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Lecture 30. Chain Rule and Rolle’s theorem

I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.
Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Chain rule

I Theorem 30.1 Let I , J be intervals and let f : I → R and
g : J → R be functions such that f (I ) ⊆ J and h = g ◦ f .
Consider c ∈ I . Suppose f is differentiable at c and g is
differentiable at f (c). Then h is differentiable at c and

h′(c) = (g ◦ f )′(c) = g ′(f (c))f ′(c).

I Rough computation:

g ◦ f (x)− g ◦ f (c)

x − c
=

g ◦ f (x)− g ◦ f (c)

f (x)− f (c)
.
f (x)− f (c)

x − c

I Taking limit as x tends to c we should get the answer as f (x)
converges to f (c).

I However, there is a problem here as we can’t ensure that
f (x)− f (c) 6= 0.
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Caratheodory’s theorem

I Here is a characterization of differentiability.

I Theorem 30.2: Let f : I → R be a function where I is an
interval. Fix c ∈ I . Then f is differentiable at c if and only if
there exists a function u : I → R such that

f (x)− f (c) = (x − c)u(x), ∀x ∈ I (∗)

and u is continuous at c . In such a case, u(c) = f ′(c).
I Proof: If f is differentiable at c , take

u(x) =

{
f (x)−f (c)

x−c if x 6= c , x ∈ I

f ′(c) if x = c .

I Then it is easy to see that (∗) is satisfied and u is continuous
at c .

I Conversely if u exists satisfying (∗) and u is continuous at c

I From (∗), u(x) = f (x)−f (c)
x−c for x 6= c . Taking limit as x tends

to c , using continuity of u at c, f is differentiable at c , and
u(c) = f ′(c). �
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Proof of chain rule

I Proof: Consider f , g as in the hypothesis of the theorem.

I As f is differentiable at c , there exists a function u on I ,
continuous at c such that

f (x)− f (c) = (x − c)u(x), ∀x ∈ I .

I As g is differentiable at f (c), there exists a function v on J,
continuous at f (c) such that

g(y)− g(f (c)) = (y − f (c))v(y), ∀y ∈ J.

I Since f (I ) ⊆ J, this equation is also true at y = f (x) and so
we get

g(f (x))− g(f (c)) = (f (x)− f (c))v(f (x)), ∀x ∈ I .
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Continuation

I Now using the previous equation, we have

g(f (x))− g(f (c)) = (x − c)u(x)v(f (x)), ∀x ∈ I .

I Note that as v is continuous at f (c) and f is continuous at c ,
v ◦ f is continuous at c . Consequently, x 7→ u(x)v(f (x)) is
continuous at c.

I Hence by Caratheodory’s theorem, g ◦ f is differentiable at c
and

(g ◦ f )′(c) = u(c)v(f (c)) = f ′(c)g ′(f (c)).

I In other words h′(c) = g ′(f (c))f ′(c). �.
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Derivative of inverse -I

I Theorem 30.3: Let I , J be intervals and let f : I → J be a
bijection. Suppose f is differentiable at c ∈ I and g := f −1 is
differentiable at f (c). Then

g ′(f (c)) =
1

f ′(c)
.

I Proof: Take h = g ◦ f . As g = f −1, h is the identity map on
I . In particular h′(c) = 1 for every c ∈ I .

I Now by the chain rule we get 1 = h′(c) = f ′(c)g ′(f (c)).

I Consequently, g ′(f (c)) = 1
f ′(c) .�

I Note that this in particular means that in this Theorem,
f ′(c) = 0 is not possible.
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Derivative of inverse -II

I Theorem 30.4: Let I , J be intervals and let f : I → J be a
bijection. Suppose f is differentiable at c ∈ I and f ′(c) 6= 0.
Also assume that f −1 is continuous at f (c). Then g := f −1 is
differentiable at f (c) and g ′(f (c)) = 1

f ′(c) .

I Proof: By Caratheodory’s theorem, there exists a function u
on I , which is continuous at c and

f (x)− f (c) = (x − c)u(x), ∀x ∈ I .

