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A formula for π

I Here is an infinite series formula for π.

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+

1

9
· · ·

I This is known as Madhava Series.

I Madhava of Kerala school of Mathematics found this and
some other such formulae for trigonometric quantities several
centuries before Calculus was developed by Newton, Leibniz
and others in Europe.

I More information on Madhava series:
https://en.wikipedia.org/wiki/Madhava series

I Here is link for more on ancient Indian mathematics:
https://core.ac.uk/download/pdf/326681788.pdf
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Lecture 29. Differentiation

I Let A ⊆ R. Fix c ∈ A. Assume that c is a cluster point of A.
Let f : A→ R be a function. Then define fc : A\{c} → R by

fc(x) =
f (x)− f (c)

x − c
, x ∈ A\{c}.

I We would like to take:

f ′(c) = lim
x→c

fc(x)

I Note that here fc is not defined at c and we do not need it to
consider this limit.

I More formally, we have the following definition.
I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.

Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.
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Example

I Example 29.2 Let f : [0, 2]→ R be the function

f (x) = x3, x ∈ [0, 2].

Then f is differentiable at c = 1 and f ′(1) = 3.

I Proof: We have,

lim
x→1

f (x)− f (1)

x − 1
= lim

x→1

x3 − 1

x − 1

= lim
x→1

(x − 1)(x2 + x + 1)

x − 1

= lim
x→1

(x2 + x + 1)

= 3.

I Remark: We may also write limx→c
f (x)−f (c)

x−c as

lim
h→0

f (c + h)− f (c)

h
.
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Differentiability implies continuity

I In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as I .

I Theorem 29.3: Let f : I → R be a function where I is an
interval. Fix c ∈ I . If f is differentiable at c then f is
continuous at c. The converse is not true.

I Proof: We have

f ′(c) = lim
x→c

f (x)− f (c)

x − c
.

I Hence

lim
x→c

(f (x)− f (c)) = lim
x→c

f (x)− f (c)

x − c
.(x − c)

exists and equals f ′(c).0 = 0.
I Hence f is continuous at c .
I The function g(x) = |x |, x ∈ R is continuous at 0, but is not

differentiable at 0 (Why?). �
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Algebra of differentiation

I Theorem 29.4: Let I be an interval and suppose c ∈ I . Let
f : I → R and g : I → R be functions differentiable at c .
Then the following hold:

I (i) For a, b ∈ R, af + bg defined by (af + bg)(x) =
af (x) + bg(x), x ∈ I is differentiable at c and,

(af + bg)′(c) = af ′(c) + bg ′(c).

I (ii) The product fg defined by fg(x) = f (x)g(x), x ∈ I , is
differentiable at c and

(fg)′(c) = f (c)g ′(c) + f ′(c)g(c).

I (iii) If g(c) 6= 0, then f
g where f

g (x) = f (x)
g(x) is defined for

some interval J ⊆ I containing c and

(
f

g
)′(c) =

f ′(c)g(c)− f (c)g ′(c)

g(c)2
.

I Proof. (i) The proof is clear.
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Continuation

I (ii) We have

f (x)g(x)− f (c)g(c)

x − c
=

f (x)(g(x)− g(c)) + (f (x)− f (c))g(c)

x − c

= f (x).
g(x)− g(c)

x − c
+

f (x)− f (c)

x − c
.g(c).

I Recall that differentiability of f at c gives continuity of f at c
and hence limx→c f (x) = f (c).

I Now taking limit as x tends to c in the previous equation, we
see that (fg) is differentiable at c and

(fg)′(c) = f (c)g ′(c) + f ′(c)g(c).

I (iii) As g is continuous at c and g(c) 6= 0, g(x) 6= 0 for some
interval J containing c . Hence f

g is defined in this interval.
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Continuation

I Now

f (x)
g(x) −

f (c)
g(c)

x − c
=

1

g(x)g(c)
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=
1
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Polynomials

I Theorem 29.5: Let p : R→ R be a real polynomial:

p(x) = a0 + a1x + · · ·+ anx
n, x ∈ R

for some n ∈ N, a0, a1, . . . , an ∈ R.

I Then at any c ∈ R p is differentiable at c and

p′(c) = a1 + 2a2c + 3a3c
2 + · · ·+ nanc

(n−1).

I Proof. This can be proved using (i) and (ii) of previous
theorem and induction. More directly:

p′(c)

= lim
h→0

p(h + c)− p(h)

h

= lim
h→0

1

h
[a1.h + a2((h + c)2 − c2)) + a3(h + c)3 − c3)

+ · · ·+ an((h + c)n − cn)

= a1 + 2a2c + 3a3c
2 + · · ·+ nanc

(n−1).
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+ · · ·+ an((h + c)n − cn)

= a1 + 2a2c + 3a3c
2 + · · ·+ nanc

(n−1).



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.



Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.


