

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 27. Limits to cluster points

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

Lecture 27. Limits to cluster points

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .

Lecture 27. Limits to cluster points

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .
- ▶ **Example 27.2:** The set of cluster points of $[0, 1]$ is given by $[0, 1]$. The set of cluster points of \mathbb{N} is empty. The set of cluster points of $[0, 1] \cup \{2, 3\}$ is $[0, 1]$.

Lecture 27. Limits to cluster points

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .
- ▶ **Example 27.2:** The set of cluster points of $[0, 1]$ is given by $[0, 1]$. The set of cluster points of \mathbb{N} is empty. The set of cluster points of $[0, 1] \cup \{2, 3\}$ is $[0, 1]$.
- ▶ **Proposition 27.3:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is a cluster point of A if and only if there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c .

Lecture 27. Limits to cluster points

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .
- ▶ **Example 27.2:** The set of cluster points of $[0, 1]$ is given by $[0, 1]$. The set of cluster points of \mathbb{N} is empty. The set of cluster points of $[0, 1] \cup \{2, 3\}$ is $[0, 1]$.
- ▶ **Proposition 27.3:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is a cluster point of A if and only if there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c .
- ▶ Note that we are excluding c from these sequences.

Limits of functions to cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

Limits of functions to cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Note that in this definition it does not matter whether c is in A or not. Even if c is in A , $f(c)$ has no role to play.

Limits of functions to cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Note that in this definition it does not matter whether c is in A or not. Even if c is in A , $f(c)$ has no role to play.
- ▶ **Remark:** It should be clear that if f has a limit at c , then it is unique.

Limits of functions to cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Note that in this definition it does not matter whether c is in A or not. Even if c is in A , $f(c)$ has no role to play.
- ▶ **Remark:** It should be clear that if f has a limit at c , then it is unique.
- ▶ **Notation:** If z is the limit of f at c , we write

$$\lim_{x \rightarrow c} f(x) = z.$$

Sequential version

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .

Sequential version

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .
- ▶ **Proof.** Suppose f has limit z at c . Now for $\epsilon > 0$, there exists a $\delta > 0$, such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

Sequential version

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .
- ▶ **Proof.** Suppose f has limit z at c . Now for $\epsilon > 0$, there exists a $\delta > 0$, such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $A \setminus \{c\}$ converging to c . Since $\delta > 0$, there exists $K \in \mathbb{N}$ such that,

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

Sequential version

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .
- ▶ **Proof.** Suppose f has limit z at c . Now for $\epsilon > 0$, there exists a $\delta > 0$, such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $A \setminus \{c\}$ converging to c . Since $\delta > 0$, there exists $K \in \mathbb{N}$ such that,

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

- ▶ Then for $n \geq K$, $x_n \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$ and hence $|f(x_n) - z| < \epsilon, \quad \forall n \geq K$.

Sequential version

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .
- ▶ **Proof.** Suppose f has limit z at c . Now for $\epsilon > 0$, there exists a $\delta > 0$, such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $A \setminus \{c\}$ converging to c . Since $\delta > 0$, there exists $K \in \mathbb{N}$ such that,

$$|x_n - c| < \delta, \quad \forall n \geq K.$$

- ▶ Then for $n \geq K$, $x_n \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$ and hence $|f(x_n) - z| < \epsilon, \quad \forall n \geq K$.
- ▶ Therefore $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to $f(c)$.

Continuation

- ▶ Now suppose z is not a limit of f at c . Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$

$$|f(x) - z| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$$

holds.

Continuation

- ▶ Now suppose z is not a limit of f at c . Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$

$$|f(x) - z| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$$

holds.

Continuation

- ▶ Now suppose z is not a limit of f at c . Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$

$$|f(x) - z| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$$

holds.

- ▶ In particular for every n , the inequality does not hold for some $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap (A \setminus \{c\})$.

Continuation

- ▶ Now suppose z is not a limit of f at c . Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$

$$|f(x) - z| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$$

holds.

- ▶ In particular for every n , the inequality does not hold for some $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap (A \setminus \{c\})$.
- ▶ That is,

$$|f(x_n) - z| \geq \epsilon_0.$$

Continuation

- ▶ Now suppose z is not a limit of f at c . Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$

$$|f(x) - z| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\})$$

holds.

