

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 30. Chain Rule and Rolle's theorem

- ▶ **Definition 29.1:** Let $A \subseteq \mathbb{R}$. Let $c \in A$ be a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be differentiable at c if

$$\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}$$

exists. In such a case, $f'(c)$ is defined as this limit. If the limit does not exist f is said to be not differentiable at c .

Chain rule

- **Theorem 30.1** Let I, J be intervals and let $f : I \rightarrow \mathbb{R}$ and $g : J \rightarrow \mathbb{R}$ be functions such that $f(I) \subseteq J$ and $h = g \circ f$. Consider $c \in I$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Then h is differentiable at c and

$$h'(c) = (g \circ f)'(c) = g'(f(c))f'(c).$$

Chain rule

- **Theorem 30.1** Let I, J be intervals and let $f : I \rightarrow \mathbb{R}$ and $g : J \rightarrow \mathbb{R}$ be functions such that $f(I) \subseteq J$ and $h = g \circ f$. Consider $c \in I$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Then h is differentiable at c and

$$h'(c) = (g \circ f)'(c) = g'(f(c))f'(c).$$

- Rough computation:

$$\frac{g \circ f(x) - g \circ f(c)}{x - c} = \frac{g \circ f(x) - g \circ f(c)}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

Chain rule

- **Theorem 30.1** Let I, J be intervals and let $f : I \rightarrow \mathbb{R}$ and $g : J \rightarrow \mathbb{R}$ be functions such that $f(I) \subseteq J$ and $h = g \circ f$. Consider $c \in I$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Then h is differentiable at c and

$$h'(c) = (g \circ f)'(c) = g'(f(c))f'(c).$$

- Rough computation:

$$\frac{g \circ f(x) - g \circ f(c)}{x - c} = \frac{g \circ f(x) - g \circ f(c)}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

- Taking limit as x tends to c we should get the answer as $f(x)$ converges to $f(c)$.

Chain rule

- **Theorem 30.1** Let I, J be intervals and let $f : I \rightarrow \mathbb{R}$ and $g : J \rightarrow \mathbb{R}$ be functions such that $f(I) \subseteq J$ and $h = g \circ f$. Consider $c \in I$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Then h is differentiable at c and

$$h'(c) = (g \circ f)'(c) = g'(f(c))f'(c).$$

- Rough computation:

$$\frac{g \circ f(x) - g \circ f(c)}{x - c} = \frac{g \circ f(x) - g \circ f(c)}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

- Taking limit as x tends to c we should get the answer as $f(x)$ converges to $f(c)$.
- However, there is a problem here as we can't ensure that $f(x) - f(c) \neq 0$.

Caratheodory's theorem

- ▶ Here is a characterization of differentiability.

Caratheodory's theorem

- ▶ Here is a characterization of differentiability.
- ▶ **Theorem 30.2:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. Then f is differentiable at c if and only if there exists a function $u : I \rightarrow \mathbb{R}$ such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I \quad (*)$$

and u is continuous at c . In such a case, $u(c) = f'(c)$.

Caratheodory's theorem

- ▶ Here is a characterization of differentiability.
- ▶ **Theorem 30.2:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. Then f is differentiable at c if and only if there exists a function $u : I \rightarrow \mathbb{R}$ such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I \quad (*)$$

and u is continuous at c . In such a case, $u(c) = f'(c)$.

- ▶ **Proof:** If f is differentiable at c , take

$$u(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{if } x \neq c, x \in I \\ f'(c) & \text{if } x = c. \end{cases}$$

Caratheodory's theorem

- ▶ Here is a characterization of differentiability.
- ▶ **Theorem 30.2:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. Then f is differentiable at c if and only if there exists a function $u : I \rightarrow \mathbb{R}$ such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I \quad (*)$$

and u is continuous at c . In such a case, $u(c) = f'(c)$.