I First we note that u(x) 6= 0 for every x . Indeed, for x 6= c ,
f (x) 6= f (c) as f is injective and hence u(x) 6= 0. At x = c ,
u(c) = f ′(c), which is not zero by hypothesis.

I Now take y = f (x) and d = f (c) in the equation above, to
get

y − d = (f −1(x)− f −1(d))u(f −1(y))
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Continuation

I Since f is surjective, this equation is true for every y ∈ J and
we get

g(y)− g(d) = (y − d)(
1

u(g(y))
).

I Finally note that since g = f −1 is continuous at d and u is
continuous at c, y 7→ 1

u(g(y)) is continuous at d .

I Therefore by Caratheodory’s theorem g is differentiable at d ,
and the result follows.

I Example 30.5: For n ∈ N the function g : (0,∞)→ (0,∞)

defined by g(y) = y
1
n is differentiable and

g ′(y) =
1

ny1−
1
n

, y ∈ (0,∞).
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defined by g(y) = y
1
n is differentiable and
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1

ny1−
1
n

, y ∈ (0,∞).



Local extremums

I Definition 30.6: Let f : I → R be a function and suppose
c ∈ I . Then c is said to be a local maximum of f if there
exists δ > 0 such that

f (c) ≥ f (x), ∀x ∈ (c − δ, c + δ)
⋂

I .

I Similarly c is said to be a local minimum if there exists δ > 0
such that

f (c) ≤ f (x), ∀x ∈ (c − δ, c + δ)
⋂

I .

I If c is a local maximum or local minimum it is said to be a
local extremum.
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Global extremums

I Definition 30.7: Let f : I → R be a function and suppose
c ∈ I . Then c is said to be a global maximum of f if

f (c) ≥ f (x), ∀x ∈ I .

I Similarly c is said to be a global minimum of f if

f (c) ≤ f (x), ∀x ∈ I .

I If c is a global maximum or global minimum it is said to be a
global extremum.
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Interior extremum theorem

I Definition 30.8: Let I be an interval and let c ∈ I . Then c is
said to be an interior point of I if there exists δ > 0 such that

(c − δ, c + δ) ⊆ I .

I Theorem 30.9: Let f : I → R be a function. Suppose c is an
interior point of I and suppose c is a local extremum of f . If
f is differentiable at c then

f ′(c) = 0.

I Proof. Given that c is an interior point of f .
I So there exists δ1 > 0 such that (c − δ1, c + δ1) ⊆ I .
I Suppose that c is a local maximum of f . Then there exists
δ2 > 0 such that

f (c) ≥ f (x) ∀x ∈ (c − δ2, c + δ2)
⋂

I .

I Taking δ = min{δ1, δ2}, we have (c − δ, c + δ) ⊆ I and

f (c) ≥ f (x), ∀x ∈ (c − δ, c + δ).
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Continuation

I Assume that f is differentiable at c .

I Suppose {xn}n∈N is a sequence in (c , c + δ) converging to c
(For instance, we can take xn = c + δ

2n .)

I Then for every n, xn > c and f (xn) ≤ f (c) and hence

f (xn)− f (c)

xn − c
≤ 0 (1)

I Taking limit as n→∞, we get

f ′(c) ≤ 0.
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Rolle’s theorem

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

I Suppose there exists some t ∈ (a, b) such that f (t) > 0, then
as f (a) = f (b) = 0, the global maximum of f is attained at
some c ∈ (a, b).

I In particular, c is a local extremum and by the interior
extremum theorem, f ′(c) = 0 and we are done.

I Similarly, if there exists s ∈ (a, b) such that f (s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f ′(d) = 0.

I The only other possibility is f (x) = 0 for all x ∈ [a, b] and in
such a case f ′(x) = 0 for all x ∈ (a, b) and we are done. �.
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Example

I Example 30.11: Consider f : [−1, 1]→ R defined by

f (x) =
√

1− x2, x ∈ [−1, 1].

I This function f satisfies the hypothesis of Rolle’s theorem.

I It is to be noted that f is not differentiable at −1 and +1, but
is differentiable on (−1, 1).

I Of course we get f ′(0) = 0 and so conclusion of Rolle’s
theorem holds.

I END OF LECTURE 30
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