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» This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Now we focus on the study of continuous functions on
intervals.

» In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

» Theorem 24.4: Let f : [a, b] — R be a continuous function.
Then it is bounded.

» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that

f(c) =sup{f(x): x € [a, b]};

F(d) = inf{f(x) : x € [a, b]}.
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Theorem 25.1: Let f : [a, b] — R be a continuous function.
Suppose f(a) < 0 < f(b). Then there exists ¢ € (a, b) such
that f(c) = 0.

Proof: Take a3 = aand by = b and /1 = [a1, b1].

Consider the value of f at the mid-point 2521,

If f(%) =0, we can take ¢ = #, and we are done.

If f(al;—bl) > 0, take ay = a; and by, = %bl.

On the other hand, if f(2F2) < 0, take ap = 2+ and
by = by.
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In either case, we have f(a) < 0 < f(b2) and with

b =[az, ba], h D h.
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If f(%) =0, we can take ¢ = % and we are done.
If £(232) > 0, take a3 = a, and b3 = 22,

On the other hand, if f(#) < 0, take a3 = 73242#’2 and
bs = by.



Continuation

vVvyVvyyvy Vv

v

In either case, we have f(a) < 0 < f(b2) and with

b =[az, ba], h D h.

Now consider the value of f at %b?.

If f(%) =0, we can take ¢ = % and we are done.
If £(232) > 0, take a3 = a, and b3 = 22,

On the other hand, if f(252) < 0, take a3 = 252 and
bs = bo.

In either case, we have f(a3) < 0 < f(b3) and with

I3 =la3,b3], h O b D k.
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» Continuing this way, after choosing I, = [an, by], either
f(%b") =0 or we have /11 = [aps+1, bat1], in such a way
that Ip O lpy1 With (bpy1 — any1) = 5(bp — an).

» Assuming that, this inductive process has not terminated after
finite number of steps, we have a nested sequence of intervals

ho>obhD>hLD---

» where for every n, I, = [an, bn], f(an) < 0 < f(bp).

» By nested intervals property [,y /n is non-empty. In fact, as
inf{by, — ap : n € N} =inf{2=3 : n € N} =0, this
intersection is a singleton.

> Suppose {c} = (,en In-

» We clearly have lim, ., a, = ¢ = lim,_ by.
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» Then by continuity of f, f(¢) = limp—o f(an). As f(a,) <0
for every n, we get f(c) <0.

» Similarly as f(b,) > 0 for every n, we get f(c) > 0.

» Combining the last two statements we have f(c) = 0 and this
completes the proof.

» Remark: Any point x such that f(x) = 0 is some times,
especially when f is a polynomial, is called a root of f or zero
of f.

» In this proof we have seen a way of locating the root by
successively bisecting the interval.
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Intermediate value theorem

» Theorem 25.2: Let f : [a,b] — R be a continuous function.
Suppose f(a) < z < f(b) or f(a) > z > f(b), then there
exists ¢ € (a, b) such that f(c) = z.

» Proof: Suppose f(a) < z < f(b). Define g : [a, b] — R by
g(x)="f(x)—z, xe€]lab.

» Then clearly g is continuous and g(a) < 0 < g(b).
» By the previous theorem, there exists ¢ € (a, b) such that

g(c)=0.
» Thatis, f(c)—z=0or f(c) = z.
» If f(a) > z > f(b), consider g defined by
g(x)=z—f(x), x€la, b

and similar proof works.
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Existence of n-th root

» The intermediate value theorem is a very important theorem
and has many applications. We see a few.

» Theorem 25.3 (Existence of nth roots): Let t be a positive
real number and suppose n € N. Then there exists unique
positive real number s such that s" = t.

th

» We call the s of previous theorem as n'" root of t and denote

it by th.
» Proof: Consider the function p : [0,00) — [0, c0) defined by

p(x) = x", ¥x € [0,00).

» Clearly, p is continuous and is unbounded.

» Therefore, we can get a b such that t < p(b). (Exercise: We
may take b=t +1.)
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Continuation

» Let f: [0, b] — R be the function,
f(x)=x", ¥Vxe€|0,b].

» Clearly f is continuous. We have f(0) < t < f(b).

» Then by intermediate value theorem there exists s € (0, b)
such that f(s) =t, or s" = t.

» For0 < c<d,

dn— " = (d— C)(dn—l +Cdn_2 +C2dn—s+ "'+Cn_1)
n—1
= (d-o)O_dd" ') >0
Jj=0

» In other words if 0 < ¢ < d, we have ¢" < d” and so we can't
have ¢ = d".. This shows the uniqueness of positive nth voot
of t.
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Roots of polynomials

» Example 25.4: Consider the polynomial p(x) = x3 — 2x? — 1.
Show that there exists a real number A such that 0 < A < 3
and p(A) = 0.

» Proof: Any polynomial is a continuous function. Now
p(0) = -1 < 0and p(3) =27 — 18 — 1 =8 > 0. Hence the
result follows from the intermediate value theorem.

» Exercise 25.5: Suppose p is an odd degree real polynomial.
Show that there exists a real number A such that p(\) = 0.
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» Theorem 25.6: Let f : [a, b] — R be a continuous function.
Then

f(la, b]) = [s, 1]

where
s=inf{f(x):x €[a,b]}, t=sup{f(x):x¢€[a,b]

» Note: Here if s = t, then [s, t] is to be interpreted as {s}.

» Proof: From the definitions of s, t it is clear that for every

x € [a,b], s < f(x) < t.

Hence f([a, b]) C [s, t].

If s =t, f is a constant function and there is nothing to show.

vy

> If s <t,and s < z < t, we want to show that there exists
e € [a, b] such that f(e) = z.

» But this is clear from the inter mediate value theorem as there
exist ¢, d in [a, b] such that f(c) = s and f(d) = t.
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Continuous images of arbitrary intervals

» In the following consider singleton subsets of R also as
intervals.

» Theorem 25.7: Suppose | C R is an interval, and f : | — R is
a continuous function. Then f(/) is an interval.

» Recall that intervals are sets of the form
{a}v [37 b]v [aa b)v (aa b]? [av OO), (a’ OO), (_OO’ b]v (_007 b)a (—OO, OO),
with a,b € R, a < b.

» Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x,y € S with x < y implies [x,y] C S.

> Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.



Antipodal points

> Claim: At any time there are two antipodal points on the
equator with equal temperature.
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Antipodal points

> Claim: At any time there are two antipodal points on the
equator with equal temperature.
» Sketch of proof:

» We model the equator by a circle, or by the interval [0, 1],
where we identify the points 0 and 1.
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Suppose f(t) denotes the temperature at point t in [0, 1].
Define g : [0, 3] = R, by g(t) = f(t) — f(t + 3).

Then g(3) = —g(0). In other words g(0) and g(3) have
opposite signs.

If g(0) =0, 0 and % are antipodal points with equal
temperature. So we may assume g(0) # 0.

Assume that g is continuous. Then by intermediate value
theorem there exists c € [0, 5] such that g(c) = 0.

This means that f(c) — f(c+ 3) =0 or

This proves the claim (Why?).
END OF LECTURE 25.



