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Lecture 3: Sets and functions

I Informal Definition: A set is a collection of well-defined
objects.

I We continue with this definition though ideally speaking we
should be following ZFC axioms.

I We assume familiarity with

I N = {1, 2, . . .} the set of natural numbers.

I Z = {. . . ,−2,−1, 0, 1, 2, . . .}-the set of integers.
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Functions

I Given two non-empty sets A and B, a function f from A to B
is an association of some element f (x) in B, for every x in A.

I This is denoted by f : A→ B.

I You may also think of a function f as a subset of the
Cartesian product A× B = {(a, b) : a ∈ A, b ∈ B} having
certain properties.

I More precisely, G (f ) = {(x , f (x)) : x ∈ A} is a subset of
A× B, where every element x ∈ A appears with exactly one
element f (x) ∈ B.

I G (f ) is known as the graph of f .
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Vertical line test

I Clearly not all subsets G of A× B appear as graphs of f .

I Every element x ∈ A should appear. More over for every
element x there should be unique x ′ in B such that
(x , x ′) ∈ G .

I In other words, there should not be x ′, x ′′ in B with x ′ 6= x ′′,
such that both (x .x ′) and (x , x ′′) are in G .

I In the usual picture of graphs of functions on real line this is
known as vertical line test. A graph of a function can not be
touching a vertical line at more than one point.
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function as a machine

I You may think of a function f : A→ B as a machine.

I It takes any x ∈ A as input and spews out some element f (x)
in B as out put.

I Any element of A can be input.

I With one input there is only one output.

I Different inputs may give same output.

I Some elements of B may not be an output value for f .
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Domain, Co-domain and Range

I Terminology: Suppose f : A→ B is a function.

I Then A is known as the domain of f .

I B is known as the co-domain of f .

I The set {f (x) : x ∈ A} is known as the range of f .

I Note that the range of f is a subset of the co-domain.

I Sometimes people call B, the co-domain as range of f . It is
better to avoid that kind of terminology as it can lead to
confusion.
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Students and Hostel rooms

I Think of A as students and B as the set of hostel rooms.

I Then think of a function f : A→ B as allotment of rooms. In
other words, student x gets room f (x).

I Note that to have a genuine function f it is necessary that all
students are allotted rooms. Nobody is left out.

I Same student can’t be allotted multiple rooms. In other words
if y = f (x) and z = f (x), then y = z .

I It is fine, if some rooms are vacant. In other words, there
could be y ∈ B such that y 6= f (x) for any x ∈ A.

I It is also fine if students are asked to share rooms. In other
words it is possible to have x , x ′ in A, such that f (x) = f (x ′).
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Injectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be injective or one to one if
a1, a2 are in A and a1 6= a2 then f (a1) 6= f (a2). In other
words, distinct elements are mapped to distinct elements.

I Equivalently, f is injective if f (a1) = f (a2) implies a1 = a2.

I In the language of machines this corresponds to outputs being
different for different inputs.

I While allotting rooms to students, injectivity or one-to-one
means there is no sharing of rooms.
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Surjectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be surjective or onto if the range
of f is same as the co-domain.

I Equivalently, f is surjective if for every b ∈ B there exists
a ∈ A such that f (a) = b.

I Thinking of machines, f is surjective if every element of B can
be produced using f .

I In the problem of allotting rooms to students it means that
the hostel is full. That is all the rooms have got allotted.
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Bijections

I Give examples to show that an injective function need not be
surjective and a surjective function need not be injective.

I Definition: Let A,B be non-empty sets and let f : A→ B be
a function. Then f is said to be bijective if f is both injective
and surjective. In other words, it is both one to one and onto.

I Define f1 : Z→ Z by f1(n) = n + 1, ∀n ∈ Z. Then f1 is a
bijection.

I Define f2 : Z→ Z by f2(n) = −n, ∀n ∈ Z. Then f2 is a
bijection.

