f (a2+b2
2 ) > 0, take a3 = a2 and b3 = a2+b2

2 .

I On the other hand, if f (a2+b2
2 ) < 0, take a3 = a2+b2

2 and
b3 = b2.

I In either case, we have f (a3) < 0 < f (b3) and with
I3 = [a3, b3], I1 ⊃ I2 ⊃ I3.
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Continuation

I Continuing this way, after choosing In = [an, bn], either
f (an+bn

2 ) = 0 or we have In+1 = [an+1, bn+1], in such a way
that In ⊃ In+1 with (bn+1 − an+1) = 1

2(bn − an).

I Assuming that, this inductive process has not terminated after
finite number of steps, we have a nested sequence of intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

I where for every n, In = [an, bn], f (an) < 0 < f (bn).

I By nested intervals property
⋂

n∈N In is non-empty. In fact, as

inf{bn − an : n ∈ N} = inf{ b−a
2n−1 : n ∈ N} = 0, this

intersection is a singleton.

I Suppose {c} =
⋂

n∈N In.

I We clearly have limn→∞ an = c = limn→∞ bn.
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Continuation

I Then by continuity of f , f (c) = limn→∞ f (an). As f (an) < 0
for every n, we get f (c) ≤ 0.

I Similarly as f (bn) > 0 for every n, we get f (c) ≥ 0.

I Combining the last two statements we have f (c) = 0 and this
completes the proof.

I Remark: Any point x such that f (x) = 0 is some times,
especially when f is a polynomial, is called a root of f or zero
of f .

I In this proof we have seen a way of locating the root by
successively bisecting the interval.
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Intermediate value theorem

I Theorem 25.2: Let f : [a, b]→ R be a continuous function.
Suppose f (a) < z < f (b) or f (a) > z > f (b), then there
exists c ∈ (a, b) such that f (c) = z .

I Proof: Suppose f (a) < z < f (b). Define g : [a, b]→ R by

g(x) = f (x)− z , x ∈ [a, b].

I Then clearly g is continuous and g(a) < 0 < g(b).

I By the previous theorem, there exists c ∈ (a, b) such that
g(c) = 0.

I That is, f (c)− z = 0 or f (c) = z .

I If f (a) > z > f (b), consider g defined by

g(x) = z − f (x), x ∈ [a, b]

and similar proof works.
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Existence of n-th root

I The intermediate value theorem is a very important theorem
and has many applications. We see a few.

I Theorem 25.3 (Existence of nth roots): Let t be a positive
real number and suppose n ∈ N. Then there exists unique
positive real number s such that sn = t.

I We call the s of previous theorem as nth root of t and denote

it by t
1
n .

I Proof: Consider the function p : [0,∞)→ [0,∞) defined by

p(x) = xn, ∀x ∈ [0,∞).

I Clearly, p is continuous and is unbounded.

I Therefore, we can get a b such that t < p(b). (Exercise: We
may take b = t + 1.)
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Continuation

I Let f : [0, b]→ R be the function,

f (x) = xn, ∀x ∈ [0, b].

I Clearly f is continuous. We have f (0) < t < f (b).

I Then by intermediate value theorem there exists s ∈ (0, b)
such that f (s) = t, or sn = t.

I For 0 < c < d ,

dn − cn = (d − c)(dn−1 + cdn−2 + c2dn−s + · · ·+ cn−1)

= (d − c)(
n−1∑
j=0

c jdn−1−j)) > 0.

I In other words if 0 < c < d , we have cn < dn and so we can’t
have cn = dn.. This shows the uniqueness of positive nth root
of t.
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Roots of polynomials

I Example 25.4: Consider the polynomial p(x) = x3 − 2x2 − 1.
Show that there exists a real number λ such that 0 < λ < 3
and p(λ) = 0.

I Proof: Any polynomial is a continuous function. Now
p(0) = −1 < 0 and p(3) = 27− 18− 1 = 8 > 0. Hence the
result follows from the intermediate value theorem.

I Exercise 25.5: Suppose p is an odd degree real polynomial.
Show that there exists a real number λ such that p(λ) = 0.
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Continuous image of an interval

I Theorem 25.6: Let f : [a, b]→ R be a continuous function.
Then

f ([a, b]) = [s, t]

where

s = inf{f (x) : x ∈ [a, b]}, t = sup{f (x) : x ∈ [a, b].

I Note: Here if s = t, then [s, t] is to be interpreted as {s}.
I Proof: From the definitions of s, t it is clear that for every

x ∈ [a, b], s ≤ f (x) ≤ t.

I Hence f ([a, b]) ⊆ [s, t].

I If s = t, f is a constant function and there is nothing to show.

I If s < t, and s < z < t, we want to show that there exists
e ∈ [a, b] such that f (e) = z .

I But this is clear from the inter mediate value theorem as there
exist c , d in [a, b] such that f (c) = s and f (d) = t.
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Continuous images of arbitrary intervals

I In the following consider singleton subsets of R also as
intervals.

I Theorem 25.7: Suppose I ⊆ R is an interval, and f : I → R is
a continuous function. Then f (I ) is an interval.

I Recall that intervals are sets of the form
{a}, [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b), (−∞,∞),
with a, b ∈ R, a < b.

I Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x , y ∈ S with x < y implies [x , y ] ⊆ S .

I Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.



Continuous images of arbitrary intervals

I In the following consider singleton subsets of R also as
intervals.

I Theorem 25.7: Suppose I ⊆ R is an interval, and f : I → R is
a continuous function. Then f (I ) is an interval.

I Recall that intervals are sets of the form
{a}, [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b), (−∞,∞),
with a, b ∈ R, a < b.

I Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x , y ∈ S with x < y implies [x , y ] ⊆ S .

I Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.



Continuous images of arbitrary intervals

I In the following consider singleton subsets of R also as
intervals.

I Theorem 25.7: Suppose I ⊆ R is an interval, and f : I → R is
a continuous function. Then f (I ) is an interval.

I Recall that intervals are sets of the form
{a}, [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b), (−∞,∞),
with a, b ∈ R, a < b.

I Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x , y ∈ S with x < y implies [x , y ] ⊆ S .

I Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.



Continuous images of arbitrary intervals

I In the following consider singleton subsets of R also as
intervals.

I Theorem 25.7: Suppose I ⊆ R is an interval, and f : I → R is
a continuous function. Then f (I ) is an interval.

I Recall that intervals are sets of the form
{a}, [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b), (−∞,∞),
with a, b ∈ R, a < b.

I Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x , y ∈ S with x < y implies [x , y ] ⊆ S .

I Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.



Antipodal points

I Claim: At any time there are two antipodal points on the
equator with equal temperature.

I Sketch of proof:

I We model the equator by a circle, or by the interval [0, 1],
where we identify the points 0 and 1.
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Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.
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2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.
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I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.