- ▶ **Proof:** If f is differentiable at c , take

$$u(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{if } x \neq c, x \in I \\ f'(c) & \text{if } x = c. \end{cases}$$

- ▶ Then it is easy to see that $(*)$ is satisfied and u is continuous at c .
- ▶ Conversely if u exists satisfying $(*)$ and u is continuous at c

Caratheodory's theorem

- ▶ Here is a characterization of differentiability.
- ▶ **Theorem 30.2:** Let $f : I \rightarrow \mathbb{R}$ be a function where I is an interval. Fix $c \in I$. Then f is differentiable at c if and only if there exists a function $u : I \rightarrow \mathbb{R}$ such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I \quad (*)$$

and u is continuous at c . In such a case, $u(c) = f'(c)$.

- ▶ **Proof:** If f is differentiable at c , take

$$u(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{if } x \neq c, x \in I \\ f'(c) & \text{if } x = c. \end{cases}$$

- ▶ Then it is easy to see that $(*)$ is satisfied and u is continuous at c .
- ▶ Conversely if u exists satisfying $(*)$ and u is continuous at c
- ▶ From $(*)$, $u(x) = \frac{f(x) - f(c)}{x - c}$ for $x \neq c$. Taking limit as x tends to c , using continuity of u at c , f is differentiable at c , and $u(c) = f'(c)$. ■

Proof of chain rule

- ▶ **Proof:** Consider f, g as in the hypothesis of the theorem.

Proof of chain rule

- ▶ **Proof:** Consider f, g as in the hypothesis of the theorem.
- ▶ As f is differentiable at c , there exists a function u on I , continuous at c such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

Proof of chain rule

- ▶ **Proof:** Consider f, g as in the hypothesis of the theorem.
- ▶ As f is differentiable at c , there exists a function u on I , continuous at c such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

- ▶ As g is differentiable at $f(c)$, there exists a function v on J , continuous at $f(c)$ such that

$$g(y) - g(f(c)) = (y - f(c))v(y), \quad \forall y \in J.$$

Proof of chain rule

- ▶ **Proof:** Consider f, g as in the hypothesis of the theorem.
- ▶ As f is differentiable at c , there exists a function u on I , continuous at c such that

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

- ▶ As g is differentiable at $f(c)$, there exists a function v on J , continuous at $f(c)$ such that

$$g(y) - g(f(c)) = (y - f(c))v(y), \quad \forall y \in J.$$

- ▶ Since $f(I) \subseteq J$, this equation is also true at $y = f(x)$ and so we get

$$g(f(x)) - g(f(c)) = (f(x) - f(c))v(f(x)), \quad \forall x \in I.$$

Continuation

- ▶ Now using the previous equation, we have

$$g(f(x)) - g(f(c)) = (x - c)u(x)v(f(x)), \quad \forall x \in I.$$

Continuation

- ▶ Now using the previous equation, we have

$$g(f(x)) - g(f(c)) = (x - c)u(x)v(f(x)), \quad \forall x \in I.$$

- ▶ Note that as v is continuous at $f(c)$ and f is continuous at c , $v \circ f$ is continuous at c . Consequently, $x \mapsto u(x)v(f(x))$ is continuous at c .

Continuation

- ▶ Now using the previous equation, we have

$$g(f(x)) - g(f(c)) = (x - c)u(x)v(f(x)), \quad \forall x \in I.$$

- ▶ Note that as v is continuous at $f(c)$ and f is continuous at c , $v \circ f$ is continuous at c . Consequently, $x \mapsto u(x)v(f(x))$ is continuous at c .
- ▶ Hence by Caratheodory's theorem, $g \circ f$ is differentiable at c and

$$(g \circ f)'(c) = u(c)v(f(c)) = f'(c)g'(f(c)).$$

Continuation

- ▶ Now using the previous equation, we have

$$g(f(x)) - g(f(c)) = (x - c)u(x)v(f(x)), \quad \forall x \in I.$$

- ▶ Note that as v is continuous at $f(c)$ and f is continuous at c , $v \circ f$ is continuous at c . Consequently, $x \mapsto u(x)v(f(x))$ is continuous at c .
- ▶ Hence by Caratheodory's theorem, $g \circ f$ is differentiable at c and

$$(g \circ f)'(c) = u(c)v(f(c)) = f'(c)g'(f(c)).$$

- ▶ In other words $h'(c) = g'(f(c))f'(c)$. ■.

