

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 28. Inverses of continuous bijections and extensions of functions

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

Lecture 28. Inverses of continuous bijections and extensions of functions

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .

Lecture 28. Inverses of continuous bijections and extensions of functions

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .
- ▶ **Proposition 27.3:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is a cluster point of A if and only if there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c .

Lecture 28. Inverses of continuous bijections and extensions of functions

- ▶ **Definition 27.1:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **cluster point** (or accumulation point) of A if for every $\delta > 0$

$$(c - \delta, c + \delta) \cap A \setminus \{c\} \neq \emptyset.$$

- ▶ Note that here c may or may not be an element of A .
- ▶ **Proposition 27.3:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is a cluster point of A if and only if there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c .
- ▶ Note that we are excluding c from these sequences.

Limits of functions at cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

Limits of functions at cluster points

- ▶ **Definition 27.4:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to have a **limit at c** if there exists $z \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - z| < \epsilon, \quad \forall x \in (c - \delta, c + \delta) \cap (A \setminus \{c\}).$$

- ▶ **Proposition 27.5:** Let c be a cluster point of a subset A of \mathbb{R} . Let $f : A \rightarrow \mathbb{R}$ be a function. Then z is limit of f at c if and only if for every sequence $\{x_n\}_{n \in \mathbb{N}}$ in $A \setminus \{c\}$ converging to c , $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to z .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (c, \infty)$ converging to c .

Left and right hand cluster points

- ▶ **Definition 27.7:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then c is said to be a **right cluster point** of A if for every $\delta > 0$

$$(c, c + \delta) \cap A \neq \emptyset.$$

Similarly c is said to be a **left cluster point** of A if for every $\delta > 0$

$$(c - \delta, c) \cap A \neq \emptyset.$$

- ▶ **Proposition 27.8:** Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$. Then the following are equivalent:
 - ▶ (i) c is a right cluster point of A .
 - ▶ (ii) There exists a sequence $\{x_n\}$ in $A \cap (c, \infty)$ converging to c .
 - ▶ (iii) There exists a strictly decreasing sequence $\{x_n\}$ in A converging to c .

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

- (ii) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c^+} f(x) = \inf\{f(x) : x \in (c, b]\}.$$

Monotonic functions

- **Theorem 27.11:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Suppose f is increasing then the following hold.
- (i) For every $c \in (a, b]$,

$$\lim_{x \rightarrow c^-} f(x) = \sup\{f(x) : x \in [a, c)\}.$$

- (ii) For every $c \in [a, b)$,

$$\lim_{x \rightarrow c^+} f(x) = \inf\{f(x) : x \in (c, b]\}.$$

- (iii) For every $c \in (a, b)$

$$\lim_{x \rightarrow c^-} f(x) \leq f(c) \leq \lim_{x \rightarrow c^+} f(x).$$

Therefore f is continuous at c if and only if

$$\lim_{x \rightarrow c^-} f(x) = \lim_{x \rightarrow c^+} f(x).$$

Inverses of monotone continuous functions

- ▶ **Theorem 28.1:** Let a, b, a', b' be real numbers with $a < b$ and $a' < b'$. Let $f : [a, b] \rightarrow [a', b']$ be a continuous bijection with $f(a) = a'$ and $f(b) = b'$. Then $f^{-1} : [a', b'] \rightarrow [a, b]$ is a continuous bijection.

Inverses of monotone continuous functions

- ▶ **Theorem 28.1:** Let a, b, a', b' be real numbers with $a < b$ and $a' < b'$. Let $f : [a, b] \rightarrow [a', b']$ be a continuous bijection with $f(a) = a'$ and $f(b) = b'$. Then $f^{-1} : [a', b'] \rightarrow [a, b]$ is a continuous bijection.
- ▶ **Proof.** Note that f^{-1} is well-defined and is a bijection as f is assumed to be a bijection.

Inverses of monotone continuous functions

- ▶ **Theorem 28.1:** Let a, b, a', b' be real numbers with $a < b$ and $a' < b'$. Let $f : [a, b] \rightarrow [a', b']$ be a continuous bijection with $f(a) = a'$ and $f(b) = b'$. Then $f^{-1} : [a', b'] \rightarrow [a, b]$ is a continuous bijection.
- ▶ **Proof.** Note that f^{-1} is well-defined and is a bijection as f is assumed to be a bijection.
- ▶ Also $f^{-1}(a') = a$ and $f^{-1}(b') = b$.

