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» Here is an infinite series formula for 7.

» This is known as Madhava Series.

> Madhava of Kerala school of Mathematics found this and
some other such formulae for trigonometric quantities several
centuries before Calculus was developed by Newton, Leibniz
and others in Europe.

» More information on Madhava series:
https://en.wikipedia.org/wiki/Madhava_series

» Here is link for more on ancient Indian mathematics:
https://core.ac.uk /download/pdf/326681788.pdf
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> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
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fe(x) = f(X)Z(C), x € A\{c}.
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> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
Let f : A— R be a function. Then define f. : A\{c} — R by

f(x)—f
f(x) = ()= FO) C(C), x € A\{c}.
» We would like to take:

X —

, .
f'(c) = llnc fe(x)

> Note that here f. is not defined at ¢ and we do not need it to
consider this limit.

» More formally, we have the following definition.

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at c if

-0

X—C X —C
exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable’at c.
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Example

» Example 29.2 Let f : [0,2] — R be the function
f(x)=x3 x€][o0,2].

Then f is differentiable at ¢ = 1 and /(1) = 3.
» Proof: We have,

_ 3 _
im ()=
x=1 x-1 x=1 x—1
_ im (x —1)(x*+x+1)
x—1 x—1
= lim(x*+x+1)
x—1
= 3.
f(x)—f(c)

> Remark: We may also write limy_¢ as

lim f(c+h)— f(c)'
h—0 h
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Differentiability implies continuity

» In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as /.

» Theorem 29.3: Let f : I — R be a function where [ is an
interval. Fix ¢ € |. If f is differentiable at ¢ then f is
continuous at c. The converse is not true.

» Proof: We have

f/(C) — )!@C f(X)z : Z(C)
» Hence
Jm )~ (e = Jimy "= ()

exists and equals '(¢).0 = 0.
» Hence f is continuous at c.

» The function g(x) = |x|,x € R is continuous at 0, but is not
differentiable at 0 (Why?). B
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Algebra of differentiation

>

Theorem 29.4: Let | be an interval and suppose c € /. Let
f: 1 —Rand g: ! — R be functions differentiable at c.
Then the following hold:

(i) For a, b € R, af + bg defined by (af + bg)(x) =

af(x) + bg(x), x € I is differentiable at ¢ and,

(af + bg)'(c) = af'(c) + bg'(c).
(ii) The product fg defined by fg(x) = f(x)g(x), x €1, is
differentiable at ¢ and

(f8)'(c) = f(c)g'(c) + f'(c)g(c).
(iii) If g(c) # 0, then é where é(x) % is defined for
some interval J C [ containing ¢ and

e Fe8(e) = F(0)g(e)
A glof

Proof. (i) The proof is clear.
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» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)
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Continuation

» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)
0 BN @) F A

» Recall that differentiability of f at ¢ gives continuity of f at ¢
and hence limy_,. f(x) = f(c).

» Now taking limit as x tends to ¢ in the previous equation, we
see that (fg) is differentiable at ¢ and

(f8)'(c) = f(c)g'(c) + f'(c)g(c).

» (iii) As g is continuous at ¢ and g(c) # 0, g(x) # 0 for some
interval J containing c. Hence g is defined in this interval.



Continuation

» Now

flx) _ ()

g(x) gl _

X—=C

1

f(x)g(c) — f(c)e(x)

g(x)g(c)
1

X—=C

~ &(x)s(c)

HORG)

X —=C

g(c) —

fc)(g(x) — g(c))

X—=C

]



Continuation

» Now
0089 _ 1 f(x)ele)~ F()e(x)
X—cC g(x)g(c) X—cC
_ 1 f(x) — f(c) o f(c)(g(x) — g(c))
= el x—c 89 P
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Continuation

» Now
0089 _ 1 f(x)ele)~ F()e(x)
X—cC g(x)g(c) X—cC
_ 1 f(x) — f(c) o f(c)(g(x) — g(c))
= el x—c 89 P

> Now taking limit as x tends to ¢, we get

' 1 , ,

» That completes the proof.
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Polynomials

> Theorem 29.5: Let p: R — R be a real polynomial:
p(x) =ao+aix+---+ax",x eR

for some n € N, ap, a1,...,a, € R.
» Then at any ¢ € R p is differentiable at ¢ and

p'(c) = a1 + 2apc 4+ 3a3c® + - - - + nap,c" Y.

» Proof. This can be proved using (i) and (ii) of previous
theorem and induction. More directly:

p'(c)
_ o LAt ) = p(h)
h—0 h

1
= lim —[a;.h+ ax((h+c)®> = ?)) + as(h+ )} - &)
h—0 h

+ -4 ap((h+¢c)"—c")
= a1 +2ayc+3a3c2 + -+ na,c",
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Differentiable functions

» Definition 29.6: A function f : | — R is said to be
differentiable if it is differentiable at every ce [. If f : | - R
is differentiable then the function ' : I — R is called the first
derivative of f.

> If f/ is differentiable then f(2) := (") is called the second
derivative of f.

» Inductively if F(n=1) s differentiable, then f(”), the n-th
derivative of f is the derivative of £("—1).

» f is said to be infinitely differentiable if it has n-th derivative
for every n € N.

» We can see that polynomials are infinitely differentiable.
» END OF LECTURE 29.



