

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 25. Intermediate value theorem

- ▶ We recall:

Lecture 25. Intermediate value theorem

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

Lecture 25. Intermediate value theorem

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.

Lecture 25. Intermediate value theorem

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

Lecture 25. Intermediate value theorem

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.

Lecture 25. Intermediate value theorem

- ▶ We recall:
- ▶ **Definition 22.1:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous at c , if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap A.$$

- ▶ This is commonly known as $\epsilon - \delta$ form of continuity.
- ▶ **Theorem 22.4:** Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f : A \rightarrow \mathbb{R}$ is continuous at c , if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in A , converging to c ,

$$\lim_{n \rightarrow \infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ **Definition 22.7:** Let $A \subseteq \mathbb{R}$. Then a function $f : A \rightarrow \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Maximum and minimum

- ▶ Now we focus on the study of continuous functions on intervals.

Maximum and minimum

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.

Maximum and minimum

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.

Maximum and minimum

- ▶ Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with $a < b$ and we look at continuous functions on $[a, b]$.
- ▶ **Theorem 24.4:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ **Theorem 24.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists c, d in $[a, b]$ such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

Existence of roots: Bisection method

- **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.

Existence of roots: Bisection method

- ▶ **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.
- ▶ **Proof:** Take $a_1 = a$ and $b_1 = b$ and $I_1 = [a_1, b_1]$.

Existence of roots: Bisection method

- ▶ **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.
- ▶ **Proof:** Take $a_1 = a$ and $b_1 = b$ and $I_1 = [a_1, b_1]$.
- ▶ Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.

Existence of roots: Bisection method

- ▶ **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.
- ▶ **Proof:** Take $a_1 = a$ and $b_1 = b$ and $I_1 = [a_1, b_1]$.
- ▶ Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f\left(\frac{a_1+b_1}{2}\right) = 0$, we can take $c = \frac{a_1+b_1}{2}$, and we are done.

Existence of roots: Bisection method

- ▶ **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.
- ▶ **Proof:** Take $a_1 = a$ and $b_1 = b$ and $I_1 = [a_1, b_1]$.
- ▶ Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f\left(\frac{a_1+b_1}{2}\right) = 0$, we can take $c = \frac{a_1+b_1}{2}$, and we are done.
- ▶ If $f\left(\frac{a_1+b_1}{2}\right) > 0$, take $a_2 = a_1$ and $b_2 = \frac{a_1+b_1}{2}$.

Existence of roots: Bisection method

- ▶ **Theorem 25.1:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < 0 < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = 0$.
- ▶ **Proof:** Take $a_1 = a$ and $b_1 = b$ and $I_1 = [a_1, b_1]$.
- ▶ Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f\left(\frac{a_1+b_1}{2}\right) = 0$, we can take $c = \frac{a_1+b_1}{2}$, and we are done.
- ▶ If $f\left(\frac{a_1+b_1}{2}\right) > 0$, take $a_2 = a_1$ and $b_2 = \frac{a_1+b_1}{2}$.
- ▶ On the other hand, if $f\left(\frac{a_1+b_1}{2}\right) < 0$, take $a_2 = \frac{a_1+b_1}{2}$ and $b_2 = b_1$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) = 0$, we can take $c = \frac{a_2+b_2}{2}$, and we are done.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) = 0$, we can take $c = \frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) = 0$, we can take $c = \frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.
- ▶ On the other hand, if $f\left(\frac{a_2+b_2}{2}\right) < 0$, take $a_3 = \frac{a_2+b_2}{2}$ and $b_3 = b_2$.

Continuation

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.
- ▶ Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) = 0$, we can take $c = \frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f\left(\frac{a_2+b_2}{2}\right) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.
- ▶ On the other hand, if $f\left(\frac{a_2+b_2}{2}\right) < 0$, take $a_3 = \frac{a_2+b_2}{2}$ and $b_3 = b_2$.
- ▶ In either case, we have $f(a_3) < 0 < f(b_3)$ and with $I_3 = [a_3, b_3]$, $I_1 \supset I_2 \supset I_3$.

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.
- ▶ Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.
- ▶ Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

- ▶ where for every n , $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.
- ▶ Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

- ▶ where for every n , $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n \in \mathbb{N}} I_n$ is non-empty. In fact, as $\inf\{b_n - a_n : n \in \mathbb{N}\} = \inf\{\frac{b-a}{2^{n-1}} : n \in \mathbb{N}\} = 0$, this intersection is a singleton.