I Define f3 : Z→ Z by f3(n) = n2. Then f3 is neither injective
nor surjective.
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Compositions of functions

I Let A,B,C be non-empty sets. Let f : A→ B and g : B → C
be functions. Then a new function g ◦ f : A→ C is got by
taking

g ◦ f (a) = g(f (a)), ∀a ∈ A.

I g ◦ f is known as composition of g and f .

I The out put of machine f is taken as input for g .



Compositions of functions

I Let A,B,C be non-empty sets. Let f : A→ B and g : B → C
be functions. Then a new function g ◦ f : A→ C is got by
taking

g ◦ f (a) = g(f (a)), ∀a ∈ A.

I g ◦ f is known as composition of g and f .

I The out put of machine f is taken as input for g .



Compositions of functions

I Let A,B,C be non-empty sets. Let f : A→ B and g : B → C
be functions. Then a new function g ◦ f : A→ C is got by
taking

g ◦ f (a) = g(f (a)), ∀a ∈ A.

I g ◦ f is known as composition of g and f .

I The out put of machine f is taken as input for g .



Inverse map

I Let A,B be non-empty sets and let f : A→ B be a bijection.
Then we see that for every b ∈ B there exists unique a ∈ A
such that f (a) = b. Then we call a as f −1(b).

I In other words, if f : A→ B is a bijection then there exists a
unique function f −1 : B → A such that

f ◦ f −1(b) = b, ∀b ∈ B

and
f −1 ◦ f (a) = a, ∀a ∈ A.

I So f ◦ f −1 is the identity map on B and f −1 ◦ f is the identity
map on A.

I The identity map is a completely lazy machine where the
output is same as the input.
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unique function f −1 : B → A such that

f ◦ f −1(b) = b, ∀b ∈ B

and
f −1 ◦ f (a) = a, ∀a ∈ A.

I So f ◦ f −1 is the identity map on B and f −1 ◦ f is the identity
map on A.

I The identity map is a completely lazy machine where the
output is same as the input.



One sided inverses

I Example: Suppose A = {x , y} and B = {4, 5, 6}.

I Define f : A→ B by f (x) = 4 and f (y) = 6.

I Define g : B → A by g(4) = g(5) = x and g(6) = y .

I Then g ◦ f (x) = x and g ◦ f (y) = y .

I So g ◦ f is the identity map on A. However, f ◦ g is not the
identity map on B.
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Properties inferred from compositions

I Let A,B,C be non-empty sets and let f : A→ B and
g : B → C be functions.

I Theorem 3.1: Suppose g ◦ f is one to one then f is one to one.

I Proof: Take h = g ◦ f . Suppose f (a1) = f (a2) for some a1, a2
in A. Then by the definition of a function,
g(f (a1)) = g(f (a2)). In other words, h(a1) = h(a2). But h is
assumed to be one to one. Hence a1 = a2. This shows that f
is one to one.

I Theorem 3.2: Suppose g ◦ f is onto then g is onto.

I Proof: Exercise!
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Powers of functions

I Let A be a non-empty set and let f : A→ A be a function.

I Then f 2 : A→ A is defined as f 2(a) = f ◦ f (a) = f (f (a)).

I Similarly f 3(a) = (f ◦ f ◦ f )(a) = f (f (f (a))).

I More generally, we can define f n for any natural number n.

I Note that in general you can not define f 2 when f is a
function from one set to a different set.
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Conway’s problem

I Consider h : Z→ Z defined by

h(n) =


3k if n = 2k, k ∈ Z

3k + 1 if n = 4k + 1 k ∈ Z

3k − 1 if n = 4k − 1 k ∈ Z

I Here on the repeated action of h,

7→ 5→ 4→ 6→ 9→ 7.

I So we end up with a loop or a ‘cycle’.
I Show that h is a bijection.
I Challenge Problem 2: What happens if we start with 8? Do

we ever come back to 8, that is, is there a cycle starting at 8?
I END OF LECTURE 3.
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