Derivative of inverse -I

- ▶ **Theorem 30.3:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $g := f^{-1}$ is differentiable at $f(c)$. Then

$$g'(f(c)) = \frac{1}{f'(c)}.$$

Derivative of inverse -I

- ▶ **Theorem 30.3:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $g := f^{-1}$ is differentiable at $f(c)$. Then

$$g'(f(c)) = \frac{1}{f'(c)}.$$

- ▶ **Proof:** Take $h = g \circ f$. As $g = f^{-1}$, h is the identity map on I . In particular $h'(c) = 1$ for every $c \in I$.

Derivative of inverse -I

- **Theorem 30.3:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $g := f^{-1}$ is differentiable at $f(c)$. Then

$$g'(f(c)) = \frac{1}{f'(c)}.$$

- **Proof:** Take $h = g \circ f$. As $g = f^{-1}$, h is the identity map on I . In particular $h'(c) = 1$ for every $c \in I$.
- Now by the chain rule we get $1 = h'(c) = f'(c)g'(f(c))$.

Derivative of inverse -I

- ▶ **Theorem 30.3:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $g := f^{-1}$ is differentiable at $f(c)$. Then

$$g'(f(c)) = \frac{1}{f'(c)}.$$

- ▶ **Proof:** Take $h = g \circ f$. As $g = f^{-1}$, h is the identity map on I . In particular $h'(c) = 1$ for every $c \in I$.
- ▶ Now by the chain rule we get $1 = h'(c) = f'(c)g'(f(c))$.
- ▶ Consequently, $g'(f(c)) = \frac{1}{f'(c)}$. ■

Derivative of inverse -I

- **Theorem 30.3:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $g := f^{-1}$ is differentiable at $f(c)$. Then

$$g'(f(c)) = \frac{1}{f'(c)}.$$

- **Proof:** Take $h = g \circ f$. As $g = f^{-1}$, h is the identity map on I . In particular $h'(c) = 1$ for every $c \in I$.
- Now by the chain rule we get $1 = h'(c) = f'(c)g'(f(c))$.
- Consequently, $g'(f(c)) = \frac{1}{f'(c)}$. ■
- Note that this in particular means that in this Theorem, $f'(c) = 0$ is not possible.

Derivative of inverse -II

- **Theorem 30.4:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $f'(c) \neq 0$. Also assume that f^{-1} is continuous at $f(c)$. Then $g := f^{-1}$ is differentiable at $f(c)$ and $g'(f(c)) = \frac{1}{f'(c)}$.

Derivative of inverse -II

- ▶ **Theorem 30.4:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $f'(c) \neq 0$. Also assume that f^{-1} is continuous at $f(c)$. Then $g := f^{-1}$ is differentiable at $f(c)$ and $g'(f(c)) = \frac{1}{f'(c)}$.
- ▶ **Proof:** By Caratheodory's theorem, there exists a function u on I , which is continuous at c and

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

Derivative of inverse -II

- ▶ **Theorem 30.4:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $f'(c) \neq 0$. Also assume that f^{-1} is continuous at $f(c)$. Then $g := f^{-1}$ is differentiable at $f(c)$ and $g'(f(c)) = \frac{1}{f'(c)}$.
- ▶ **Proof:** By Caratheodory's theorem, there exists a function u on I , which is continuous at c and

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

- ▶ First we note that $u(x) \neq 0$ for every x . Indeed, for $x \neq c$, $f(x) \neq f(c)$ as f is injective and hence $u(x) \neq 0$. At $x = c$, $u(c) = f'(c)$, which is not zero by hypothesis.

Derivative of inverse -II

- **Theorem 30.4:** Let I, J be intervals and let $f : I \rightarrow J$ be a bijection. Suppose f is differentiable at $c \in I$ and $f'(c) \neq 0$. Also assume that f^{-1} is continuous at $f(c)$. Then $g := f^{-1}$ is differentiable at $f(c)$ and $g'(f(c)) = \frac{1}{f'(c)}$.
- **Proof:** By Caratheodory's theorem, there exists a function u on I , which is continuous at c and