Inverses of monotone continuous functions

- ▶ **Theorem 28.1:** Let a, b, a', b' be real numbers with $a < b$ and $a' < b'$. Let $f : [a, b] \rightarrow [a', b']$ be a continuous bijection with $f(a) = a'$ and $f(b) = b'$. Then $f^{-1} : [a', b'] \rightarrow [a, b]$ is a continuous bijection.
- ▶ **Proof.** Note that f^{-1} is well-defined and is a bijection as f is assumed to be a bijection.
- ▶ Also $f^{-1}(a') = a$ and $f^{-1}(b') = b$.
- ▶ Further, we know that f is strictly increasing.

Inverses of monotone continuous functions

- ▶ **Theorem 28.1:** Let a, b, a', b' be real numbers with $a < b$ and $a' < b'$. Let $f : [a, b] \rightarrow [a', b']$ be a continuous bijection with $f(a) = a'$ and $f(b) = b'$. Then $f^{-1} : [a', b'] \rightarrow [a, b]$ is a continuous bijection.
- ▶ **Proof.** Note that f^{-1} is well-defined and is a bijection as f is assumed to be a bijection.
- ▶ Also $f^{-1}(a') = a$ and $f^{-1}(b') = b$.
- ▶ Further, we know that f is strictly increasing.
- ▶ This implies, that f^{-1} is also strictly increasing as for $y < y'$ if $f^{-1}(y) \geq f^{-1}(y')$, on applying f we get $y \geq y'$, contradicting $y < y'$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.
- ▶ Therefore $f|_{[a, c]} : [a, c] \rightarrow [a', c']$ is a bijection.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.
- ▶ Therefore $f|_{[a, c]} : [a, c] \rightarrow [a', c']$ is a bijection.
- ▶ In particular, $f^{-1}([a', c']) = [a, c]$. By injectivity of f it follows that $f^{-1}([a', c']) = [a, c]$. Therefore $x_1 = \sup\{f^{-1}(y) : y \in [a', c')\} = \sup([a, c]) = c = f^{-1}(c')$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.
- ▶ Therefore $f|_{[a, c]} : [a, c] \rightarrow [a', c']$ is a bijection.
- ▶ In particular, $f^{-1}([a', c']) = [a, c]$. By injectivity of f it follows that $f^{-1}([a', c']) = [a, c]$. Therefore $x_1 = \sup\{f^{-1}(y) : y \in [a', c')\} = \sup([a, c]) = c = f^{-1}(c')$.
- ▶ Hence, $\lim_{y \rightarrow c' -} f^{-1}(y) = f^{-1}(c)$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.
- ▶ Therefore $f|_{[a, c]} : [a, c] \rightarrow [a', c']$ is a bijection.
- ▶ In particular, $f^{-1}([a', c']) = [a, c]$. By injectivity of f it follows that $f^{-1}([a', c']) = [a, c]$. Therefore $x_1 = \sup\{f^{-1}(y) : y \in [a', c')\} = \sup([a, c]) = c = f^{-1}(c')$.
- ▶ Hence, $\lim_{y \rightarrow c' -} f^{-1}(y) = f^{-1}(c)$.
- ▶ Similarly, for every $c' \in [a', b')$, $\lim_{y \rightarrow c' +} f^{-1}(y) = f^{-1}(c')$.

Continuation

- ▶ Then for any $c' \in (a', b']$

$$x_1 := \lim_{y \rightarrow c' -} f^{-1}(y) = \sup\{f^{-1}(y) : y \in [a', c')\}.$$

- ▶ Take $c = f^{-1}(c')$.
- ▶ Consider f restricted to $[a, c]$. As f is increasing, $f([a, c]) \subseteq [a', c']$. By intermediate value theorem, every $z \in [a', c']$ is in the range of $f|_{[a, c]}$.
- ▶ Therefore $f|_{[a, c]} : [a, c] \rightarrow [a', c']$ is a bijection.
- ▶ In particular, $f^{-1}([a', c']) = [a, c]$. By injectivity of f it follows that $f^{-1}([a', c']) = [a, c]$. Therefore $x_1 = \sup\{f^{-1}(y) : y \in [a', c')\} = \sup([a, c]) = c = f^{-1}(c')$.
- ▶ Hence, $\lim_{y \rightarrow c' -} f^{-1}(y) = f^{-1}(c)$.
- ▶ Similarly, for every $c' \in [a', b')$, $\lim_{y \rightarrow c' +} f^{-1}(y) = f^{-1}(c')$.
- ▶ Therefore f^{-1} is continuous.

n^{th} -root function

- ▶ **Example 28.2:** For any $n \in \mathbb{N}$, and any $T > 0$, the function $p : [0, T] \rightarrow [0, T^n]$ defined by $p(x) = x^n$ is a continuous bijection.

n^{th} -root function

- ▶ **Example 28.2:** For any $n \in \mathbb{N}$, and any $T > 0$, the function $p : [0, T] \rightarrow [0, T^n]$ defined by $p(x) = x^n$ is a continuous bijection.
- ▶ Hence $q = p^{-1} : [0, T^n] \rightarrow [0, T]$ defined by $q(y) = y^{\frac{1}{n}}$ is a continuous bijection.

