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» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
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6>0

(c —d,c+8)(A{c} #0.



Lecture 28. Inverses of continuous bijections and
extensions of functions

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c —d,c+8)(A{c} #0.

> Note that here ¢ may or may not be an element of A.



Lecture 28. Inverses of continuous bijections and
extensions of functions

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c —d,c+8)(A{c} #0.

> Note that here ¢ may or may not be an element of A.

» Proposition 27.3: Let ACR and let c € R. Then c is a
cluster point of A if and only if there exists a sequence

{Xn}nen in A\{c} converging to c.



Lecture 28. Inverses of continuous bijections and
extensions of functions

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c—d,c+8)[VA{c} #0.
> Note that here ¢ may or may not be an element of A.

» Proposition 27.3: Let ACR and let c € R. Then c is a
cluster point of A if and only if there exists a sequence
{Xn}nen in A\{c} converging to c.

» Note that we are excluding ¢ from these sequences.
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Limits of functions at cluster points

» Definition 27.4: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then f is said to have a limit at
c if there exists z € R such that for every € > 0, there exists
0 > 0 such that

f(x) =zl <€, Vx€(c—6,c+0)[)(Ac}).

» Proposition 27.5: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then z is limit of f at c if and
only if for every sequence {x,}nen in A\{c} converging to c,
{f(xn)} nen converges to z.
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» Definition 27.7: Let ACR and let c € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0
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» Proposition 27.8: Let A C R and let ¢ € R. Then the
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Left and right hand cluster points

» Definition 27.7: Let ACR and let c € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0

(c—(S,c)ﬂA#@.
» Proposition 27.8: Let A C R and let ¢ € R. Then the
following are equivalent:
» (i) c is a right cluster point of A.
» (ii) There exists a sequence {x,} in A(")(c,o0) converging to
c.

» (iii) There exists a strictly decreasing sequence {x,} in A
converging to c.
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Monotonic functions

» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],

lim f(x) =sup{f(x):x € [a,c)}.

X—yC—
» (ii) For every c € [a, b),

lim f(x)=inf{f(x):x € (c,b]}.

X—C+
» (iii) For every c € (a, b)

lim f(x) < f(c) < lim f(x).

X—>C— X—rCc+

Therefore f is continuous at ¢ if and only if

lim f(x)= lim f(x).

X—>C— X—rCc+
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» Theorem 28.1: Let a, b, a’, b’ be real numbers with a < b and
a < b. Letf:[a b] — [d,b] be a continuous bijection with
f(a) = a’ and f(b) = b'. Then f~1:[a',b'] = [a, b] is a
continuous bijection.
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» Theorem 28.1: Let a, b, a’, b’ be real numbers with a < b and
a < b. Letf:[a b] — [d,b] be a continuous bijection with
f(a) = a’ and f(b) = b'. Then f~1:[a',b'] = [a, b] is a
continuous bijection.

» Proof. Note that =1 is well-defined and is a bijection as f is
assumed to be a bijection.
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» Further, we know that f is strictly increasing.



Inverses of monotone continuous functions
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Theorem 28.1: Let a, b, a’, b’ be real numbers with a < b and
a < b. Letf:[a b] — [d,b] be a continuous bijection with
f(a) = a’ and f(b) = b'. Then f~1:[a',b'] = [a, b] is a
continuous bijection.

Proof. Note that f~! is well-defined and is a bijection as f is
assumed to be a bijection.

Also f~1(a') = a and f1(b') = b.
Further, we know that f is strictly increasing.

This implies, that =1 is also strictly increasing as for y < y’
if F~1(y) > f~1(y’), on applying f we get y > y/,
contradicting y < y’.



Continuation

» Then for any ¢’ € (&', V']

x = lim fY(y)=sup{f(y):yeld, )}

y—c'—



Continuation

» Then for any ¢’ € (&', V']

x = lim fY(y)=sup{f(y):yeld, )}

y—c'—

> Take c = f~1(c).



Continuation

» Then for any ¢’ € (&', V']

xp = lim f(y)=sup{f(y):yc[d, )}
y—c'—
> Take c = f~1(c).
» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .



Continuation

» Then for any ¢’ € (&', V']

x = lim fY(y)=sup{f(y):yeld, )}

y—c'—

> Take c = f~1(c).

» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .

> Therefore f|[,  : [a,c] — [a', '] is a bijection.



Continuation

» Then for any ¢’ € (&', V']

xp = lim f(y)=sup{f1(y):yeld, )}
y—c'—
> Take c = f~1(c).
» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .
> Therefore f|[,  : [a,c] — [a', '] is a bijection.
» In particular, f~1([a', c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore
xi =sup{f~H(y) 1y €[4, )} = sup([a, c)) = c = FH(c).



