

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

A formula for π

- Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

A formula for π

- Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

A formula for π

- Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

A formula for π

- Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

- This is known as **Madhava Series**.

A formula for π

- Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

- This is known as [Madhava Series](#).
- Madhava of Kerala school of Mathematics found this and some other such formulae for trigonometric quantities several centuries before Calculus was developed by Newton, Leibniz and others in Europe.

A formula for π

- ▶ Here is an infinite series formula for π .

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

- ▶ This is known as **Madhava Series**.
- ▶ Madhava of Kerala school of Mathematics found this and some other such formulae for trigonometric quantities several centuries before Calculus was developed by Newton, Leibniz and others in Europe.
- ▶ More information on Madhava series:
https://en.wikipedia.org/wiki/Madhava_series
- ▶ Here is link for more on ancient Indian mathematics:
<https://core.ac.uk/download/pdf/326681788.pdf>

Lecture 29. Differentiation

- ▶ Let $A \subseteq \mathbb{R}$. Fix $c \in A$. Assume that c is a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then define $f_c : A \setminus \{c\} \rightarrow \mathbb{R}$ by

$$f_c(x) = \frac{f(x) - f(c)}{x - c}, \quad x \in A \setminus \{c\}.$$

Lecture 29. Differentiation

- ▶ Let $A \subseteq \mathbb{R}$. Fix $c \in A$. Assume that c is a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then define $f_c : A \setminus \{c\} \rightarrow \mathbb{R}$ by

$$f_c(x) = \frac{f(x) - f(c)}{x - c}, \quad x \in A \setminus \{c\}.$$

- ▶ We would like to take:

$$f'(c) = \lim_{x \rightarrow c} f_c(x)$$

Lecture 29. Differentiation

- ▶ Let $A \subseteq \mathbb{R}$. Fix $c \in A$. Assume that c is a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then define $f_c : A \setminus \{c\} \rightarrow \mathbb{R}$ by

$$f_c(x) = \frac{f(x) - f(c)}{x - c}, \quad x \in A \setminus \{c\}.$$

- ▶ We would like to take:

$$f'(c) = \lim_{x \rightarrow c} f_c(x)$$

- ▶ Note that here f_c is not defined at c and we do not need it to consider this limit.

Lecture 29. Differentiation

- ▶ Let $A \subseteq \mathbb{R}$. Fix $c \in A$. Assume that c is a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then define $f_c : A \setminus \{c\} \rightarrow \mathbb{R}$ by

$$f_c(x) = \frac{f(x) - f(c)}{x - c}, \quad x \in A \setminus \{c\}.$$

- ▶ We would like to take:

$$f'(c) = \lim_{x \rightarrow c} f_c(x)$$

- ▶ Note that here f_c is not defined at c and we do not need it to consider this limit.
- ▶ More formally, we have the following definition.

Lecture 29. Differentiation

- ▶ Let $A \subseteq \mathbb{R}$. Fix $c \in A$. Assume that c is a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then define $f_c : A \setminus \{c\} \rightarrow \mathbb{R}$ by

$$f_c(x) = \frac{f(x) - f(c)}{x - c}, \quad x \in A \setminus \{c\}.$$

- ▶ We would like to take:

$$f'(c) = \lim_{x \rightarrow c} f_c(x)$$

- ▶ Note that here f_c is not defined at c and we do not need it to consider this limit.
- ▶ More formally, we have the following definition.
- ▶ **Definition 29.1:** Let $A \subseteq \mathbb{R}$. Let $c \in A$ be a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be differentiable at c if

$$\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}$$

exists. In such a case, $f'(c)$ is defined as this limit. If the limit does not exist f is said to be not differentiable at c .

Example

► Example 29.2 Let $f : [0, 2] \rightarrow \mathbb{R}$ be the function

$$f(x) = x^3, \quad x \in [0, 2].$$

Then f is differentiable at $c = 1$ and $f'(1) = 3$.

Example

► **Example 29.2** Let $f : [0, 2] \rightarrow \mathbb{R}$ be the function

$$f(x) = x^3, \quad x \in [0, 2].$$

Then f is differentiable at $c = 1$ and $f'(1) = 3$.