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.
- ▶ Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

- ▶ where for every n , $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n \in \mathbb{N}} I_n$ is non-empty. In fact, as $\inf\{b_n - a_n : n \in \mathbb{N}\} = \inf\{\frac{b-a}{2^{n-1}} : n \in \mathbb{N}\} = 0$, this intersection is a singleton.
- ▶ Suppose $\{c\} = \bigcap_{n \in \mathbb{N}} I_n$.

Continuation

- ▶ Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f\left(\frac{a_n+b_n}{2}\right) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.
- ▶ Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

- ▶ where for every n , $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n \in \mathbb{N}} I_n$ is non-empty. In fact, as $\inf\{b_n - a_n : n \in \mathbb{N}\} = \inf\{\frac{b-a}{2^{n-1}} : n \in \mathbb{N}\} = 0$, this intersection is a singleton.
- ▶ Suppose $\{c\} = \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We clearly have $\lim_{n \rightarrow \infty} a_n = c = \lim_{n \rightarrow \infty} b_n$.

Continuation

- ▶ Then by continuity of f , $f(c) = \lim_{n \rightarrow \infty} f(a_n)$. As $f(a_n) < 0$ for every n , we get $f(c) \leq 0$.

Continuation

- ▶ Then by continuity of f , $f(c) = \lim_{n \rightarrow \infty} f(a_n)$. As $f(a_n) < 0$ for every n , we get $f(c) \leq 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n , we get $f(c) \geq 0$.

Continuation

- ▶ Then by continuity of f , $f(c) = \lim_{n \rightarrow \infty} f(a_n)$. As $f(a_n) < 0$ for every n , we get $f(c) \leq 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n , we get $f(c) \geq 0$.
- ▶ Combining the last two statements we have $f(c) = 0$ and this completes the proof.

Continuation

- ▶ Then by continuity of f , $f(c) = \lim_{n \rightarrow \infty} f(a_n)$. As $f(a_n) < 0$ for every n , we get $f(c) \leq 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n , we get $f(c) \geq 0$.
- ▶ Combining the last two statements we have $f(c) = 0$ and this completes the proof.
- ▶ **Remark:** Any point x such that $f(x) = 0$ is sometimes, especially when f is a polynomial, called a root of f or zero of f .

Continuation

- ▶ Then by continuity of f , $f(c) = \lim_{n \rightarrow \infty} f(a_n)$. As $f(a_n) < 0$ for every n , we get $f(c) \leq 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n , we get $f(c) \geq 0$.
- ▶ Combining the last two statements we have $f(c) = 0$ and this completes the proof.
- ▶ **Remark:** Any point x such that $f(x) = 0$ is sometimes, especially when f is a polynomial, called a root of f or zero of f .
- ▶ In this proof we have seen a way of locating the root by successively bisecting the interval.

Intermediate value theorem

- **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.

Intermediate value theorem

- **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.
- **Proof:** Suppose $f(a) < z < f(b)$. Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

Intermediate value theorem

- ▶ **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.
- ▶ **Proof:** Suppose $f(a) < z < f(b)$. Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and $g(a) < 0 < g(b)$.

Intermediate value theorem

- ▶ **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.
- ▶ **Proof:** Suppose $f(a) < z < f(b)$. Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and $g(a) < 0 < g(b)$.
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that $g(c) = 0$.

Intermediate value theorem

- ▶ **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.
- ▶ **Proof:** Suppose $f(a) < z < f(b)$. Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and $g(a) < 0 < g(b)$.
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that $g(c) = 0$.
- ▶ That is, $f(c) - z = 0$ or $f(c) = z$.

Intermediate value theorem

- ▶ **Theorem 25.2:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(a) < z < f(b)$ or $f(a) > z > f(b)$, then there exists $c \in (a, b)$ such that $f(c) = z$.
- ▶ **Proof:** Suppose $f(a) < z < f(b)$. Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and $g(a) < 0 < g(b)$.
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that $g(c) = 0$.
- ▶ That is, $f(c) - z = 0$ or $f(c) = z$.
- ▶ If $f(a) > z > f(b)$, consider g defined by

$$g(x) = z - f(x), \quad x \in [a, b]$$

and similar proof works.