- ▶ In particular for every n , the inequality does not hold for some $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap (A \setminus \{c\})$.
- ▶ That is,

$$|f(x_n) - z| \geq \epsilon_0.$$

- ▶ Clearly then $\{x_n\}_{n \in \mathbb{N}}$ converges to c , but $\{f(x_n)\}$ does not converge to z . ■.

Example

► Example 27.6: Define $h : [0, 2) \cup (2, 3] \rightarrow \mathbb{R}$ by

$$h(x) = \begin{cases} 2x & \text{if } x \in [0, 2) \\ \frac{(x^3 - 2x^2)}{x-2} & \text{if } x \in (2, 3] \end{cases}$$

extends to a continuous function \tilde{h} on $[0, 3]$ by taking $\tilde{h}(x) = h(x)$ for $x \in [0, 2) \cup (2, 3]$ and $\tilde{h}(2) = 4$.

Example

► Example 27.6: Define $h : [0, 2) \cup (2, 3] \rightarrow \mathbb{R}$ by

$$h(x) = \begin{cases} 2x & \text{if } x \in [0, 2) \\ \frac{(x^3 - 2x^2)}{x-2} & \text{if } x \in (2, 3] \end{cases}$$

extends to a continuous function \tilde{h} on $[0, 3]$ by taking $\tilde{h}(x) = h(x)$ for $x \in [0, 2) \cup (2, 3]$ and $\tilde{h}(2) = 4$.

► Remark: Suppose c is a cluster point of a set $A \subseteq \mathbb{R}$ and $f : A \rightarrow \mathbb{R}$ is a function. Suppose $\lim_{x \rightarrow c} f(x) = z$, then $\tilde{f} : A \cup \{c\} \rightarrow \mathbb{R}$ defined by

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in A \setminus \{c\} \\ z & \text{if } x = c \end{cases}$$

is continuous at c .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (c, \infty)$ converging to c .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (c, \infty)$ converging to c .
 - ▶ (iii) There exists a strictly decreasing sequence $\{x_n\}$ in A converging to c .

Continuation

- ▶ Similarly, the following are equivalent:

Continuation

- ▶ Similarly, the following are equivalent:
- ▶ (i) c is a left cluster point of A .

Continuation

- ▶ Similarly, the following are equivalent:
 - ▶ (i) c is a left cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (-\infty, c)$ converging to c .

Continuation

- ▶ Similarly, the following are equivalent:
- ▶ (i) c is a left cluster point of A .
- ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (-\infty, c)$ converging to c .
- ▶ (iii) There exists a strictly increasing sequence $\{x_n\}$ in A converging to c .

Continuation

- ▶ Similarly, the following are equivalent:
 - ▶ (i) c is a left cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (-\infty, c)$ converging to c .
 - ▶ (iii) There exists a strictly increasing sequence $\{x_n\}$ in A converging to c .
- ▶ **Proof.** Exercise.

Left and right hand limits

► **Definition 27.9:** Let c be a right cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **right hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c, c + \delta) \cap A.$$

Left and right hand limits

- ▶ **Definition 27.9:** Let c be a right cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **right hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c, c + \delta) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^+} f(x) = z.$$

Left and right hand limits

- ▶ **Definition 27.9:** Let c be a right cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **right hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c, c + \delta) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^+} f(x) = z.$$

- ▶ Observe that,

$$\lim_{x \rightarrow c^+} f(x) = z$$

iff for every decreasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in A converging to c , $\{f(x_n)\}$ converges to z .

Left and right hand limits

- ▶ **Definition 27.9:** Let c be a right cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **right hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c, c + \delta) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^+} f(x) = z.$$

- ▶ Observe that,

$$\lim_{x \rightarrow c^+} f(x) = z$$

iff for every decreasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in A converging to c , $\{f(x_n)\}$ converges to z .

- ▶ Some texts may have the notation: $\lim_{x \downarrow c} f(x) = z$.

Left hand limits

► **Definition 27.10:** Let c be a left cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **left hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c) \cap A.$$

Left hand limits

- ▶ **Definition 27.10:** Let c be a left cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **left hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^-} f(x) = z.$$

Left hand limits

- ▶ **Definition 27.10:** Let c be a left cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **left hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^-} f(x) = z.$$

- ▶ Observe that,

$$\lim_{x \rightarrow c^-} f(x) = z$$

iff for every increasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in A converging to c , $\{f(x_n)\}$ converges to z .