► **Proof:** We have,

$$\begin{aligned}\lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x - 1} &= \lim_{x \rightarrow 1} \frac{x^3 - 1}{x - 1} \\ &= \lim_{x \rightarrow 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} \\ &= \lim_{x \rightarrow 1} (x^2 + x + 1) \\ &= 3.\end{aligned}$$

Example

► **Example 29.2** Let $f : [0, 2] \rightarrow \mathbb{R}$ be the function

$$f(x) = x^3, \quad x \in [0, 2].$$

Then f is differentiable at $c = 1$ and $f'(1) = 3$.

► **Proof:** We have,

$$\begin{aligned}\lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x - 1} &= \lim_{x \rightarrow 1} \frac{x^3 - 1}{x - 1} \\ &= \lim_{x \rightarrow 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} \\ &= \lim_{x \rightarrow 1} (x^2 + x + 1) \\ &= 3.\end{aligned}$$

► **Remark:** We may also write $\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}$ as

$$\lim_{h \rightarrow 0} \frac{f(c + h) - f(c)}{h}.$$

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .
- ▶ **Theorem 29.3:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. If f is differentiable at c then f is continuous at c . The converse is not true.

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .
- ▶ **Theorem 29.3:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. If f is differentiable at c then f is continuous at c . The converse is not true.
- ▶ **Proof:** We have

$$f'(c) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}.$$

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .
- ▶ **Theorem 29.3:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. If f is differentiable at c then f is continuous at c . The converse is not true.
- ▶ **Proof:** We have

$$f'(c) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}.$$

- ▶ Hence

$$\lim_{x \rightarrow c} (f(x) - f(c)) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

exists and equals $f'(c) \cdot 0 = 0$.

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .
- ▶ **Theorem 29.3:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. If f is differentiable at c then f is continuous at c . The converse is not true.
- ▶ **Proof:** We have

$$f'(c) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}.$$

- ▶ Hence

$$\lim_{x \rightarrow c} (f(x) - f(c)) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

exists and equals $f'(c) \cdot 0 = 0$.

- ▶ Hence f is continuous at c .

Differentiability implies continuity

- ▶ In the following, for simplicity, we would take domain A as (non-singleton) interval and will just denote it as I .
- ▶ **Theorem 29.3:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. If f is differentiable at c then f is continuous at c . The converse is not true.
- ▶ **Proof:** We have

$$f'(c) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}.$$

- ▶ Hence

$$\lim_{x \rightarrow c} (f(x) - f(c)) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

exists and equals $f'(c) \cdot 0 = 0$.

- ▶ Hence f is continuous at c .
- ▶ The function $g(x) = |x|, x \in \mathbb{R}$ is continuous at 0, but is not differentiable at 0 (Why?). ■

Algebra of differentiation

- **Theorem 29.4:** Let I be an interval and suppose $c \in I$. Let $f : I \rightarrow \mathbb{R}$ and $g : I \rightarrow \mathbb{R}$ be functions differentiable at c . Then the following hold:

Algebra of differentiation

- **Theorem 29.4:** Let I be an interval and suppose $c \in I$. Let $f : I \rightarrow \mathbb{R}$ and $g : I \rightarrow \mathbb{R}$ be functions differentiable at c . Then the following hold:
 - (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by $(af + bg)(x) = af(x) + bg(x)$, $x \in I$ is differentiable at c and,

$$(af + bg)'(c) = af'(c) + bg'(c).$$

- (ii) The product fg defined by $fg(x) = f(x)g(x)$, $x \in I$, is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

Algebra of differentiation

- **Theorem 29.4:** Let I be an interval and suppose $c \in I$. Let $f : I \rightarrow \mathbb{R}$ and $g : I \rightarrow \mathbb{R}$ be functions differentiable at c . Then the following hold:
 - (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by $(af + bg)(x) = af(x) + bg(x)$, $x \in I$ is differentiable at c and,

$$(af + bg)'(c) = af'(c) + bg'(c).$$

- (ii) The product fg defined by $fg(x) = f(x)g(x)$, $x \in I$, is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

- (iii) If $g(c) \neq 0$, then $\frac{f}{g}$ where $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$ is defined for some interval $J \subseteq I$ containing c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$