$$f(x) - f(c) = (x - c)u(x), \quad \forall x \in I.$$

- First we note that $u(x) \neq 0$ for every x . Indeed, for $x \neq c$, $f(x) \neq f(c)$ as f is injective and hence $u(x) \neq 0$. At $x = c$, $u(c) = f'(c)$, which is not zero by hypothesis.
- Now take $y = f(x)$ and $d = f(c)$ in the equation above, to get

$$y - d = (f^{-1}(x) - f^{-1}(d))u(f^{-1}(y))$$

Continuation

- ▶ Since f is surjective, this equation is true for every $y \in J$ and we get

$$g(y) - g(d) = (y - d) \left(\frac{1}{u(g(y))} \right).$$

Continuation

- ▶ Since f is surjective, this equation is true for every $y \in J$ and we get

$$g(y) - g(d) = (y - d) \left(\frac{1}{u(g(y))} \right).$$

- ▶ Finally note that since $g = f^{-1}$ is continuous at d and u is continuous at c , $y \mapsto \frac{1}{u(g(y))}$ is continuous at d .

Continuation

- ▶ Since f is surjective, this equation is true for every $y \in J$ and we get

$$g(y) - g(d) = (y - d) \left(\frac{1}{u(g(y))} \right).$$

- ▶ Finally note that since $g = f^{-1}$ is continuous at d and u is continuous at c , $y \mapsto \frac{1}{u(g(y))}$ is continuous at d .
- ▶ Therefore by Caratheodory's theorem g is differentiable at d , and the result follows.

Continuation

- ▶ Since f is surjective, this equation is true for every $y \in J$ and we get

$$g(y) - g(d) = (y - d) \left(\frac{1}{u(g(y))} \right).$$

- ▶ Finally note that since $g = f^{-1}$ is continuous at d and u is continuous at c , $y \mapsto \frac{1}{u(g(y))}$ is continuous at d .
- ▶ Therefore by Caratheodory's theorem g is differentiable at d , and the result follows.
- ▶ **Example 30.5:** For $n \in \mathbb{N}$ the function $g : (0, \infty) \rightarrow (0, \infty)$ defined by $g(y) = y^{\frac{1}{n}}$ is differentiable and

$$g'(y) = \frac{1}{ny^{1-\frac{1}{n}}}, \quad y \in (0, \infty).$$

Local extrema

- ▶ **Definition 30.6:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **local maximum** of f if there exists $\delta > 0$ such that

$$f(c) \geq f(x), \quad \forall x \in (c - \delta, c + \delta) \cap I.$$

Local extrema

- ▶ **Definition 30.6:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **local maximum** of f if there exists $\delta > 0$ such that

$$f(c) \geq f(x), \quad \forall x \in (c - \delta, c + \delta) \cap I.$$

- ▶ Similarly c is said to be a **local minimum** if there exists $\delta > 0$ such that

$$f(c) \leq f(x), \quad \forall x \in (c - \delta, c + \delta) \cap I.$$

Local extrema

- ▶ **Definition 30.6:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **local maximum** of f if there exists $\delta > 0$ such that

$$f(c) \geq f(x), \quad \forall x \in (c - \delta, c + \delta) \cap I.$$

- ▶ Similarly c is said to be a **local minimum** if there exists $\delta > 0$ such that

$$f(c) \leq f(x), \quad \forall x \in (c - \delta, c + \delta) \cap I.$$

- ▶ If c is a local maximum or local minimum it is said to be a **local extremum**.

Global extrema

- ▶ **Definition 30.7:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **global maximum** of f if

$$f(c) \geq f(x), \quad \forall x \in I.$$

Global extrema

- ▶ **Definition 30.7:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **global maximum** of f if

$$f(c) \geq f(x), \quad \forall x \in I.$$

- ▶ Similarly c is said to be a **global minimum** of f if

$$f(c) \leq f(x), \quad \forall x \in I.$$

Global extrema

- ▶ **Definition 30.7:** Let $f : I \rightarrow \mathbb{R}$ be a function and suppose $c \in I$. Then c is said to be a **global maximum** of f if

$$f(c) \geq f(x), \quad \forall x \in I.$$

- ▶ Similarly c is said to be a **global minimum** of f if

$$f(c) \leq f(x), \quad \forall x \in I.$$

- ▶ If c is a global maximum or global minimum it is said to be a **global extremum**.

