ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore



Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.



Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.

» We continue with this definition though ideally speaking we
should be following ZFC axioms.



Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.

» We continue with this definition though ideally speaking we
should be following ZFC axioms.

> We assume familiarity with



Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.

» We continue with this definition though ideally speaking we
should be following ZFC axioms.

> We assume familiarity with
» N ={1,2,...} the set of natural numbers.



Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.

» We continue with this definition though ideally speaking we
should be following ZFC axioms.

> We assume familiarity with
N = {1,2,...} the set of natural numbers.
» Z={...,—2,-1,0,1,2,...}-the set of integers.
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» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.

» This is denoted by f : A — B.

» You may also think of a function f as a subset of the
Cartesian product A x B ={(a,b): a € A, b € B} having
certain properties.

» More precisely, G(f) = {(x, f(x)) : x € A} is a subset of
A x B, where every element x € A appears with exactly one
element f(x) € B.

» G(f) is known as the graph of f.



Vertical line test

» Clearly not all subsets G of A x B appear as graphs of f.



Vertical line test

» Clearly not all subsets G of A x B appear as graphs of f.

» Every element x € A should appear. More over for every
element x there should be unique x’ in B such that
(x,x") € G.



Vertical line test

» Clearly not all subsets G of A x B appear as graphs of f.

» Every element x € A should appear. More over for every
element x there should be unique x’ in B such that
(x,x") € G.

» In other words, there should not be x’, x” in B with x’ # x”
such that both (x.x") and (x,x”) are in G.



Vertical line test

» Clearly not all subsets G of A x B appear as graphs of f.

» Every element x € A should appear. More over for every
element x there should be unique x’ in B such that
(x,x") € G.

» In other words, there should not be x’, x” in B with x" # x”,
such that both (x.x") and (x,x”) are in G.

» In the usual picture of graphs of functions on real line this is
known as vertical line test. A graph of a function can not be
touching a vertical line at more than one point.
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function as a machine

» You may think of a function f : A — B as a machine.

> It takes any x € A as input and spews out some element f(x)
in B as out put.

» Any element of A can be input.

» With one input there is only one output.

» Different inputs may give same output.

» Some elements of B may not be an output value for f.
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Domain, Co-domain and Range
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Terminology: Suppose f : A — B is a function.

Then A is known as the domain of f.

B is known as the co-domain of f.

The set {f(x) : x € A} is known as the range of f.
Note that the range of f is a subset of the co-domain.

Sometimes people call B, the co-domain as range of f. It is
better to avoid that kind of terminology as it can lead to
confusion.
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Students and Hostel rooms

» Think of A as students and B as the set of hostel rooms.

» Then think of a function f : A — B as allotment of rooms. In
other words, student x gets room f(x).

» Note that to have a genuine function f it is necessary that all
students are allotted rooms. Nobody is left out.

» Same student can't be allotted multiple rooms. In other words
if y =f(x) and z = f(x), then y = z.

> |t is fine, if some rooms are vacant. In other words, there
could be y € B such that y # f(x) for any x € A.

» It is also fine if students are asked to share rooms. In other
words it is possible to have x, x” in A, such that f(x) = f(x').
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Injectivity

» Let A, B be non-empty sets and let f : A — B be a function.

» Definition: Then f is said to be injective or one to one if
a1, ap are in A and a; # ap then f(a1) # f(a2). In other
words, distinct elements are mapped to distinct elements.

» Equivalently, f is injective if f(a1) = f(a2) implies a1 = a».

» In the language of machines this corresponds to outputs being
different for different inputs.

» While allotting rooms to students, injectivity or one-to-one
means there is no sharing of rooms.
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Surjectivity

» Let A, B be non-empty sets and let f : A — B be a function.

» Definition: Then f is said to be surjective or onto if the range
of f is same as the co-domain.

» Equivalently, f is surjective if for every b € B there exists
a € A such that f(a) = b.

» Thinking of machines, f is surjective if every element of B can
be produced using f.

» In the problem of allotting rooms to students it means that
the hostel is full. That is all the rooms have got allotted.
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Bijections

» Give examples to show that an injective function need not be
surjective and a surjective function need not be injective.

» Definition: Let A, B be non-empty sets and let f : A — B be
a function. Then f is said to be bijective if f is both injective
and surjective. In other words, it is both one to one and onto.

» Define i :Z — Zby fi(n)=n+1, VYnée€Z. Thenfiisa
bijection.

» Define f, : Z — Z by f(n) = —n, Vn € Z. Then fyis a
bijection.

» Define f3 : Z — Z by f3(n) = n?. Then f; is neither injective
nor surjective.
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Compositions of functions

> Let A, B, C be non-empty sets. Let f: A— Bandg: B — C
be functions. Then a new function go f : A— C is got by
taking

gof(a)=g(f(a)), VaceA.
> gof is known as composition of g and f.
» The out put of machine f is taken as input for g.
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Inverse map

> Let A, B be non-empty sets and let f : A — B be a bijection.
Then we see that for every b € B there exists unique a € A
such that f(a) = b. Then we call a as f~1(b).

» In other words, if f : A — B is a bijection then there exists a
unique function f~1 : B — A such that

fof Y(b)=b, Ybe B
and
flof(a)=a, VacA.

» So fof~1is the identity map on B and f~1 o f is the identity
map on A.

» The identity map is a completely lazy machine where the
output is same as the input.
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One sided inverses

Example: Suppose A= {x,y} and B = {4,5,6}.
Define f : A— B by f(x) =4 and f(y) = 6.

Define g : B — A by g(4) = g(5) = x and g(6) = y.
Then gof(x)=xand gof(y)=y.
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So g o f is the identity map on A. However, f o g is not the
identity map on B.
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Properties inferred from compositions

> Let A, B, C be non-empty sets and let f : A — B and
g : B — C be functions.

» Theorem 3.1: Suppose gof is one to one then f is one to one.

» Proof: Take h =g o f. Suppose f(ai) = f(az) for some aj, a,
in A. Then by the definition of a function,
g(f(a1)) = g(f(a2)). In other words, h(a;) = h(az). But h is
assumed to be one to one. Hence a; = a>. This shows that f
is one to one.

» Theorem 3.2: Suppose g o f is onto then g is onto.

» Proof: Exercise!
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Powers of functions

> Let A be a non-empty set and let f : A — A be a function.
» Then f2: A — Ais defined as f2(a) = f o f(a) = f(f(a)).
> Similarly £3(a) = (f o f o f)(a) = F(f(f(a))).

» More generally, we can define f” for any natural number n.
>

Note that in general you can not define f2 when f is a
function from one set to a different set.
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