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ **Theorem 25.3 (Existence of n^{th} roots):** Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ **Theorem 25.3 (Existence of n^{th} roots):** Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- ▶ We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ **Theorem 25.3 (Existence of n^{th} roots):** Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- ▶ We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- ▶ **Proof:** Consider the function $p : [0, \infty) \rightarrow [0, \infty)$ defined by

$$p(x) = x^n, \quad \forall x \in [0, \infty).$$

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ **Theorem 25.3 (Existence of n^{th} roots):** Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- ▶ We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- ▶ **Proof:** Consider the function $p : [0, \infty) \rightarrow [0, \infty)$ defined by

$$p(x) = x^n, \quad \forall x \in [0, \infty).$$

- ▶ Clearly, p is continuous and is unbounded.

Existence of n -th root

- ▶ The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ **Theorem 25.3 (Existence of n^{th} roots):** Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- ▶ We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- ▶ **Proof:** Consider the function $p : [0, \infty) \rightarrow [0, \infty)$ defined by

$$p(x) = x^n, \quad \forall x \in [0, \infty).$$

- ▶ Clearly, p is continuous and is unbounded.
- ▶ Therefore, we can get a b such that $t < p(b)$. (Exercise: We may take $b = t + 1$.)

Continuation

- ▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \quad \forall x \in [0, b].$$

Continuation

- ▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \quad \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have $f(0) < t < f(b)$.

Continuation

- ▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \quad \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have $f(0) < t < f(b)$.
- ▶ Then by intermediate value theorem there exists $s \in (0, b)$ such that $f(s) = t$, or $s^n = t$.

Continuation

- ▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \quad \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have $f(0) < t < f(b)$.
- ▶ Then by intermediate value theorem there exists $s \in (0, b)$ such that $f(s) = t$, or $s^n = t$.
- ▶ For $0 < c < d$,

$$\begin{aligned} d^n - c^n &= (d - c)(d^{n-1} + cd^{n-2} + c^2d^{n-3} + \cdots + c^{n-1}) \\ &= (d - c)\left(\sum_{j=0}^{n-1} c^j d^{n-1-j}\right) > 0. \end{aligned}$$

Continuation

- ▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \quad \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have $f(0) < t < f(b)$.
- ▶ Then by intermediate value theorem there exists $s \in (0, b)$ such that $f(s) = t$, or $s^n = t$.
- ▶ For $0 < c < d$,

$$\begin{aligned} d^n - c^n &= (d - c)(d^{n-1} + cd^{n-2} + c^2d^{n-3} + \cdots + c^{n-1}) \\ &= (d - c)\left(\sum_{j=0}^{n-1} c^j d^{n-1-j}\right) > 0. \end{aligned}$$

- ▶ In other words if $0 < c < d$, we have $c^n < d^n$ and so we can't have $c^n = d^n$. This shows the uniqueness of positive n^{th} root of t .

Roots of polynomials

- ▶ **Example 25.4:** Consider the polynomial $p(x) = x^3 - 2x^2 - 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.

Roots of polynomials

- ▶ **Example 25.4:** Consider the polynomial $p(x) = x^3 - 2x^2 - 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.
- ▶ **Proof:** Any polynomial is a continuous function. Now $p(0) = -1 < 0$ and $p(3) = 27 - 18 - 1 = 8 > 0$. Hence the result follows from the intermediate value theorem.

Roots of polynomials

- ▶ **Example 25.4:** Consider the polynomial $p(x) = x^3 - 2x^2 - 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.
- ▶ **Proof:** Any polynomial is a continuous function. Now $p(0) = -1 < 0$ and $p(3) = 27 - 18 - 1 = 8 > 0$. Hence the result follows from the intermediate value theorem.
- ▶ **Exercise 25.5:** Suppose p is an odd degree real polynomial. Show that there exists a real number λ such that $p(\lambda) = 0$.

Continuous image of an interval

► **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function.
Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.
- **Proof:** From the definitions of s, t it is clear that for every $x \in [a, b]$, $s \leq f(x) \leq t$.

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.
- **Proof:** From the definitions of s, t it is clear that for every $x \in [a, b]$, $s \leq f(x) \leq t$.
- Hence $f([a, b]) \subseteq [s, t]$.

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.
- **Proof:** From the definitions of s, t it is clear that for every $x \in [a, b]$, $s \leq f(x) \leq t$.
- Hence $f([a, b]) \subseteq [s, t]$.
- If $s = t$, f is a constant function and there is nothing to show.