Interior extremum theorem

► **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

Interior extremum theorem

- ▶ **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

- ▶ **Theorem 30.9:** Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

Interior extremum theorem

- ▶ **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

- ▶ **Theorem 30.9:** Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- ▶ **Proof.** Given that c is an interior point of f .

Interior extremum theorem

- ▶ **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

- ▶ **Theorem 30.9:** Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- ▶ **Proof.** Given that c is an interior point of f .
- ▶ So there exists $\delta_1 > 0$ such that $(c - \delta_1, c + \delta_1) \subseteq I$.

Interior extremum theorem

- ▶ **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

- ▶ **Theorem 30.9:** Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- ▶ **Proof.** Given that c is an interior point of f .
- ▶ So there exists $\delta_1 > 0$ such that $(c - \delta_1, c + \delta_1) \subseteq I$.
- ▶ Suppose that c is a local maximum of f . Then there exists $\delta_2 > 0$ such that

$$f(c) \geq f(x) \quad \forall x \in (c - \delta_2, c + \delta_2) \cap I.$$

Interior extremum theorem

- ▶ **Definition 30.8:** Let I be an interval and let $c \in I$. Then c is said to be an interior point of I if there exists $\delta > 0$ such that

$$(c - \delta, c + \delta) \subseteq I.$$

- ▶ **Theorem 30.9:** Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- ▶ **Proof.** Given that c is an interior point of f .
- ▶ So there exists $\delta_1 > 0$ such that $(c - \delta_1, c + \delta_1) \subseteq I$.
- ▶ Suppose that c is a local maximum of f . Then there exists $\delta_2 > 0$ such that

$$f(c) \geq f(x) \quad \forall x \in (c - \delta_2, c + \delta_2) \cap I.$$

- ▶ Taking $\delta = \min\{\delta_1, \delta_2\}$, we have $(c - \delta, c + \delta) \subseteq I$ and

$$f(c) \geq f(x), \quad \forall x \in (c - \delta, c + \delta).$$

Continuation

- ▶ Assume that f is differentiable at c .

Continuation

- ▶ Assume that f is differentiable at c .
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $(c, c + \delta)$ converging to c
(For instance, we can take $x_n = c + \frac{\delta}{2n}$.)

Continuation

- ▶ Assume that f is differentiable at c .
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $(c, c + \delta)$ converging to c (For instance, we can take $x_n = c + \frac{\delta}{2n}$.)
- ▶ Then for every n , $x_n > c$ and $f(x_n) \leq f(c)$ and hence

$$\frac{f(x_n) - f(c)}{x_n - c} \leq 0 \quad (1)$$

Continuation

- ▶ Assume that f is differentiable at c .
- ▶ Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in $(c, c + \delta)$ converging to c
(For instance, we can take $x_n = c + \frac{\delta}{2n}$.)
- ▶ Then for every n , $x_n > c$ and $f(x_n) \leq f(c)$ and hence

$$\frac{f(x_n) - f(c)}{x_n - c} \leq 0 \quad (1)$$

- ▶ Taking limit as $n \rightarrow \infty$, we get

$$f'(c) \leq 0.$$

Continuation

- ▶ Now suppose $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in $(c - \delta, c)$ converging to c (For instance, we can take $y_n = c - \frac{\delta}{2n}$.)

Continuation

- ▶ Now suppose $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in $(c - \delta, c)$ converging to c (For instance, we can take $y_n = c - \frac{\delta}{2n}$.)
- ▶ Then for every n , $y_n < c$ and $f(y_n) \leq f(c)$ and hence

$$\frac{f(y_n) - f(c)}{y_n - c} \geq 0$$

Continuation

- ▶ Now suppose $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in $(c - \delta, c)$ converging to c (For instance, we can take $y_n = c - \frac{\delta}{2n}$.)
- ▶ Then for every n , $y_n < c$ and $f(y_n) \leq f(c)$ and hence

$$\frac{f(y_n) - f(c)}{y_n - c} \geq 0$$

- ▶ Taking limit as $n \rightarrow \infty$, we get

$$f'(c) \geq 0. \quad (2)$$

Continuation

- ▶ Now suppose $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in $(c - \delta, c)$ converging to c (For instance, we can take $y_n = c - \frac{\delta}{2n}$.)
- ▶ Then for every n , $y_n < c$ and $f(y_n) \leq f(c)$ and hence

$$\frac{f(y_n) - f(c)}{y_n - c} \geq 0$$

- ▶ Taking limit as $n \rightarrow \infty$, we get

$$f'(c) \geq 0. \quad (2)$$

- ▶ Combining inequalities (1) and (2) we get $f'(c) = 0$ as required. ■

Rolle's theorem

► Theorem 30.10 (Rolle's theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

