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Lecture 26. Uniform continuity and monotonicity

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Uniform continuity

I Suppose f : A→ R is continuous at every y in A. Then we
have for every ε > 0, there exists δ, depending on y , such that

|f (x)− f (y)| < ε,

for all x in A with |x − y | < δ.

I Definition 26.1: Let A be a non-empty subset of R and let
f : A→ R be a function.

I Then f is said to be uniformly continuous if for every ε > 0
there exists δ > 0 such that

|f (x)− f (y)| < ε

for all x , y ∈ A with |x − y | < δ.

I It is important here that the δ here depends only on ε and not
on x or y .
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Examples

I Example 26.2: Let g : R→ R, be the function

g(x) = 4 + 5x , ∀x ∈ R.

Then g is uniformly continuous.

I For ε > 0, take δ = ε
5 .

I Then for |x − y | < δ, we have

|g(x)− g(y)| = |5x − 5y | = 5|x − y | < 5δ = 5
ε

5
= ε.

I Clearly all uniformly continuous functions are continuous. The
converse is not true.

I Example 26.3: Let h : R→ R be the function,

h(x) = x2, ∀x ∈ R.

I Then h is not uniformly continuous.
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Continuation

I Proof: Take ε = 1.

I Suppose h is uniformly continuous. Then there exists δ > 0,
such that

|x2 − y2| < 1, ∀|x − y | < δ.

I Take x = y + δ
2 . We get

|(y +
δ

2
)2 − y2| < 1

for all y .
I That is |yδ + δ2

4 | < 1 for all y . Clearly this is not true, for
instance, we can take y = 2

δ , and we get 2 < 1, which is a
contradiction. �

I Exercise 26.4: Show that f : (0, 1)→ (0, 1) defined by

f (x) =
1

x
, ∀x ∈ (0, 1),

is not uniformly continuous.
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Uniform continuity

I Theorem 26.5 (uniform continuity): Let f : [a, b]→ R be a
continuous function, where a, b ∈ R with a < b. Then f is
uniformly continuous.

I Proof: Suppose not.

I Then there exists ε0 > 0 such that for no δ > 0,

|f (x)− f (y)| < ε0, |x − y | < δ, x , y ∈ [a, b]

holds.

I In particular, this inequality does not hold for δ = 1
n for every

n ∈ N.

I This means that there exist xn, yn in [a, b] such that
|xn − yn| < 1

n and

|f (xn)− f (yn)| ≥ ε0.
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Continuation

I By Bolzano-Weierstass theorem {xn}n∈N has a convergent
subsequence. Say {xnk}k∈N converges to some z in [a, b].

I Now |xnk − ynk | < 1
nk
≤ 1

k as nk ≥ k for every k .

I Take zk = xnk and wk = ynk . Then we have

I (i) {zk}k∈N converges to z .

I (ii) |zk − wk | < 1
k for every k ∈ N.

I (iii) |f (zk)− f (wk)| ≥ ε0 for all k ∈ N.
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Continuation

I From (ii),

zk −
1

k
≤ wk ≤ zk +

1

k
, ∀k ∈ N.

I Then by (i), limk→∞(zk − 1
k ) = z = limk→∞(zk + 1

k ), and by
squeeze theorem,

lim
k→∞

wk = z .

I Therefore both {zk}k∈N and {wk}k∈N converge to the same
real number z in [a, b].

I By continuity of f , {f (zk)}k∈N and {f (wk)}k∈N converge to
the same value f (z).

I This contradicts, (iii), as we can choose, K1 such that

|f (zk)− f (z)| < ε0
2
, ∀k ≥ K1.

I Similarly there exists K2 such that,

|f (wk)− f (z)| < ε0
2
, ∀k ≥ K2.
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Continuation

I Take K = max{K1,K2}. Then by triangle inequality we have,

|f (zK )−f (wK )| ≤ |f (zK )−f (z)|+|f (z)−f (wK )| < ε0
2

+
ε0
2

= ε0

I Hence |f (zk)− f (wK )| < ε0, contradicting (iii).

I Therefore f is uniformly continuous.
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Monotonicity

I Definition 26.6: Let A be a non-empty subset of R and let
f : A→ R be a function.

I Then (i) f is said to be increasing (or non-decreasing) if
f (x) ≤ f (y) for all x , y ∈ A with x ≤ y .

I (ii) f is said to be strictly increasing if f (x) < f (y) for all
x , y ∈ A with x < y .

I (iii) f is said to be decreasing (or non-increasing) if
f (x) ≥ f (y) for all x , y ∈ A with x ≤ y .

I (iv) f is said to be strictly decreasing if f (x) > f (y) for all
x , y ∈ A with x < y .
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Continuous bijections

I Theorem 26.7: Let a, b, a′, b′ be real numbers with a < b and
a′ < b′. If f : [a, b]→ [a′, b′] is a continuous bijection then
either f is strictly increasing with f (a) = a′ and f (b) = b′ or
f is strictly decreasing with f (a) = b′ and f (b) = a′

I Proof: We know that any continuous function f on [a, b]
maps [a, b] onto [s, t] where

s = inf{f (x) : x ∈ [a, b]}
and

t = sup{f (x) : x ∈ [a, b]}.
I Hence we must have s = a′ and t = b′.
I Also as the infimum and supremum are attained there exist,

c , d in [a, b] such that f (c) = s = a′ and f (d) = t = b′.
I We claim that if c < d , then f is strictly increasing. By

intermediate value theorem, f ([c, d ]) = [a′, b′]. Now the
bijectivity of f forces c = a and d = b, so that f (a) = a′ and
f (b) = b′.
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Continuation

I If f is not strictly increasing, there exist x , y in [a, b] such that
x < y and f (x) > f (y) (Since f is injective f (x) = f (y) is
ruled out.)

I Since f (a) = a′ and f (x) > f (y), x = a is not possible.

I So we have a < x < y ≤ b and f (a) = a′, and
f (x) > f (y) > a′

I On applying intermediate value theorem to f |[a,x] there must
be some z ∈ [a, x ] such that f (z) = f (y). This contradicts
injectivity of f .

I Therefore if c < d , then f is strictly increasing and
f (a) = a′, f (b) = b′.

I Similarly if d < c, f is strictly decreasing and
f (a) = b′, f (b) = a′.

I Finally c = d is not possible as f can’t be a constant function
due to injectivity of f . �

I END OF LECTURE 26.
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