Left hand limits

- ▶ **Definition 27.10:** Let c be a left cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **left hand limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c) \cap A.$$

- ▶ Clearly if such a limit exists, then it is unique and we write

$$\lim_{x \rightarrow c^-} f(x) = z.$$

- ▶ Observe that,

$$\lim_{x \rightarrow c^-} f(x) = z$$

iff for every increasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in A converging to c , $\{f(x_n)\}$ converges to z .

- ▶ Some texts may have the notation: $\lim_{x \uparrow c} f(x) = z$.

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

- (ii) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c^+} f(x) = \inf\{f(x) : x \in (c, b]\}.$$

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

- (ii) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c^+} f(x) = \inf\{f(x) : x \in (c, b]\}.$$

- (iii) For every $c \in (a, b)$

$$\lim_{x \rightarrow c^-} f(x) \leq f(c) \leq \lim_{x \rightarrow c^+} f(x).$$

Therefore f is continuous at c if and only if

$$\lim_{x \rightarrow c^-} f(x) = \lim_{x \rightarrow c^+} f(x).$$

Continuation

- ▶ Suppose f is decreasing. Then the following hold:

Continuation

- ▶ Suppose f is decreasing. Then the following hold:
- ▶ (iv) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \inf\{f(x) : x \in [a, x)\}.$$

Continuation

- ▶ Suppose f is decreasing. Then the following hold:
 - ▶ (iv) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c-} f(x) = \inf\{f(x) : x \in [a, x)\}.$$

- ▶ (v) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c+} f(x) = \sup\{f(x) : x \in (c, b]\}.$$

Continuation

- ▶ Suppose f is decreasing. Then the following hold:
 - ▶ (iv) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c-} f(x) = \inf\{f(x) : x \in [a, x)\}.$$

- ▶ (v) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c+} f(x) = \sup\{f(x) : x \in (c, b]\}.$$

- ▶ (vi) For every $c \in (a, b)$

$$\lim_{x \rightarrow c-} f(x) \geq f(c) \geq \lim_{x \rightarrow c+} f(x).$$

Therefore f is continuous at c if and only if

$$\lim_{x \rightarrow c-} f(x) = \lim_{x \rightarrow c+} f(x).$$

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c)\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c)\}.$$

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.
- ▶ In other words, $0 \leq z - f(x) < \epsilon$ for $x \in (d, c)$.
- ▶ Taking $\delta = c - d$ we have $(d, c) = (c - \delta, c)$ and

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.
- ▶ In other words, $0 \leq z - f(x) < \epsilon$ for $x \in (d, c)$.
- ▶ Taking $\delta = c - d$ we have $(d, c) = (c - \delta, c)$ and
- ▶ $|z - f(x)| < \epsilon$ for all $x \in (c - \delta, c)$.

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.
- ▶ In other words, $0 \leq z - f(x) < \epsilon$ for $x \in (d, c)$.
- ▶ Taking $\delta = c - d$ we have $(d, c) = (c - \delta, c)$ and
- ▶ $|z - f(x)| < \epsilon$ for all $x \in (c - \delta, c)$.
- ▶ This proves that

$$z = \sup\{f(x) : x \in [a, c]\}.$$

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.
- ▶ In other words, $0 \leq z - f(x) < \epsilon$ for $x \in (d, c)$.
- ▶ Taking $\delta = c - d$ we have $(d, c) = (c - \delta, c)$ and
- ▶ $|z - f(x)| < \epsilon$ for all $x \in (c - \delta, c)$.
- ▶ This proves that

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ The proofs of other claims are similar.

Continuation

- ▶ **Proof.** (i) Suppose f is increasing and $c \in (a, b]$.
- ▶ Now $\{f(x) : x \in [a, c]\}$ is non-empty and is bounded above by $f(c)$. Hence it has a supremum. Take

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ Consider any $\epsilon > 0$. Since $z - \epsilon$ is less than the supremum there exists $d \in [a, c)$ such that

$$z - \epsilon < f(d) \leq z.$$

- ▶ As f is increasing, $z - \epsilon < f(d) \leq f(x) \leq z$ for $d \leq x < c$.
- ▶ In other words, $0 \leq z - f(x) < \epsilon$ for $x \in (d, c)$.
- ▶ Taking $\delta = c - d$ we have $(d, c) = (c - \delta, c)$ and
- ▶ $|z - f(x)| < \epsilon$ for all $x \in (c - \delta, c)$.
- ▶ This proves that

$$z = \sup\{f(x) : x \in [a, c]\}.$$

- ▶ The proofs of other claims are similar.
- ▶ **END OF LECTURE 27.**