Algebra of differentiation

- **Theorem 29.4:** Let I be an interval and suppose $c \in I$. Let $f : I \rightarrow \mathbb{R}$ and $g : I \rightarrow \mathbb{R}$ be functions differentiable at c . Then the following hold:
 - (i) For $a, b \in \mathbb{R}$, $af + bg$ defined by $(af + bg)(x) = af(x) + bg(x)$, $x \in I$ is differentiable at c and,

$$(af + bg)'(c) = af'(c) + bg'(c).$$

- (ii) The product fg defined by $fg(x) = f(x)g(x)$, $x \in I$, is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

- (iii) If $g(c) \neq 0$, then $\frac{f}{g}$ where $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$ is defined for some interval $J \subseteq I$ containing c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$

- **Proof.** (i) The proof is clear.

Continuation

- ▶ (ii) We have

$$\begin{aligned}\frac{f(x)g(x) - f(c)g(c)}{x - c} &= \frac{f(x)(g(x) - g(c)) + (f(x) - f(c))g(c)}{x - c} \\ &= f(x) \cdot \frac{g(x) - g(c)}{x - c} + \frac{f(x) - f(c)}{x - c} \cdot g(c).\end{aligned}$$

Continuation

- ▶ (ii) We have

$$\begin{aligned}\frac{f(x)g(x) - f(c)g(c)}{x - c} &= \frac{f(x)(g(x) - g(c)) + (f(x) - f(c))g(c)}{x - c} \\ &= f(x) \cdot \frac{g(x) - g(c)}{x - c} + \frac{f(x) - f(c)}{x - c} \cdot g(c).\end{aligned}$$

- ▶ Recall that differentiability of f at c gives continuity of f at c and hence $\lim_{x \rightarrow c} f(x) = f(c)$.

Continuation

- ▶ (ii) We have

$$\begin{aligned}\frac{f(x)g(x) - f(c)g(c)}{x - c} &= \frac{f(x)(g(x) - g(c)) + (f(x) - f(c))g(c)}{x - c} \\ &= f(x) \cdot \frac{g(x) - g(c)}{x - c} + \frac{f(x) - f(c)}{x - c} \cdot g(c).\end{aligned}$$

- ▶ Recall that differentiability of f at c gives continuity of f at c and hence $\lim_{x \rightarrow c} f(x) = f(c)$.
- ▶ Now taking limit as x tends to c in the previous equation, we see that (fg) is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

Continuation

- ▶ (ii) We have

$$\begin{aligned}\frac{f(x)g(x) - f(c)g(c)}{x - c} &= \frac{f(x)(g(x) - g(c)) + (f(x) - f(c))g(c)}{x - c} \\ &= f(x) \cdot \frac{g(x) - g(c)}{x - c} + \frac{f(x) - f(c)}{x - c} \cdot g(c).\end{aligned}$$

- ▶ Recall that differentiability of f at c gives continuity of f at c and hence $\lim_{x \rightarrow c} f(x) = f(c)$.
- ▶ Now taking limit as x tends to c in the previous equation, we see that (fg) is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

- ▶ (iii) As g is continuous at c and $g(c) \neq 0$, $g(x) \neq 0$ for some interval J containing c . Hence $\frac{f}{g}$ is defined in this interval.

Continuation

► Now

$$\begin{aligned}\frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} &= \frac{1}{g(x)g(c)} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \frac{1}{g(x)g(c)} \left[\frac{f(x) - f(c)}{x - c} \cdot g(c) - \frac{f(c)(g(x) - g(c))}{x - c} \right]\end{aligned}$$

Continuation

► Now

$$\begin{aligned}\frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} &= \frac{1}{g(x)g(c)} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \frac{1}{g(x)g(c)} \left[\frac{f(x) - f(c)}{x - c} \cdot g(c) - \frac{f(c)(g(x) - g(c))}{x - c} \right]\end{aligned}$$

► Now taking limit as x tends to c , we get

$$\frac{f'}{g}(c) = \frac{1}{g(c) \cdot g(c)} [f'(c)g(c) - f(c)g'(c)].$$

Continuation

- ▶ Now

$$\begin{aligned}\frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} &= \frac{1}{g(x)g(c)} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \frac{1}{g(x)g(c)} \left[\frac{f(x) - f(c)}{x - c} \cdot g(c) - \frac{f(c)(g(x) - g(c))}{x - c} \right]\end{aligned}$$

- ▶ Now taking limit as x tends to c , we get

$$\frac{f'(c)}{g(c)} = \frac{1}{g(c) \cdot g(c)} [f'(c)g(c) - f(c)g'(c)].$$

- ▶ That completes the proof.