n^{th} -root function

- ▶ **Example 28.2:** For any $n \in \mathbb{N}$, and any $T > 0$, the function $p : [0, T] \rightarrow [0, T^n]$ defined by $p(x) = x^n$ is a continuous bijection.
- ▶ Hence $q = p^{-1} : [0, T^n] \rightarrow [0, T]$ defined by $q(y) = y^{\frac{1}{n}}$ is a continuous bijection.
- ▶ It follows that $q : [0, \infty) \rightarrow [0, \infty)$ defined by $q(x) = x^{\frac{1}{n}}$ is a continuous bijection.

Extensions of uniformly continuous functions

- **Theorem 28.3:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then there exists unique continuous function $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$, $\forall x \in (a, b)$ if and only if f is uniformly continuous.

Extensions of uniformly continuous functions

- ▶ **Theorem 28.3:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then there exists unique continuous function $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$, $\forall x \in (a, b)$ if and only if f is uniformly continuous.
- ▶ We call \tilde{f} as the continuous extension of f .

Extensions of uniformly continuous functions

- ▶ **Theorem 28.3:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then there exists unique continuous function $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$, $\forall x \in (a, b)$ if and only if f is uniformly continuous.
- ▶ We call \tilde{f} as the continuous extension of f .
- ▶ **Proof.** If \tilde{f} exists as above, then \tilde{f} is uniformly continuous.

Extensions of uniformly continuous functions

- ▶ **Theorem 28.3:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then there exists unique continuous function $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$, $\forall x \in (a, b)$ if and only if f is uniformly continuous.
- ▶ We call \tilde{f} as the continuous extension of f .
- ▶ **Proof.** If \tilde{f} exists as above, then \tilde{f} is uniformly continuous.
- ▶ This clearly implies that $f = \tilde{f}|_{(a,b)}$ is uniformly continuous.

Extensions of uniformly continuous functions

- ▶ **Theorem 28.3:** Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then there exists unique continuous function $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$, $\forall x \in (a, b)$ if and only if f is uniformly continuous.
- ▶ We call \tilde{f} as the continuous extension of f .
- ▶ **Proof.** If \tilde{f} exists as above, then \tilde{f} is uniformly continuous.
- ▶ This clearly implies that $f = \tilde{f}|_{(a,b)}$ is uniformly continuous.
- ▶ To prove the converse we need a lemma which is of independent interest.

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.
- ▶ **Proof.** Consider $\epsilon > 0$.

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.
- ▶ **Proof.** Consider $\epsilon > 0$.
- ▶ Then as f is uniformly continuous, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon, \quad \forall x, y \in A, \quad \text{with} \quad |x - y| < \delta$$

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.
- ▶ **Proof.** Consider $\epsilon > 0$.
- ▶ Then as f is uniformly continuous, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon, \quad \forall x, y \in A, \quad \text{with} \quad |x - y| < \delta$$

- ▶ Now as $\{x_n\}$ is Cauchy, there exists $K \in \mathbb{N}$ such that

$$|x_m - x_n| < \delta, \quad \forall m, n \geq K.$$

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.
- ▶ **Proof.** Consider $\epsilon > 0$.
- ▶ Then as f is uniformly continuous, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon, \quad \forall x, y \in A, \quad \text{with} \quad |x - y| < \delta$$

- ▶ Now as $\{x_n\}$ is Cauchy, there exists $K \in \mathbb{N}$ such that

$$|x_m - x_n| < \delta, \quad \forall m, n \geq K.$$

- ▶ Consequently

$$|f(x_m) - f(x_n)| < \epsilon, \quad \forall m, n \geq K.$$

Cauchy property

- ▶ **Lemma 28.4:** Let $A \subseteq \mathbb{R}$ and let $f : A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in A . Then $\{f(x_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.
- ▶ In other words, uniformly continuous functions map Cauchy sequences to Cauchy sequences.
- ▶ **Proof.** Consider $\epsilon > 0$.
- ▶ Then as f is uniformly continuous, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon, \quad \forall x, y \in A, \quad \text{with} \quad |x - y| < \delta$$

- ▶ Now as $\{x_n\}$ is Cauchy, there exists $K \in \mathbb{N}$ such that

$$|x_m - x_n| < \delta, \quad \forall m, n \geq K.$$

- ▶ Consequently

$$|f(x_m) - f(x_n)| < \epsilon, \quad \forall m, n \geq K.$$

- ▶ This proves that $\{f(x_n)\}$ is Cauchy.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ are two sequences in (a, b) converging to a .

