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Lecture 30. Chain Rule and Rolle's theorem

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at ¢ if

im f(x)—f(c)

X—C X—C

exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Chain rule

» Theorem 30.1 Let /, J be intervals and let f : | — R and
g : J — R be functions such that (/) C Jand h=gof.
Consider ¢ € I. Suppose f is differentiable at ¢ and g is
differentiable at f(c). Then h is differentiable at ¢ and

H(c) = (gof)(c) = g'(F(c))f (c)-
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differentiable at f(c). Then h is differentiable at ¢ and
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» Taking limit as x tends to ¢ we should get the answer as f(x)
converges to f(c).



Chain rule

» Theorem 30.1 Let /, J be intervals and let f : | — R and
g : J — R be functions such that (/) C Jand h=gof.
Consider ¢ € I. Suppose f is differentiable at ¢ and g is
differentiable at f(c). Then h is differentiable at ¢ and

H(c) = (gof)(c)=2g'(f(c))f'(c).
» Rough computation:

gof(x)—gof(c) _gof(x)—goflc) f(x) - f(c)
X—c f(x)—f(c) =~ x-c

» Taking limit as x tends to ¢ we should get the answer as f(x)
converges to f(c).

» However, there is a problem here as we can't ensure that

F(x) — f(c) 0.
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interval. Fix ¢ € I. Then f is differentiable at c if and only if
there exists a function v : I — R such that
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and u is continuous at c. In such a case, u(c) = f'(c).
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Caratheodory’s theorem

P> Here is a characterization of differentiability.

» Theorem 30.2: Let f : /| — R be a function where [ is an
interval. Fix ¢ € I. Then f is differentiable at c if and only if
there exists a function v : I — R such that

f(x)—f(c)=(x—c)u(x), Vxel (%)
and u is continuous at c. In such a case, u(c) = f'(c).
» Proof: If f is differentiable at c, take

fx)=Ff(c) (C) ifx#c,xel
”(X){ Fie) ifx=c.

» Then it is easy to see that (x) is satisfied and v is continuous
at c.

» Conversely if u exists satisfying (%) and v is continuous at ¢

» From (%), u(x) = M for x # c. Taking limit as x tends
to ¢, using continuity of u at ¢, f is differentiable at ¢, and

u(c)=f'(c). A
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Proof of chain rule

» Proof: Consider f, g as in the hypothesis of the theorem.

» As f is differentiable at ¢, there exists a function u on /,
continuous at ¢ such that

f(x)—f(c) = (x—c)u(x), Vxel.

» As g is differentiable at f(c), there exists a function v on J,
continuous at f(c) such that

gly) —g(f(c)) = (y — f(c)vly), Vyel

» Since f(/) C J, this equation is also true at y = f(x) and so
we get

g(F(x)) — g(F(c)) = (F(x) — F(OVF(x)), Vxe .



Continuation

» Now using the previous equation, we have

g(F(x)) — £(F()) = (x — uCV(F(x)), Vx € 1.
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Continuation

» Now using the previous equation, we have
g(f(x)) — g(f(c)) = (x = Ju(x)v(f(x)), Vxel.

» Note that as v is continuous at f(c) and f is continuous at c,
v o f is continuous at c. Consequently, x — u(x)v(f(x)) is
continuous at c.

» Hence by Caratheodory's theorem, g o f is differentiable at ¢
and

(g o) (c) = u(c)v(f(c)) = F'(c)g'(f(c)).



Continuation

» Now using the previous equation, we have

g(F(x)) — £(F()) = (x — uCV(F(x)), Vx € 1.

» Note that as v is continuous at f(c) and f is continuous at c,
v o f is continuous at c. Consequently, x — u(x)v(f(x)) is
continuous at c.

» Hence by Caratheodory's theorem, g o f is differentiable at ¢
and

(g o) (c) = u(c)v(f(c)) = F'(c)g'(f(c)).
» In other words H'(c) = g'(f(c))f'(c). A
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bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then
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bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then
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» Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.

» Now by the chain rule we get 1 = h'(c) = f'(¢)g’(f(c)).



Derivative of inverse -I

» Theorem 30.3: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then

g'(f(c) =

f'(c)’

» Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.
» Now by the chain rule we get 1 = h'(c) = f'(¢)g’(f(c)).

» Consequently, g’(f(c)) = f/:(lc)‘.




Derivative of inverse -I

v

Theorem 30.3: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then

Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.

Now by the chain rule we get 1 = h'(c) = f'(¢c)g’'(f(c)).
Consequently, g'(f(c)) = %.l

Note that this in particular means that in this Theorem,
f’(c) = 0 is not possible.



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.

Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %
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» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
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» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
on I, which is continuous at ¢ and

f(x)—f(c) =(x—c)u(x), Vxel.

» First we note that u(x) # 0 for every x. Indeed, for x # c,
f(x) # f(c) as f is injective and hence u(x) # 0. At x = c,
u(c) = f'(c), which is not zero by hypothesis.