Rolle's theorem

- **Theorem 30.10 (Rolle's theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- **Proof:** Since f is continuous on $[a, b]$, f attains global maximum and global minimum in $[a, b]$.

Rolle's theorem

- **Theorem 30.10 (Rolle's theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- **Proof:** Since f is continuous on $[a, b]$, f attains global maximum and global minimum in $[a, b]$.
- Suppose there exists some $t \in (a, b)$ such that $f(t) > 0$, then as $f(a) = f(b) = 0$, the global maximum of f is attained at some $c \in (a, b)$.

Rolle's theorem

- **Theorem 30.10 (Rolle's theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- **Proof:** Since f is continuous on $[a, b]$, f attains global maximum and global minimum in $[a, b]$.
- Suppose there exists some $t \in (a, b)$ such that $f(t) > 0$, then as $f(a) = f(b) = 0$, the global maximum of f is attained at some $c \in (a, b)$.
- In particular, c is a local extremum and by the interior extremum theorem, $f'(c) = 0$ and we are done.

Rolle's theorem

- **Theorem 30.10 (Rolle's theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- **Proof:** Since f is continuous on $[a, b]$, f attains global maximum and global minimum in $[a, b]$.
- Suppose there exists some $t \in (a, b)$ such that $f(t) > 0$, then as $f(a) = f(b) = 0$, the global maximum of f is attained at some $c \in (a, b)$.
- In particular, c is a local extremum and by the interior extremum theorem, $f'(c) = 0$ and we are done.
- Similarly, if there exists $s \in (a, b)$ such that $f(s) < 0$ then global minimum is attained in (a, b) and if d is one such point, then $f'(d) = 0$.

Rolle's theorem

- **Theorem 30.10 (Rolle's theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- **Proof:** Since f is continuous on $[a, b]$, f attains global maximum and global minimum in $[a, b]$.
- Suppose there exists some $t \in (a, b)$ such that $f(t) > 0$, then as $f(a) = f(b) = 0$, the global maximum of f is attained at some $c \in (a, b)$.
- In particular, c is a local extremum and by the interior extremum theorem, $f'(c) = 0$ and we are done.
- Similarly, if there exists $s \in (a, b)$ such that $f(s) < 0$ then global minimum is attained in (a, b) and if d is one such point, then $f'(d) = 0$.
- The only other possibility is $f(x) = 0$ for all $x \in [a, b]$ and in such a case $f'(x) = 0$ for all $x \in (a, b)$ and we are done. ■.

Example

- ▶ Example 30.11: Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$

Example

- ▶ **Example 30.11:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$

- ▶ This function f satisfies the hypothesis of Rolle's theorem.

Example

- ▶ **Example 30.11:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$

- ▶ This function f satisfies the hypothesis of Rolle's theorem.
- ▶ It is to be noted that f is not differentiable at -1 and $+1$, but is differentiable on $(-1, 1)$.

Example

- ▶ **Example 30.11:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$

- ▶ This function f satisfies the hypothesis of Rolle's theorem.
- ▶ It is to be noted that f is not differentiable at -1 and $+1$, but is differentiable on $(-1, 1)$.
- ▶ Of course we get $f'(0) = 0$ and so conclusion of Rolle's theorem holds.

Example

- ▶ **Example 30.11:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$

- ▶ This function f satisfies the hypothesis of Rolle's theorem.
- ▶ It is to be noted that f is not differentiable at -1 and $+1$, but is differentiable on $(-1, 1)$.
- ▶ Of course we get $f'(0) = 0$ and so conclusion of Rolle's theorem holds.
- ▶ **END OF LECTURE 30**