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Lecture 27. Limits to cluster points

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c = d,c+ ) A {c} #0.

» Note that here ¢ may or may not be an element of A.

» Example 27.2: The set of cluster points of [0, 1) is given by
[0, 1]. The set of cluster points of N is empty. The set of
cluster points of [0,1]J{2,3} is [0, 1].

» Proposition 27.3: Let ACR and let c € R. Then c is a
cluster point of A if and only if there exists a sequence
{Xn}nen in A\{c} converging to c.

> Note that we are excluding ¢ from these sequences.
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Limits of functions to cluster points

» Definition 27.4: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then f is said to have a limit at
c if there exists z € R such that for every € > 0, there exists
6 > 0 such that

f(x) =zl <€, VYx€(c—6c+0)[(Ac}).

» Note that in this definition it does not matter whether ¢ is in
A or not. Even if cisin A, f(c) has no role to play.

» Remark: It should be clear that if f has a limit at ¢, then it is
unique.
» Notation: If z is the limit of f at ¢, we write

lim f(x) = z.

X—C
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Sequential version

» Proposition 27.5: Let ¢ be a cluster point of a subset A of R.
Let f: A— R be a function. Then z is limit of f at c if and
only if for every sequence {x,}nen in A\{c} converging to c,
{f(xn)} nen converges to z.

» Proof. Suppose f has limit z at c. Now for € > 0, there exists
a 0 > 0, such that

f(x) = z| <€, Vx€(c—6c+0)[|(Ac}).

» Suppose {xp}nen is a sequence in A\{c} converging to c.
Since § > 0, there exists K € N such that,

|xn —c| <6, Vn>K.

» Then for n > K, x, € (c —d,c +0)[)(A\{c}) and hence
|f(xn) —z| <€, Vn>K.
» Therefore {f(xn)}nen converges to f(c).
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> Now suppose z is not a limit of f at c. Then there exists
€9 > 0 such that for no § > 0

f(x) = z| <eo, Vx€(c—06c+6)[\(A{c})

holds.
» In particular for every n, the inequality does not hold for some
s € (c - L,c+ 1) N(A\fe}).
» That is,
|f(xn) — z| > €.

» Clearly then {x,},en converges to ¢, but {f(x,)} does not
converge to z. L
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» Example 27.6: Define h:[0,2)J(2,3] — R by

2x  if xe[0,2)
h(X) = (x3—2x2) .
T>—3 |f X € (2,3]

extends to a continuous function h on N[O, 3] by taking
h(x) = h(x) for x € [0,2)J(2,3] and h(2) = 4.



Example

» Example 27.6: Define h: [0,2)(J(2,3] — R by

2x  if xe[0,2)
h(X) = (x3—2x2) .
T>—3 |f X € (2,3]

extends to a continuous function h on [0, 3] by taking
h(x) = h(x) for x € [0,2)J(2,3] and h(2) = 4.
» Remark: Suppose c is a cluster point of a set A C R and

I:; A — R is a function. Suppose limy_,. f(x) = z, then
f: AlU{c} — R defined by

F(x) = { f(x) if xe A\{c}

z if x=c¢

is continuous at c.
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Left and right hand cluster points

» Definition 27.7: Let ACR and let c € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0

(c—(S,c)ﬂA#@.
» Proposition 27.8: Let A C R and let ¢ € R. Then the
following are equivalent:
» (i) c is a right cluster point of A.
» (ii) There exists a sequence {x,} in A(")(c,o0) converging to
c.

» (iii) There exists a strictly decreasing sequence {x,} in A
converging to c.



Continuation

» Similarly, the following are equivalent:



Continuation

» Similarly, the following are equivalent:

» (i) c is a left cluster point of A.



Continuation

» Similarly, the following are equivalent:

» (i) cis a left cluster point of A.

» (ii) There exists a sequence {x,} in A("\(—oc, ¢) converging
to c.



Continuation

» Similarly, the following are equivalent:

» (i) cis a left cluster point of A.

» (ii) There exists a sequence {x,} in A("\(—oc, ¢) converging
to c.

» (iii) There exists a strictly increasing sequence {x,} in A
converging to c.



Continuation

v

Similarly, the following are equivalent:

v

(i) c is a left cluster point of A.

» (ii) There exists a sequence {x,} in A("\(—oc, ¢) converging
to c.
» (iii) There exists a strictly increasing sequence {x,} in A

converging to c.

» Proof. Exercise.



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) = z| <€, Vx€(c,c+0)[)A



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) = z| <€, Vx€(c,c+0)[)A
» Clearly if such a limit exists, then it is unique and we write

XI_|)rrc1Jr f(x) =z



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) = z| <€, Vx€(c,c+0)[)A

» Clearly if such a limit exists, then it is unique and we write

XI_|)rrC1+ f(x) =z
» Observe that,
lim f(x)==z
X—Cc+

iff for every decreasing sequence {x,}nen in A converging to
¢, {f(xn)} converges to z.



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that
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» Clearly if such a limit exists, then it is unique and we write
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Left hand limits

» Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
hand limit at c if there exists z € R such that for every € > 0,
there exists § > 0 such that

If(x) —z| <€ Vxe (c—é,c)ﬂA.

» Clearly if such a limit exists, then it is unique and we write

Jim f(x) =z
» Observe that,
lim f(x)=z
X—C—

iff for every increasing sequence {x,}nen in A converging to c,
{f(xn)} converges to z.



Left hand limits

>

Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
hand limit at c if there exists z € R such that for every € > 0,
there exists § > 0 such that

If(x) —z| <€ Vxe (c—é,c)ﬂA.

Clearly if such a limit exists, then it is unique and we write

XI_|)rrC1_ f(x) =z
Observe that,
lim f(x)=z
X—C—

iff for every increasing sequence {x,}nen in A converging to c,
{f(xn)} converges to z.

Some texts may have the notation: lim¢ f(x) = z.
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» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],

lim f(x) =sup{f(x):x € [a,c)}.

X—yC—
» (ii) For every c € [a, b),

lim f(x)=inf{f(x):x € (c,b]}.

X—C+
» (iii) For every c € (a, b)

lim f(x) < f(c) < lim f(x).
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Therefore f is continuous at ¢ if and only if

lim f(x)= lim f(x).
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» Suppose f is decreasing. Then the following hold:
» (iv) For every c € (a, b],

lim f(x) =inf{f(x): x € [a,x)}.

X—C—
» (v) For every c € [a, b),

lim f(x)=sup{f(x):x € (c,b]}.

X—c+
» (vi) For every c € (a, b)

lim f(x) > f(c) > lim f(x).

X—C— X—rC+

Therefore f is continuous at c¢ if and only if

lim f(x)= lim f(x).

X—C— X—C+
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» Proof. (i) Suppose f is increasing and ¢ € (a, b].
» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take
z =sup{f(x) : x € [a,¢)}.
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.
» Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).
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there exists d € [a, ¢) such that
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As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).

This proves that

z =sup{f(x): x €[a,c)}.
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Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take
z =sup{f(x) : x € [a,¢)}.
Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).

This proves that

z =sup{f(x): x €[a,c)}.

The proofs of other claims are similar.
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.
Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).

This proves that

z =sup{f(x) : x € [a,¢)}.
The proofs of other claims are similar.
END OF LECTURE 27.