Continuation

» Then for any ¢’ € (&', V']

xi= lim F7H(y) = sup{f(y) :y €1, )}
> Take c = f~1(c).
» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .
> Therefore f|[,  : [a,c] — [a', '] is a bijection.
» In particular, f~1([a', c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore
xi =sup{f~H(y) 1y €[4, )} = sup([a, c)) = c = FH(c).
> Hence, limy_,o_ f1(y) = f1(c).



Continuation

» Then for any ¢’ € (&', V']
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> Take c = f~1(c).
» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .
> Therefore f|[,  : [a,c] — [a', '] is a bijection.
» In particular, f~1([a', c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore
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> Hence, limy_,o_ f1(y) = f1(c).
» Similarly, for every ¢’ € [/, V), limy_cy F1(y) = F1(c).



Continuation

>
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Then for any ¢’ € (d, ]

x = lim fY(y)=sup{f(y):yeld, )}

y—c'—

Take ¢ = F~1(c').

Consider f restricted to [a, c|. As f is increasing,

f([a,c]) C [, c]. By intermediate value theorem, every

z € [a,c'] is in the range of fl, .

Therefore f[[, ¢ : [a,c] — [, ¢] is a bijection.

In particular, f=1([a’, c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore

xi =sup{f~H(y) 1y €[4, )} = sup([a, c)) = c = FH(c).
Hence, lim, o~ f71(y) = f1(c).

Similarly, for every ¢’ € [/, V), limy_cy F1(y) = F1(c).
Therefore f 1 is continuous.
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nth_root function

> Example 28.2: For any n € N, and any T > 0, the function
p: [0, T] — [0, T"] defined by p(x) = x" is a continuous
bijection.

» Hence g = p~1:[0, T"] — [0, T] defined by q(y) = y% is a
continuous bijection.

» It follows that g : [0, 00) — [0, 00) defined by g(x) = X is a
continuous bijection.
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if f is uniformly continuous.
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a function. Then there exists unique continuous function
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Extensions of uniformly continuous functions

vvyyypy

Theorem 28.3: Let a,b € R with a < b. Let f : (a,b) — R be
a function. Then there exists unique continuous function

f :[a, b] — R such that f(x) = f(x), Vx € (a,b) if and only
if f is uniformly continuous.

We call f as the continuous extension of f.

Proof. If f exists as above, then fis uniformly continuous.
This clearly implies that f = F|(a7b) is uniformly continuous.

To prove the converse we need a lemma which is of
independent interest.
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> Lemma 28.4: Let AC R and let f : A — R be uniformly
continuous. Suppose {x,}nen is a Cauchy sequence in A.
Then {f(xn)}nen is a Cauchy sequence.

» In other words, uniformly continuous functions map Cauchy
sequences to Cauchy sequences.

» Proof. Consider € > 0.

» Then as f is uniformly continuous, there exists § > 0 such that
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» Now as {x,} is Cauchy, there exists K € N such that
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Cauchy property

> Lemma 28.4: Let AC R and let f : A — R be uniformly
continuous. Suppose {x,}nen is a Cauchy sequence in A.
Then {f(xn)}nen is a Cauchy sequence.

» In other words, uniformly continuous functions map Cauchy
sequences to Cauchy sequences.

» Proof. Consider € > 0.

» Then as f is uniformly continuous, there exists § > 0 such that

If(x) —f(y)| <e, V¥x,y €A, with |[x—y|<é
» Now as {x,} is Cauchy, there exists K € N such that
|Xm — xn| < 6, Vm,n> K.
» Consequently
|f(xm) — f(xn)| < €,Ym,n > K.
» This proves that {f(x,)} is Cauchy.
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Continuation of proof

» Now suppose f : (a, b) — R is uniformly continuous. We want

to have an extension f : [a, b] — R which is continuous.
» This means that we need to determine 7(a) and 7(b).

» Suppose {xp}nen and {yn}nen are two sequences in (a, b)
converging to a.

» Since they are convergent, by the previous Lemma {f(x,)}
and {f(yn)} are Cauchy.

» Now since all Cauchy sequences in R are convergent these
sequences are convergent.

» Take ¢ = limp_00 f(Xn) and d = limp_00 F(¥n)-
» We claim ¢ = d.
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» Consider the sequence

{ Xn if nis odd;
Zn = . .
yn if nis even.

» As both {x,} and {y,} converge to the same value (namely
a), {z,} is also convergent and it converges to a (Show this).

» |t follows that {f(z,)} is also convergent.

» It has two subsequences {f(z2p—1)} and {f(z2,)} converging
to ¢, d respectively. Hence ¢ = d = lim,_ f(2p).

» We have shown that whenever a sequence {x,} converges to
a, {f(xn)} is convergent and the limit is independent of the
sequence chosen. Take this limit as the value of 7(a).

P> By the sequential criterion it is clear that f defined this way is
continuous at a. Similar proof works for the other cluster
point b.

» The uniqueness of extension is obvious.

» END OF LECTURE 28.



