

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 3: Sets and functions

- ▶ Informal Definition: A set is a collection of well-defined objects.

Lecture 3: Sets and functions

- ▶ Informal Definition: A set is a collection of well-defined objects.
- ▶ We continue with this definition though ideally speaking we should be following ZFC axioms.

Lecture 3: Sets and functions

- ▶ Informal Definition: A set is a collection of well-defined objects.
- ▶ We continue with this definition though ideally speaking we should be following ZFC axioms.
- ▶ We assume familiarity with

Lecture 3: Sets and functions

- ▶ Informal Definition: A set is a collection of well-defined objects.
- ▶ We continue with this definition though ideally speaking we should be following ZFC axioms.
- ▶ We assume familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$ the set of natural numbers.

Lecture 3: Sets and functions

- ▶ Informal Definition: A set is a collection of well-defined objects.
- ▶ We continue with this definition though ideally speaking we should be following ZFC axioms.
- ▶ We assume familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$ the set of natural numbers.
- ▶ $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ -the set of integers.

Functions

- ▶ Given two non-empty sets A and B , a function f from A to B is an association of some element $f(x)$ in B , for every x in A .

Functions

- ▶ Given two non-empty sets A and B , a function f from A to B is an association of some element $f(x)$ in B , for every x in A .
- ▶ This is denoted by $f : A \rightarrow B$.

Functions

- ▶ Given two non-empty sets A and B , a function f from A to B is an association of some element $f(x)$ in B , for every x in A .
- ▶ This is denoted by $f : A \rightarrow B$.
- ▶ You may also think of a function f as a subset of the Cartesian product $A \times B = \{(a, b) : a \in A, b \in B\}$ having certain properties.

Functions

- ▶ Given two non-empty sets A and B , a function f from A to B is an association of some element $f(x)$ in B , for every x in A .
- ▶ This is denoted by $f : A \rightarrow B$.
- ▶ You may also think of a function f as a subset of the Cartesian product $A \times B = \{(a, b) : a \in A, b \in B\}$ having certain properties.
- ▶ More precisely, $G(f) = \{(x, f(x)) : x \in A\}$ is a subset of $A \times B$, where every element $x \in A$ appears with exactly one element $f(x) \in B$.

Functions

- ▶ Given two non-empty sets A and B , a function f from A to B is an association of some element $f(x)$ in B , for every x in A .
- ▶ This is denoted by $f : A \rightarrow B$.
- ▶ You may also think of a function f as a subset of the Cartesian product $A \times B = \{(a, b) : a \in A, b \in B\}$ having certain properties.
- ▶ More precisely, $G(f) = \{(x, f(x)) : x \in A\}$ is a subset of $A \times B$, where every element $x \in A$ appears with exactly one element $f(x) \in B$.
- ▶ $G(f)$ is known as the **graph** of f .

Vertical line test

- ▶ Clearly not all subsets G of $A \times B$ appear as graphs of f .

Vertical line test

- ▶ Clearly not all subsets G of $A \times B$ appear as graphs of f .
- ▶ Every element $x \in A$ should appear. Moreover for every element x there should be unique x' in B such that $(x, x') \in G$.

Vertical line test

- ▶ Clearly not all subsets G of $A \times B$ appear as graphs of f .
- ▶ Every element $x \in A$ should appear. More over for every element x there should be unique x' in B such that $(x, x') \in G$.
- ▶ In other words, there should not be x', x'' in B with $x' \neq x''$, such that both (x, x') and (x, x'') are in G .

Vertical line test

- ▶ Clearly not all subsets G of $A \times B$ appear as graphs of f .
- ▶ Every element $x \in A$ should appear. More over for every element x there should be unique x' in B such that $(x, x') \in G$.
- ▶ In other words, there should not be x', x'' in B with $x' \neq x''$, such that both (x, x') and (x, x'') are in G .
- ▶ In the usual picture of graphs of functions on real line this is known as **vertical line test**. A graph of a function can not be touching a vertical line at more than one point.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.
- ▶ It takes any $x \in A$ as input and spews out some element $f(x)$ in B as out put.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.
- ▶ It takes any $x \in A$ as input and spews out some element $f(x)$ in B as output.
- ▶ Any element of A can be input.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.
- ▶ It takes any $x \in A$ as input and spews out some element $f(x)$ in B as output.
- ▶ Any element of A can be input.
- ▶ With one input there is only one output.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.
- ▶ It takes any $x \in A$ as input and spews out some element $f(x)$ in B as output.
- ▶ Any element of A can be input.
- ▶ With one input there is only one output.
- ▶ Different inputs may give same output.

function as a machine

- ▶ You may think of a function $f : A \rightarrow B$ as a machine.
- ▶ It takes any $x \in A$ as input and spews out some element $f(x)$ in B as output.
- ▶ Any element of A can be input.
- ▶ With one input there is only one output.
- ▶ Different inputs may give same output.
- ▶ Some elements of B may not be an output value for f .