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ are two sequences in (a, b) converging to a .
- ▶ Since they are convergent, by the previous Lemma $\{f(x_n)\}$ and $\{f(y_n)\}$ are Cauchy.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ are two sequences in (a, b) converging to a .
- ▶ Since they are convergent, by the previous Lemma $\{f(x_n)\}$ and $\{f(y_n)\}$ are Cauchy.
- ▶ Now since all Cauchy sequences in \mathbb{R} are convergent these sequences are convergent.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ are two sequences in (a, b) converging to a .
- ▶ Since they are convergent, by the previous Lemma $\{f(x_n)\}$ and $\{f(y_n)\}$ are Cauchy.
- ▶ Now since all Cauchy sequences in \mathbb{R} are convergent these sequences are convergent.
- ▶ Take $c = \lim_{n \rightarrow \infty} f(x_n)$ and $d = \lim_{n \rightarrow \infty} f(y_n)$.

Continuation of proof

- ▶ Now suppose $f : (a, b) \rightarrow \mathbb{R}$ is uniformly continuous. We want to have an extension $\tilde{f} : [a, b] \rightarrow \mathbb{R}$ which is continuous.
- ▶ This means that we need to determine $\tilde{f}(a)$ and $\tilde{f}(b)$.
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ are two sequences in (a, b) converging to a .
- ▶ Since they are convergent, by the previous Lemma $\{f(x_n)\}$ and $\{f(y_n)\}$ are Cauchy.
- ▶ Now since all Cauchy sequences in \mathbb{R} are convergent these sequences are convergent.
- ▶ Take $c = \lim_{n \rightarrow \infty} f(x_n)$ and $d = \lim_{n \rightarrow \infty} f(y_n)$.
- ▶ We claim $c = d$.

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.
- ▶ It has two subsequences $\{f(z_{2n-1})\}$ and $\{f(z_{2n})\}$ converging to c, d respectively. Hence $c = d = \lim_{n \rightarrow \infty} f(z_n)$.

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.
- ▶ It has two subsequences $\{f(z_{2n-1})\}$ and $\{f(z_{2n})\}$ converging to c, d respectively. Hence $c = d = \lim_{n \rightarrow \infty} f(z_n)$.
- ▶ We have shown that whenever a sequence $\{x_n\}$ converges to a , $\{f(x_n)\}$ is convergent and the limit is independent of the sequence chosen. Take this limit as the value of $\tilde{f}(a)$.

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.
- ▶ It has two subsequences $\{f(z_{2n-1})\}$ and $\{f(z_{2n})\}$ converging to c, d respectively. Hence $c = d = \lim_{n \rightarrow \infty} f(z_n)$.
- ▶ We have shown that whenever a sequence $\{x_n\}$ converges to a , $\{f(x_n)\}$ is convergent and the limit is independent of the sequence chosen. Take this limit as the value of $\tilde{f}(a)$.
- ▶ By the sequential criterion it is clear that \tilde{f} defined this way is continuous at a . Similar proof works for the other cluster point b .

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.
- ▶ It has two subsequences $\{f(z_{2n-1})\}$ and $\{f(z_{2n})\}$ converging to c, d respectively. Hence $c = d = \lim_{n \rightarrow \infty} f(z_n)$.
- ▶ We have shown that whenever a sequence $\{x_n\}$ converges to a , $\{f(x_n)\}$ is convergent and the limit is independent of the sequence chosen. Take this limit as the value of $\tilde{f}(a)$.
- ▶ By the sequential criterion it is clear that \tilde{f} defined this way is continuous at a . Similar proof works for the other cluster point b .
- ▶ The uniqueness of extension is obvious.

Continuation

- ▶ Consider the sequence

$$z_n = \begin{cases} x_n & \text{if } n \text{ is odd;} \\ y_n & \text{if } n \text{ is even.} \end{cases}$$

- ▶ As both $\{x_n\}$ and $\{y_n\}$ converge to the same value (namely a), $\{z_n\}$ is also convergent and it converges to a (Show this).
- ▶ It follows that $\{f(z_n)\}$ is also convergent.
- ▶ It has two subsequences $\{f(z_{2n-1})\}$ and $\{f(z_{2n})\}$ converging to c, d respectively. Hence $c = d = \lim_{n \rightarrow \infty} f(z_n)$.
- ▶ We have shown that whenever a sequence $\{x_n\}$ converges to a , $\{f(x_n)\}$ is convergent and the limit is independent of the sequence chosen. Take this limit as the value of $\tilde{f}(a)$.
- ▶ By the sequential criterion it is clear that \tilde{f} defined this way is continuous at a . Similar proof works for the other cluster point b .
- ▶ The uniqueness of extension is obvious.
- ▶ **END OF LECTURE 28.**