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This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Suppose f : A — R is continuous at every y in A. Then we
have for every € > 0, there exists §, depending on y, such that

f(x) —f¥)l <

for all x in A with |x — y| < 4.
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f : A— R be a function.

» Then f is said to be uniformly continuous if for every ¢ > 0
there exists § > 0 such that

[f(x) —f(y)l <e

for all x,y € A with |x —y| <é.

» It is important here that the d here depends only on ¢ and not
on x or y.
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h(x) = x?, ¥x € R.
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» Proof: Take e = 1.

» Suppose h is uniformly continuous. Then there exists § > 0,
such that
x> —y?| <1, V|x—y| <.
> Takexzy—kg. We get
)
by +35) =y <1

for all y.

» That is |yd + %2| < 1 for all y. Clearly this is not true, for
instance, we can take y = %, and we get 2 < 1, which is a
contradiction. H

> Exercise 26.4: Show that f : (0,1) — (0, 1) defined by

1
Fx) = =, ¥xe(0.1),

is not uniformly continuous.
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Uniform continuity

» Theorem 26.5 (uniform continuity): Let f : [a,b] — R be a
continuous function, where a,b € R with a < b. Then f is
uniformly continuous.

» Proof: Suppose not.
> Then there exists ¢g > 0 such that for no 6 > 0,

[f(x) = f(¥)l <eo, x—yl<d, x,y€[a, b
holds.

» In particular, this inequality does not hold for § = % for every
neN.

» This means that there exist x,, y, in [a, b] such that
|Xn — yn| < % and

| (xn) = F(yn)| = €o.
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Continuation

» By Bolzano-Weierstass theorem {x,},cn has a convergent
subsequence. Say {xp, }ken converges to some z in [a, b].

Now |Xp, — ¥n,| < nik < % as ni > k for every k.
Take zx = x,, and wy = y,,. Then we have

(i) {2k }ken converges to z.

(ii) |2k — wi| < £ for every k € N.

(iii) |f(zx) — f(wk)| > €o for all k € N.
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Continuation
» From (i),

1
<wg <zg+-—-, VkeN.

x| =
x
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> Then by (i), limk—oo(zk — 1) = z = limk_00(2k + 1), and by
squeeze theorem,

lim wy, = z.
k—o0

» Therefore both {zy}xen and {wy }ken converge to the same
real number z in [a, b].

» By continuity of f, {f(zx)}ken and {f(wx)}ken converge to
the same value f(z).

» This contradicts, (iii), as we can choose, K; such that

F(z) ~ F2)] < 5, Yk = K.
» Similarly there exists K> such that,
(F(we) = F(2)| < 3. Wk = K.
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» Take K = max{Ki, Kz}. Then by triangle inequality we have,

[ (zk)—F (wi)| < |F(zx)—F(2)|+]F(2)—F(wk)| < %%%0 — ¢

» Hence |f(zx) — f(wk)| < €o, contradicting (iii).
» Therefore f is uniformly continuous.
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» Definition 26.6: Let A be a non-empty subset of R and let
f: A— R be a function.

» Then (i) f is said to be increasing (or non-decreasing) if
f(x) < f(y) for all x,y € Awith x < y.

» (ii) f is said to be strictly increasing if f(x) < f(y) for all
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» (iii) f is said to be decreasing (or non-increasing) if
f(x) > f(y) for all x,y € A with x < y.

» (iv) f is said to be strictly decreasing if f(x) > f(y) for all
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» Proof: We know that any continuous function f on [a, b]
maps [a, b] onto [s, t] where

s =inf{f(x) : x € [a, b]}
and
t =sup{f(x) : x € [a, b]}.

» Hence we must have s = &’ and t = b'.

» Also as the infimum and supremum are attained there exist,
¢,d in [a, b] such that f(c) =s=2a"and f(d)=t=1"b".

» We claim that if ¢ < d, then f is strictly increasing. By
intermediate value theorem, f([c, d]) = [@’, b']. Now the

bijectivity of f forces ¢ = a and d = b, so that f(a) = &’ and
f(b) = b
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