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Lecture 27. Limits to cluster points

I Definition 27.1: Let A ⊆ R and let c ∈ R. Then c is said to
be a cluster point (or accumulation point) of A if for every
δ > 0

(c − δ, c + δ)
⋂

A\{c} 6= ∅.

I Note that here c may or may not be an element of A.

I Example 27.2: The set of cluster points of [0, 1) is given by
[0, 1]. The set of cluster points of N is empty. The set of
cluster points of [0, 1]

⋃
{2, 3} is [0, 1].

I Proposition 27.3: Let A ⊆ R and let c ∈ R. Then c is a
cluster point of A if and only if there exists a sequence
{xn}n∈N in A\{c} converging to c .

I Note that we are excluding c from these sequences.
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Limits of functions to cluster points

I Definition 27.4: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then f is said to have a limit at
c if there exists z ∈ R such that for every ε > 0, there exists
δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Note that in this definition it does not matter whether c is in
A or not. Even if c is in A, f (c) has no role to play.

I Remark: It should be clear that if f has a limit at c , then it is
unique.

I Notation: If z is the limit of f at c, we write

lim
x→c

f (x) = z .
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Sequential version

I Proposition 27.5: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then z is limit of f at c if and
only if for every sequence {xn}n∈N in A\{c} converging to c ,
{f (xn)}n∈N converges to z .

I Proof. Suppose f has limit z at c . Now for ε > 0, there exists
a δ > 0, such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Suppose {xn}n∈N is a sequence in A\{c} converging to c.
Since δ > 0, there exists K ∈ N such that,

|xn − c | < δ, ∀n ≥ K .

I Then for n ≥ K , xn ∈ (c − δ, c + δ)
⋂

(A\{c}) and hence
|f (xn)− z | < ε, ∀n ≥ K .

I Therefore {f (xn)}n∈N converges to f (c).
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Continuation

I Now suppose z is not a limit of f at c . Then there exists
ε0 > 0 such that for no δ > 0

|f (x)− z | < ε0, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c})

holds.

I In particular for every n, the inequality does not hold for some
xn ∈ (c − 1

n , c + 1
n )
⋂

(A\{c}).
I That is,

|f (xn)− z | ≥ ε0.

I Clearly then {xn}n∈N converges to c , but {f (xn)} does not
converge to z . �.
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Example

I Example 27.6: Define h : [0, 2)
⋃

(2, 3]→ R by

h(x) =

{
2x if x ∈ [0, 2)

(x3−2x2)
x−2 if x ∈ (2, 3]

extends to a continuous function h̃ on [0, 3] by taking
h̃(x) = h(x) for x ∈ [0, 2)

⋃
(2, 3] and h̃(2) = 4.

I Remark: Suppose c is a cluster point of a set A ⊆ R and
f ;A→ R is a function. Suppose limx→c f (x) = z , then
f̃ : A

⋃
{c} → R defined by

f̃ (x) =

{
f (x) if x ∈ A\{c}
z if x = c

is continuous at c .
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Left and right hand cluster points

I Definition 27.7: Let A ⊆ R and let c ∈ R. Then c is said to
be a right cluster point of A if for every δ > 0

(c , c + δ)
⋂

A 6= ∅.

Similarly c is said to be a left cluster point of A if for every
δ > 0

(c − δ, c)
⋂

A 6= ∅.

I Proposition 27.8: Let A ⊆ R and let c ∈ R. Then the
following are equivalent:

I (i) c is a right cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(c ,∞) converging to
c .

I (iii) There exists a strictly decreasing sequence {xn} in A
converging to c .
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Continuation

I Similarly, the following are equivalent:

I (i) c is a left cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(−∞, c) converging
to c .

I (iii) There exists a strictly increasing sequence {xn} in A
converging to c .

I Proof. Exercise.
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Left and right hand limits

I Definition 27.9: Let c be a right cluster point of a subset A of
R. Let f : A→ R be a function. Then f is said to have a
right hand limit at c if there exists z ∈ R such that for every
ε > 0, there exists δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c , c + δ)
⋂

A.

I Clearly if such a limit exists, then it is unique and we write

lim
x→c+

f (x) = z .

I Observe that,
lim

x→c+
f (x) = z

iff for every decreasing sequence {xn}n∈N in A converging to
c , {f (xn)} converges to z .

I Some texts may have the notation: limx↓c f (x) = z .
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Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).
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Continuation
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Continuation

I Proof. (i) Suppose f is increasing and c ∈ (a, b].

I Now {f (x) : x ∈ [a, c)} is non-empty and is bounded above
by f (c). Hence it has a supremum. Take

z = sup{f (x) : x ∈ [a, c)}.
I Consider any ε > 0. Since z − ε is less than the supremum

there exists d ∈ [a, c) such that

z − ε < f (d) ≤ z .

I As f is increasing, z − ε < f (d) ≤ f (x) ≤ z for d ≤ x < c .
I In other words, 0 ≤ z − f (x) < ε for x ∈ (d , c).
I Taking δ = c − d we have (d , c) = (c − δ, c) and
I |z − f (x)| < ε for all x ∈ (c − δ, c).
I This proves that

z = sup{f (x) : x ∈ [a, c)}.
I The proofs of other claims are similar.
I END OF LECTURE 27.
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