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
on I, which is continuous at ¢ and

f(x)—f(c) =(x—c)u(x), Vxel.

» First we note that u(x) # 0 for every x. Indeed, for x # c,
f(x) # f(c) as f is injective and hence u(x) # 0. At x = c,
u(c) = f'(c), which is not zero by hypothesis.

» Now take y = f(x) and d = f(c) in the equation above, to
get

y —d=(f(x) — FH(d))u(f(y))



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

).



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-

» Therefore by Caratheodory’s theorem g is differentiable at d,
and the result follows.



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-

» Therefore by Caratheodory’s theorem g is differentiable at d,
and the result follows.

» Example 30.5: For n € N the function g : (0,00) — (0, 00)
defined by g(y) = yn is differentiable and

1
g'y)=——=1 ye(0,00).
ny*"n



Local extremums

» Definition 30.6: Let f : | — R be a function and suppose
c € [. Then c is said to be a local maximum of f if there
exists > 0 such that

f(c) > f(x), Vxe(c—d,c+d)( )/
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Local extremums

» Definition 30.6: Let f : | — R be a function and suppose
c € [. Then c is said to be a local maximum of f if there
exists > 0 such that

f(c) > f(x), Vxe(c—d,c+d)( )/

» Similarly ¢ is said to be a local minimum if there exists § > 0
such that

f(c) < f(x), Vxe(c—d,c+d)( )/

» If ¢ is a local maximum or local minimum it is said to be a
local extremum.
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Global extremums

» Definition 30.7: Let f : | — R be a function and suppose
c € l. Then c is said to be a global maximum of f if

f(c) > f(x), Vxel.
» Similarly ¢ is said to be a global minimum of f if

f(c) < f(x), Vxel.



Global

extremums

Definition 30.7: Let f : | — R be a function and suppose
c € l. Then c is said to be a global maximum of f if

f(c) > f(x), Vxel.
Similarly c is said to be a global minimum of f if
f(c) < f(x), Vxel.

If c is a global maximum or global minimum it is said to be a
global extremum.
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said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.



Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.

» Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.
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Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—=6d,c+6)CI.
» Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then
f'(c) =0.

» Proof. Given that c is an interior point of f.
» So there exists §; > 0 such that (¢ — d1,¢c + 1) C I.



Interior extremum theorem
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Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that
(c—=6d,c+6)CI.

Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.

Proof. Given that c is an interior point of f.

So there exists 07 > 0 such that (¢ — d1,¢c+d1) C /.
Suppose that c is a local maximum of f. Then there exists
d2 > 0 such that

f(c) > f(x) Vx € (c—da,c+8)[ )]



Interior extremum theorem
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Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.

Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.

Proof. Given that c is an interior point of f.

So there exists 07 > 0 such that (¢ — d1,¢c+d1) C /.
Suppose that c is a local maximum of f. Then there exists
d2 > 0 such that

f(c) > f(x) Vx € (c—da,c+8)[ )]
Taking § = min{d1, 02}, we have (c — d,c+ ) C | and
f(c) > f(x), Vxe(c—4d,c+)9).
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» Assume that f is differentiable at c.

» Suppose {xp}nen is a sequence in (c,c + §) converging to ¢
(For instance, we can take x, = ¢ + £-.)

» Then for every n, x, > ¢ and f(x,) < f(c) and hence
f(xa) — f(c)

Xp — C

<0 (1)



Continuation

» Assume that f is differentiable at c.

» Suppose {xp}nen is a sequence in (c,c + §) converging to ¢
(For instance, we can take x, = ¢ + £-.)

» Then for every n, x, > ¢ and f(x,) < f(c) and hence

F(xn) — f(c)

Xp — C

<0 (1)

» Taking limit as n — oo, we get

f'(c) <O0.
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» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o

» Taking limit as n — oo, we get

f'(c) > 0. (2)



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o

» Taking limit as n — oo, we get
f'(c) > 0. (2)

» Combining inequalities (1) and (2) we get f'(c) =0 as
required. W



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.
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» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].
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some ¢ € (a, b).



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

» Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

» In particular, c is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.



Rolle’s theorem
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Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

In particular, ¢ is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.

Similarly, if there exists s € (a, b) such that f(s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f'(d) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

» Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

» In particular, c is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.

» Similarly, if there exists s € (a, b) such that f(s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f'(d) = 0.

» The only other possibility is f(x) = 0 for all x € [a, b] and in
such a case f'(x) = 0 for all x € (a, b) and we are done. .
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flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.

» It is to be noted that f is not differentiable at —1 and +1, but
is differentiable on (—1,1).

» Of course we get f/(0) =0 and so conclusion of Rolle’s
theorem holds.



Example

» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.

» It is to be noted that f is not differentiable at —1 and +1, but
is differentiable on (—1,1).

» Of course we get f/(0) =0 and so conclusion of Rolle’s
theorem holds.

» END OF LECTURE 30



