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Lecture 28. Inverses of continuous bijections and
extensions of functions

I Definition 27.1: Let A ⊆ R and let c ∈ R. Then c is said to
be a cluster point (or accumulation point) of A if for every
δ > 0

(c − δ, c + δ)
⋂

A\{c} 6= ∅.

I Note that here c may or may not be an element of A.

I Proposition 27.3: Let A ⊆ R and let c ∈ R. Then c is a
cluster point of A if and only if there exists a sequence
{xn}n∈N in A\{c} converging to c .

I Note that we are excluding c from these sequences.
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Limits of functions at cluster points

I Definition 27.4: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then f is said to have a limit at
c if there exists z ∈ R such that for every ε > 0, there exists
δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Proposition 27.5: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then z is limit of f at c if and
only if for every sequence {xn}n∈N in A\{c} converging to c ,
{f (xn)}n∈N converges to z .
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Left and right hand cluster points

I Definition 27.7: Let A ⊆ R and let c ∈ R. Then c is said to
be a right cluster point of A if for every δ > 0

(c , c + δ)
⋂

A 6= ∅.

Similarly c is said to be a left cluster point of A if for every
δ > 0

(c − δ, c)
⋂

A 6= ∅.

I Proposition 27.8: Let A ⊆ R and let c ∈ R. Then the
following are equivalent:

I (i) c is a right cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(c ,∞) converging to
c .

I (iii) There exists a strictly decreasing sequence {xn} in A
converging to c .
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Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).
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Inverses of monotone continuous functions

I Theorem 28.1: Let a, b, a′, b′ be real numbers with a < b and
a′ < b′. Let f : [a, b]→ [a′, b′] be a continuous bijection with
f (a) = a′ and f (b) = b′. Then f −1 : [a′, b′]→ [a, b] is a
continuous bijection.

I Proof. Note that f −1 is well-defined and is a bijection as f is
assumed to be a bijection.

I Also f −1(a′) = a and f −1(b′) = b.

I Further, we know that f is strictly increasing.

I This implies, that f −1 is also strictly increasing as for y < y ′

if f −1(y) ≥ f −1(y ′), on applying f we get y ≥ y ′,
contradicting y < y ′.
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Continuation

I Then for any c ′ ∈ (a′, b′]

x1 := lim
y→c ′−

f −1(y) = sup{f −1(y) : y ∈ [a′, c ′)}.

I Take c = f −1(c ′).

I Consider f restricted to [a, c]. As f is increasing,
f ([a, c]) ⊆ [a′, c ′]. By intermediate value theorem, every
z ∈ [a′, c ′] is in the range of f |[a,c].

I Therefore f |[a,c] : [a, c]→ [a′, c ′] is a bijection.

I In particular, f −1([a′, c ′]) = [a, c]. By injectivity of f it follows
that f −1([a′, c ′)) = [a, c). Therefore
x1 = sup{f −1(y) : y ∈ [a′, c ′)} = sup([a, c)) = c = f −1(c ′).

I Hence, limy→c ′− f
−1(y) = f −1(c).

I Similarly, for every c ′ ∈ [a′, b′), limy→c+ f −1(y) = f −1(c ′).

I Therefore f −1 is continuous.
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nth-root function

I Example 28.2: For any n ∈ N, and any T > 0, the function
p : [0,T ]→ [0,T n] defined by p(x) = xn is a continuous
bijection.

I Hence q = p−1 : [0,T n]→ [0,T ] defined by q(y) = y
1
n is a

continuous bijection.

I It follows that q : [0,∞)→ [0,∞) defined by q(x) = x
1
n is a

continuous bijection.
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Extensions of uniformly continuous functions

I Theorem 28.3: Let a, b ∈ R with a < b. Let f : (a, b)→ R be
a function. Then there exists unique continuous function
f̃ : [a, b]→ R such that f̃ (x) = f (x), ∀x ∈ (a, b) if and only
if f is uniformly continuous.

I We call f̃ as the continuous extension of f .

I Proof. If f̃ exists as above, then f̃ is uniformly continuous.

I This clearly implies that f = f̃ |(a,b) is uniformly continuous.

I To prove the converse we need a lemma which is of
independent interest.
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Cauchy property

I Lemma 28.4: Let A ⊆ R and let f : A→ R be uniformly
continuous. Suppose {xn}n∈N is a Cauchy sequence in A.
Then {f (xn)}n∈N is a Cauchy sequence.

I In other words, uniformly continuous functions map Cauchy
sequences to Cauchy sequences.

I Proof. Consider ε > 0.
I Then as f is uniformly continuous, there exists δ > 0 such that

|f (x)− f (y)| < ε, ∀x , y ∈ A, with |x − y | < δ

I Now as {xn} is Cauchy, there exists K ∈ N such that

|xm − xn| < δ, ∀m, n ≥ K .

I Consequently

|f (xm)− f (xn)| < ε,∀m, n ≥ K .

I This proves that {f (xn)} is Cauchy.
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Continuation of proof

I Now suppose f : (a, b)→ R is uniformly continuous. We want
to have an extension f̃ : [a, b]→ R which is continuous.

I This means that we need to determine f̃ (a) and f̃ (b).

I Suppose {xn}n∈N and {yn}n∈N are two sequences in (a, b)
converging to a.

I Since they are convergent, by the previous Lemma {f (xn)}
and {f (yn)} are Cauchy.

I Now since all Cauchy sequences in R are convergent these
sequences are convergent.

I Take c = limn→∞ f (xn) and d = limn→∞ f (yn).

I We claim c = d .
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Continuation

I Consider the sequence

zn =

{
xn if n is odd;
yn if n is even.

I As both {xn} and {yn} converge to the same value (namely
a), {zn} is also convergent and it converges to a (Show this).

I It follows that {f (zn)} is also convergent.
I It has two subsequences {f (z2n−1)} and {f (z2n)} converging

to c , d respectively. Hence c = d = limn→∞ f (zn).
I We have shown that whenever a sequence {xn} converges to

a, {f (xn)} is convergent and the limit is independent of the
sequence chosen. Take this limit as the value of f̃ (a).

I By the sequential criterion it is clear that f̃ defined this way is
continuous at a. Similar proof works for the other cluster
point b.

I The uniqueness of extension is obvious.
I END OF LECTURE 28.
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