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.
- ▶ Then A is known as the **domain** of f .

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.
- ▶ Then A is known as the **domain** of f .
- ▶ B is known as the **co-domain** of f .

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.
- ▶ Then A is known as the **domain** of f .
- ▶ B is known as the **co-domain** of f .
- ▶ The set $\{f(x) : x \in A\}$ is known as the **range** of f .

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.
- ▶ Then A is known as the **domain** of f .
- ▶ B is known as the **co-domain** of f .
- ▶ The set $\{f(x) : x \in A\}$ is known as the **range** of f .
- ▶ Note that the range of f is a subset of the co-domain.

Domain, Co-domain and Range

- ▶ **Terminology:** Suppose $f : A \rightarrow B$ is a function.
- ▶ Then A is known as the **domain** of f .
- ▶ B is known as the **co-domain** of f .
- ▶ The set $\{f(x) : x \in A\}$ is known as the **range** of f .
- ▶ Note that the range of f is a subset of the co-domain.
- ▶ Sometimes people call B , the co-domain as range of f . It is better to avoid that kind of terminology as it can lead to confusion.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.
- ▶ Then think of a function $f : A \rightarrow B$ as allotment of rooms. In other words, student x gets room $f(x)$.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.
- ▶ Then think of a function $f : A \rightarrow B$ as allotment of rooms. In other words, student x gets room $f(x)$.
- ▶ Note that to have a genuine function f it is necessary that all students are allotted rooms. Nobody is left out.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.
- ▶ Then think of a function $f : A \rightarrow B$ as allotment of rooms. In other words, student x gets room $f(x)$.
- ▶ Note that to have a genuine function f it is necessary that all students are allotted rooms. Nobody is left out.
- ▶ Same student can't be allotted multiple rooms. In other words if $y = f(x)$ and $z = f(x)$, then $y = z$.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.
- ▶ Then think of a function $f : A \rightarrow B$ as allotment of rooms. In other words, student x gets room $f(x)$.
- ▶ Note that to have a genuine function f it is necessary that all students are allotted rooms. Nobody is left out.
- ▶ Same student can't be allotted multiple rooms. In other words if $y = f(x)$ and $z = f(x)$, then $y = z$.
- ▶ It is fine, if some rooms are vacant. In other words, there could be $y \in B$ such that $y \neq f(x)$ for any $x \in A$.

Students and Hostel rooms

- ▶ Think of A as students and B as the set of hostel rooms.
- ▶ Then think of a function $f : A \rightarrow B$ as allotment of rooms. In other words, student x gets room $f(x)$.
- ▶ Note that to have a genuine function f it is necessary that all students are allotted rooms. Nobody is left out.
- ▶ Same student can't be allotted multiple rooms. In other words if $y = f(x)$ and $z = f(x)$, then $y = z$.
- ▶ It is fine, if some rooms are vacant. In other words, there could be $y \in B$ such that $y \neq f(x)$ for any $x \in A$.
- ▶ It is also fine if students are asked to share rooms. In other words it is possible to have $x, x' \in A$, such that $f(x) = f(x')$.

Injectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.

Injectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **injective** or **one to one** if a_1, a_2 are in A and $a_1 \neq a_2$ then $f(a_1) \neq f(a_2)$. In other words, distinct elements are mapped to distinct elements.

Injectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **injective** or **one to one** if a_1, a_2 are in A and $a_1 \neq a_2$ then $f(a_1) \neq f(a_2)$. In other words, distinct elements are mapped to distinct elements.
- ▶ Equivalently, f is injective if $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Injectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **injective** or **one to one** if a_1, a_2 are in A and $a_1 \neq a_2$ then $f(a_1) \neq f(a_2)$. In other words, distinct elements are mapped to distinct elements.
- ▶ Equivalently, f is injective if $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- ▶ In the language of machines this corresponds to outputs being different for different inputs.

Injectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **injective** or **one to one** if a_1, a_2 are in A and $a_1 \neq a_2$ then $f(a_1) \neq f(a_2)$. In other words, distinct elements are mapped to distinct elements.
- ▶ Equivalently, f is injective if $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- ▶ In the language of machines this corresponds to outputs being different for different inputs.
- ▶ While allotting rooms to students, injectivity or one-to-one means there is no sharing of rooms.

Surjectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.

Surjectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **surjective** or **onto** if the range of f is same as the co-domain.

Surjectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **surjective** or **onto** if the range of f is same as the co-domain.
- ▶ Equivalently, f is surjective if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$.

Surjectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **surjective** or **onto** if the range of f is same as the co-domain.
- ▶ Equivalently, f is surjective if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$.
- ▶ Thinking of machines, f is surjective if every element of B can be produced using f .

Surjectivity

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function.
- ▶ **Definition:** Then f is said to be **surjective** or **onto** if the range of f is same as the co-domain.
- ▶ Equivalently, f is surjective if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$.
- ▶ Thinking of machines, f is surjective if every element of B can be produced using f .
- ▶ In the problem of allotting rooms to students it means that the hostel is full. That is all the rooms have got allotted.

Bijections

- ▶ Give examples to show that an injective function need not be surjective and a surjective function need not be injective.

Bijections

- ▶ Give examples to show that an injective function need not be surjective and a surjective function need not be injective.
- ▶ **Definition:** Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function. Then f is said to be **bijective** if f is both injective and surjective. In other words, it is both one to one and onto.

Bijections

- ▶ Give examples to show that an injective function need not be surjective and a surjective function need not be injective.
- ▶ **Definition:** Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function. Then f is said to be **bijection** if f is both injective and surjective. In other words, it is both one to one and onto.
- ▶ Define $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ by $f_1(n) = n + 1, \quad \forall n \in \mathbb{Z}$. Then f_1 is a bijection.

Bijections

- ▶ Give examples to show that an injective function need not be surjective and a surjective function need not be injective.
- ▶ **Definition:** Let A, B be non-empty sets and let $f : A \rightarrow B$ be a function. Then f is said to be **bijection** if f is both injective and surjective. In other words, it is both one to one and onto.
- ▶ Define $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}$ by $f_1(n) = n + 1$, $\forall n \in \mathbb{Z}$. Then f_1 is a bijection.
- ▶ Define $f_2 : \mathbb{Z} \rightarrow \mathbb{Z}$ by $f_2(n) = -n$, $\forall n \in \mathbb{Z}$. Then f_2 is a bijection.
- ▶ Define $f_3 : \mathbb{Z} \rightarrow \mathbb{Z}$ by $f_3(n) = n^2$. Then f_3 is neither injective nor surjective.

Compositions of functions

- ▶ Let A, B, C be non-empty sets. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions. Then a new function $g \circ f : A \rightarrow C$ is got by taking

$$g \circ f(a) = g(f(a)), \quad \forall a \in A.$$

Compositions of functions

- ▶ Let A, B, C be non-empty sets. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions. Then a new function $g \circ f : A \rightarrow C$ is got by taking

$$g \circ f(a) = g(f(a)), \quad \forall a \in A.$$

- ▶ $g \circ f$ is known as composition of g and f .

Compositions of functions

- ▶ Let A, B, C be non-empty sets. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions. Then a new function $g \circ f : A \rightarrow C$ is got by taking

$$g \circ f(a) = g(f(a)), \quad \forall a \in A.$$

- ▶ $g \circ f$ is known as composition of g and f .
- ▶ The output of machine f is taken as input for g .

Inverse map

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a bijection. Then we see that for every $b \in B$ there exists unique $a \in A$ such that $f(a) = b$. Then we call a as $f^{-1}(b)$.

Inverse map

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a bijection. Then we see that for every $b \in B$ there exists unique $a \in A$ such that $f(a) = b$. Then we call a as $f^{-1}(b)$.
- ▶ In other words, if $f : A \rightarrow B$ is a bijection then there exists a unique function $f^{-1} : B \rightarrow A$ such that

$$f \circ f^{-1}(b) = b, \quad \forall b \in B$$

and

$$f^{-1} \circ f(a) = a, \quad \forall a \in A.$$

Inverse map

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a bijection. Then we see that for every $b \in B$ there exists unique $a \in A$ such that $f(a) = b$. Then we call a as $f^{-1}(b)$.
- ▶ In other words, if $f : A \rightarrow B$ is a bijection then there exists a unique function $f^{-1} : B \rightarrow A$ such that

$$f \circ f^{-1}(b) = b, \quad \forall b \in B$$

and

$$f^{-1} \circ f(a) = a, \quad \forall a \in A.$$

- ▶ So $f \circ f^{-1}$ is the identity map on B and $f^{-1} \circ f$ is the identity map on A .