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.
- **Proof:** From the definitions of s, t it is clear that for every $x \in [a, b]$, $s \leq f(x) \leq t$.
- Hence $f([a, b]) \subseteq [s, t]$.
- If $s = t$, f is a constant function and there is nothing to show.
- If $s < t$, and $s < z < t$, we want to show that there exists $e \in [a, b]$ such that $f(e) = z$.

Continuous image of an interval

- **Theorem 25.6:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then

$$f([a, b]) = [s, t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b]\}.$$

- Note: Here if $s = t$, then $[s, t]$ is to be interpreted as $\{s\}$.
- **Proof:** From the definitions of s, t it is clear that for every $x \in [a, b]$, $s \leq f(x) \leq t$.
- Hence $f([a, b]) \subseteq [s, t]$.
- If $s = t$, f is a constant function and there is nothing to show.
- If $s < t$, and $s < z < t$, we want to show that there exists $e \in [a, b]$ such that $f(e) = z$.
- But this is clear from the intermediate value theorem as there exist c, d in $[a, b]$ such that $f(c) = s$ and $f(d) = t$.

Continuous images of arbitrary intervals

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.

Continuous images of arbitrary intervals

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ **Theorem 25.7:** Suppose $I \subseteq \mathbb{R}$ is an interval, and $f : I \rightarrow \mathbb{R}$ is a continuous function. Then $f(I)$ is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty)$, with $a, b \in \mathbb{R}, a < b$.

Continuous images of arbitrary intervals

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ **Theorem 25.7:** Suppose $I \subseteq \mathbb{R}$ is an interval, and $f : I \rightarrow \mathbb{R}$ is a continuous function. Then $f(I)$ is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty)$, with $a, b \in \mathbb{R}, a < b$.
- ▶ **Exercise 25.8:** Show that a non-empty subset S of \mathbb{R} is an interval if and only if $x, y \in S$ with $x < y$ implies $[x, y] \subseteq S$.

Continuous images of arbitrary intervals

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ **Theorem 25.7:** Suppose $I \subseteq \mathbb{R}$ is an interval, and $f : I \rightarrow \mathbb{R}$ is a continuous function. Then $f(I)$ is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty)$, with $a, b \in \mathbb{R}, a < b$.
- ▶ **Exercise 25.8:** Show that a non-empty subset S of \mathbb{R} is an interval if and only if $x, y \in S$ with $x < y$ implies $[x, y] \subseteq S$.
- ▶ Now the proof of Theorem 25.7 follows easily from the intermediate value theorem.

Antipodal points

- ▶ **Claim:** At any time there are two antipodal points on the equator with equal temperature.

Antipodal points

- ▶ **Claim:** At any time there are two antipodal points on the equator with equal temperature.
- ▶ Sketch of proof:

Antipodal points

- ▶ **Claim:** At any time there are two antipodal points on the equator with equal temperature.
- ▶ Sketch of proof:
- ▶ We model the equator by a circle, or by the interval $[0, 1]$, where we identify the points 0 and 1.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.
- ▶ If $g(0) = 0$, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.
- ▶ If $g(0) = 0$, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- ▶ Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that $g(c) = 0$.

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.
- ▶ If $g(0) = 0$, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- ▶ Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that $g(c) = 0$.
- ▶ This means that $f(c) - f(c + \frac{1}{2}) = 0$ or

$$f(c) = f(c + \frac{1}{2}).$$

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.
- ▶ If $g(0) = 0$, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- ▶ Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that $g(c) = 0$.
- ▶ This means that $f(c) - f(c + \frac{1}{2}) = 0$ or

$$f(c) = f(c + \frac{1}{2}).$$

- ▶ This proves the claim (Why?).

Continuation

- ▶ Suppose $f(t)$ denotes the temperature at point t in $[0, 1]$.
- ▶ Define $g : [0, \frac{1}{2}] \rightarrow \mathbb{R}$, by $g(t) = f(t) - f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words $g(0)$ and $g(\frac{1}{2})$ have opposite signs.
- ▶ If $g(0) = 0$, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- ▶ Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that $g(c) = 0$.
- ▶ This means that $f(c) - f(c + \frac{1}{2}) = 0$ or

$$f(c) = f(c + \frac{1}{2}).$$

- ▶ This proves the claim (Why?).
- ▶ **END OF LECTURE 25.**