Polynomials

► Theorem 29.5: Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a real polynomial:

$$p(x) = a_0 + a_1x + \cdots + a_nx^n, x \in \mathbb{R}$$

for some $n \in \mathbb{N}$, $a_0, a_1, \dots, a_n \in \mathbb{R}$.

Polynomials

- **Theorem 29.5:** Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a real polynomial:

$$p(x) = a_0 + a_1x + \cdots + a_nx^n, x \in \mathbb{R}$$

for some $n \in \mathbb{N}$, $a_0, a_1, \dots, a_n \in \mathbb{R}$.

- Then at any $c \in \mathbb{R}$ p is differentiable at c and

$$p'(c) = a_1 + 2a_2c + 3a_3c^2 + \cdots + na_nc^{(n-1)}.$$

Polynomials

► **Theorem 29.5:** Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be a real polynomial:

$$p(x) = a_0 + a_1x + \cdots + a_nx^n, x \in \mathbb{R}$$

for some $n \in \mathbb{N}$, $a_0, a_1, \dots, a_n \in \mathbb{R}$.

► Then at any $c \in \mathbb{R}$ p is differentiable at c and

$$p'(c) = a_1 + 2a_2c + 3a_3c^2 + \cdots + na_nc^{(n-1)}.$$

► **Proof.** This can be proved using (i) and (ii) of previous theorem and induction. More directly:

$$\begin{aligned} & p'(c) \\ &= \lim_{h \rightarrow 0} \frac{p(h + c) - p(h)}{h} \\ &= \lim_{h \rightarrow 0} \frac{1}{h} [a_1 \cdot h + a_2((h + c)^2 - c^2) + a_3(h + c)^3 - c^3 \\ &\quad + \cdots + a_n((h + c)^n - c^n)] \\ &= a_1 + 2a_2c + 3a_3c^2 + \cdots + na_nc^{(n-1)}. \end{aligned}$$

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .
- ▶ If f' is differentiable then $f^{(2)} := (f')'$ is called the **second derivative** of f .

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .
- ▶ If f' is differentiable then $f^{(2)} := (f')'$ is called the **second derivative** of f .
- ▶ Inductively if $f^{(n-1)}$ is differentiable, then $f^{(n)}$, the n -th derivative of f is the derivative of $f^{(n-1)}$.

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .
- ▶ If f' is differentiable then $f^{(2)} := (f')'$ is called the **second derivative** of f .
- ▶ Inductively if $f^{(n-1)}$ is differentiable, then $f^{(n)}$, the n -th derivative of f is the derivative of $f^{(n-1)}$.
- ▶ f is said to be **infinitely differentiable** if it has n -th derivative for every $n \in \mathbb{N}$.

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .
- ▶ If f' is differentiable then $f^{(2)} := (f')'$ is called the **second derivative** of f .
- ▶ Inductively if $f^{(n-1)}$ is differentiable, then $f^{(n)}$, the n -th derivative of f is the derivative of $f^{(n-1)}$.
- ▶ f is said to be **infinitely differentiable** if it has n -th derivative for every $n \in \mathbb{N}$.
- ▶ We can see that polynomials are infinitely differentiable.

Differentiable functions

- ▶ **Definition 29.6:** A function $f : I \rightarrow \mathbb{R}$ is said to be **differentiable** if it is differentiable at every $c \in I$. If $f : I \rightarrow \mathbb{R}$ is differentiable then the function $f' : I \rightarrow \mathbb{R}$ is called the **first derivative** of f .
- ▶ If f' is differentiable then $f^{(2)} := (f')'$ is called the **second derivative** of f .
- ▶ Inductively if $f^{(n-1)}$ is differentiable, then $f^{(n)}$, the n -th derivative of f is the derivative of $f^{(n-1)}$.
- ▶ f is said to be **infinitely differentiable** if it has n -th derivative for every $n \in \mathbb{N}$.
- ▶ We can see that polynomials are infinitely differentiable.
- ▶ **END OF LECTURE 29.**