Inverse map

- ▶ Let A, B be non-empty sets and let $f : A \rightarrow B$ be a bijection. Then we see that for every $b \in B$ there exists unique $a \in A$ such that $f(a) = b$. Then we call a as $f^{-1}(b)$.
- ▶ In other words, if $f : A \rightarrow B$ is a bijection then there exists a unique function $f^{-1} : B \rightarrow A$ such that

$$f \circ f^{-1}(b) = b, \quad \forall b \in B$$

and

$$f^{-1} \circ f(a) = a, \quad \forall a \in A.$$

- ▶ So $f \circ f^{-1}$ is the identity map on B and $f^{-1} \circ f$ is the identity map on A .
- ▶ The identity map is a completely lazy machine where the output is same as the input.

One sided inverses

- ▶ Example: Suppose $A = \{x, y\}$ and $B = \{4, 5, 6\}$.

One sided inverses

- ▶ **Example:** Suppose $A = \{x, y\}$ and $B = \{4, 5, 6\}$.
- ▶ Define $f : A \rightarrow B$ by $f(x) = 4$ and $f(y) = 6$.

One sided inverses

- ▶ **Example:** Suppose $A = \{x, y\}$ and $B = \{4, 5, 6\}$.
- ▶ Define $f : A \rightarrow B$ by $f(x) = 4$ and $f(y) = 6$.
- ▶ Define $g : B \rightarrow A$ by $g(4) = g(5) = x$ and $g(6) = y$.

One sided inverses

- ▶ **Example:** Suppose $A = \{x, y\}$ and $B = \{4, 5, 6\}$.
- ▶ Define $f : A \rightarrow B$ by $f(x) = 4$ and $f(y) = 6$.
- ▶ Define $g : B \rightarrow A$ by $g(4) = g(5) = x$ and $g(6) = y$.
- ▶ Then $g \circ f(x) = x$ and $g \circ f(y) = y$.

One sided inverses

- ▶ **Example:** Suppose $A = \{x, y\}$ and $B = \{4, 5, 6\}$.
- ▶ Define $f : A \rightarrow B$ by $f(x) = 4$ and $f(y) = 6$.
- ▶ Define $g : B \rightarrow A$ by $g(4) = g(5) = x$ and $g(6) = y$.
- ▶ Then $g \circ f(x) = x$ and $g \circ f(y) = y$.
- ▶ So $g \circ f$ is the identity map on A . However, $f \circ g$ is not the identity map on B .

Properties inferred from compositions

- ▶ Let A, B, C be non-empty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.

Properties inferred from compositions

- ▶ Let A, B, C be non-empty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.
- ▶ **Theorem 3.1:** Suppose $g \circ f$ is one to one then f is one to one.

Properties inferred from compositions

- ▶ Let A, B, C be non-empty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.
- ▶ **Theorem 3.1:** Suppose $g \circ f$ is one to one then f is one to one.
- ▶ **Proof:** Take $h = g \circ f$. Suppose $f(a_1) = f(a_2)$ for some a_1, a_2 in A . Then by the definition of a function, $g(f(a_1)) = g(f(a_2))$. In other words, $h(a_1) = h(a_2)$. But h is assumed to be one to one. Hence $a_1 = a_2$. This shows that f is one to one.

Properties inferred from compositions

- ▶ Let A, B, C be non-empty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.
- ▶ **Theorem 3.1:** Suppose $g \circ f$ is one to one then f is one to one.
- ▶ **Proof:** Take $h = g \circ f$. Suppose $f(a_1) = f(a_2)$ for some a_1, a_2 in A . Then by the definition of a function, $g(f(a_1)) = g(f(a_2))$. In other words, $h(a_1) = h(a_2)$. But h is assumed to be one to one. Hence $a_1 = a_2$. This shows that f is one to one.
- ▶ **Theorem 3.2:** Suppose $g \circ f$ is onto then g is onto.

Properties inferred from compositions

- ▶ Let A, B, C be non-empty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.
- ▶ **Theorem 3.1:** Suppose $g \circ f$ is one to one then f is one to one.
- ▶ **Proof:** Take $h = g \circ f$. Suppose $f(a_1) = f(a_2)$ for some a_1, a_2 in A . Then by the definition of a function, $g(f(a_1)) = g(f(a_2))$. In other words, $h(a_1) = h(a_2)$. But h is assumed to be one to one. Hence $a_1 = a_2$. This shows that f is one to one.
- ▶ **Theorem 3.2:** Suppose $g \circ f$ is onto then g is onto.
- ▶ **Proof:** Exercise!

Powers of functions

- ▶ Let A be a non-empty set and let $f : A \rightarrow A$ be a function.

Powers of functions

- ▶ Let A be a non-empty set and let $f : A \rightarrow A$ be a function.
- ▶ Then $f^2 : A \rightarrow A$ is defined as $f^2(a) = f \circ f(a) = f(f(a))$.

Powers of functions

- ▶ Let A be a non-empty set and let $f : A \rightarrow A$ be a function.
- ▶ Then $f^2 : A \rightarrow A$ is defined as $f^2(a) = f \circ f(a) = f(f(a))$.
- ▶ Similarly $f^3(a) = (f \circ f \circ f)(a) = f(f(f(a)))$.

Powers of functions

- ▶ Let A be a non-empty set and let $f : A \rightarrow A$ be a function.
- ▶ Then $f^2 : A \rightarrow A$ is defined as $f^2(a) = f \circ f(a) = f(f(a))$.
- ▶ Similarly $f^3(a) = (f \circ f \circ f)(a) = f(f(f(a)))$.
- ▶ More generally, we can define f^n for any natural number n .

Powers of functions

- ▶ Let A be a non-empty set and let $f : A \rightarrow A$ be a function.
- ▶ Then $f^2 : A \rightarrow A$ is defined as $f^2(a) = f \circ f(a) = f(f(a))$.
- ▶ Similarly $f^3(a) = (f \circ f \circ f)(a) = f(f(f(a)))$.
- ▶ More generally, we can define f^n for any natural number n .
- ▶ Note that in general you can not define f^2 when f is a function from one set to a different set.

Conway's problem

- Consider $h : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$h(n) = \begin{cases} 3k & \text{if } n = 2k, \quad k \in \mathbb{Z} \\ 3k + 1 & \text{if } n = 4k + 1 \quad k \in \mathbb{Z} \\ 3k - 1 & \text{if } n = 4k - 1 \quad k \in \mathbb{Z} \end{cases}$$

Conway's problem

- ▶ Consider $h : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$h(n) = \begin{cases} 3k & \text{if } n = 2k, \quad k \in \mathbb{Z} \\ 3k + 1 & \text{if } n = 4k + 1 \quad k \in \mathbb{Z} \\ 3k - 1 & \text{if } n = 4k - 1 \quad k \in \mathbb{Z} \end{cases}$$

- ▶ Here on the repeated action of h ,

$$7 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 7.$$

Conway's problem

- ▶ Consider $h : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$h(n) = \begin{cases} 3k & \text{if } n = 2k, \quad k \in \mathbb{Z} \\ 3k + 1 & \text{if } n = 4k + 1 \quad k \in \mathbb{Z} \\ 3k - 1 & \text{if } n = 4k - 1 \quad k \in \mathbb{Z} \end{cases}$$

- ▶ Here on the repeated action of h ,

$$7 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 7.$$

- ▶ So we end up with a loop or a 'cycle'.

Conway's problem

- ▶ Consider $h : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$h(n) = \begin{cases} 3k & \text{if } n = 2k, \quad k \in \mathbb{Z} \\ 3k + 1 & \text{if } n = 4k + 1 \quad k \in \mathbb{Z} \\ 3k - 1 & \text{if } n = 4k - 1 \quad k \in \mathbb{Z} \end{cases}$$

- ▶ Here on the repeated action of h ,

$$7 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 7.$$

- ▶ So we end up with a loop or a 'cycle'.
- ▶ Show that h is a bijection.
- ▶ **Challenge Problem 2:** What happens if we start with 8? Do we ever come back to 8, that is, is there a cycle starting at 8?

Conway's problem

- ▶ Consider $h : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$h(n) = \begin{cases} 3k & \text{if } n = 2k, \quad k \in \mathbb{Z} \\ 3k + 1 & \text{if } n = 4k + 1 \quad k \in \mathbb{Z} \\ 3k - 1 & \text{if } n = 4k - 1 \quad k \in \mathbb{Z} \end{cases}$$

- ▶ Here on the repeated action of h ,

$$7 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 7.$$

- ▶ So we end up with a loop or a 'cycle'.
- ▶ Show that h is a bijection.
- ▶ Challenge Problem 2: What happens if we start with 8? Do we ever come back to 8, that is, is there a cycle starting at 8?
- ▶ END OF LECTURE 3.