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Lecture 31. Mean value theorem

I We recall:

I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.
Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.
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Interior Extremum theorem and Rolle’s theorem

I Theorem 30.9 (Interior Extremum theorem): Let f : I → R be
a function. Suppose c is an interior point of I and suppose c
is a local extremum of f . If f is differentiable at c then

f ′(c) = 0.

I Sketch of proof.

I Suppose {xn}n∈N is a sequence decreasing to c. Then

f ′(c) = lim
n→∞

f (xn)− f (c)

xn − c
≤ 0.

I Similarly if {yn}n∈N is a sequence increasing to c ,

f ′(c) = lim
n→∞

f (yn)− f (c)

yn − c
≥ 0

I Combining two inequalities we get f ′(c) = 0.
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Rolle’s theorem

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Sketch of proof.

I If f is non-zero it attains either supremum or infimum at some
interior point c in (a, b).

I Then by interior extremum theorem f ′(c) = 0.
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Mean value theorem (MVT)

I Theorem 31.1 (Mean value theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Then
there exists c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).

I Proof: Define g : [a, b]→ R by

g(x) = f (x)− f (a)− f (b)− f (a)

b − a
(x − a).

I Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also

g(a) = g(b) = 0.

I Hence Rolle’s theorem is applicable to g , and we get
c ∈ (a, b) such that g ′(c) = 0.
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Continuation

I Using linearity of differentiation,

g ′(c) = f ′(c)− 0− f (b)− f (a)

b − a
.1 = 0.

I Hence,
f ′(c)(b − a) = f (b)− f (a).

I Note that Rolle’s theorem is a special case of mean value
theorem.
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Cauchy’s mean value theorem

I Theorem 31.2 (Cauchy’s Mean value theorem): Let
f , g : [a, b]→ R be continuous functions which are
differentiable on (a, b). Then there exists c ∈ (a, b) such that

(f (b)− f (a))g ′(c) = f ′(c)(g(b)− g(a)).

I Proof: Consider f , g as in the hypothesis of the theorem.

I Define h : [a, b]→ R by

h(x) = (f (b)−f (a))g(x)−f (x)(g(b)−g(a))−f (b)g(a)+f (a)g(b)

for x ∈ [a, b].
I Then h is continuous on [a, b], differentiable on (a, b) and

h(a) = h(b) = 0.
I Therefore Rolle’s theorem is applicable.
I So we get c ∈ (a, b) such that h′(c) = 0 and that gives the

result.
I Note that mean value theorem is a special case of Cauchy’s

mean value theorem with g(x) = x , x ∈ [a, b].
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Applications of mean value theorem

I Corollary 31.3: Let f : [a, b]→ R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f ′(x) = 0 for all
x ∈ (a, b). Then f is a constant.

I Proof: Fix any t ∈ (a, b] and consider f restricted to [a, t].

I Clearly mean value theorem is applicable to this function and
we get

f (t)− f (a) = 0.(t − a) = 0.

I Therefore f (t) = f (a).

I In other words f (t) = f (a) for every t ∈ [a, b].�
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Equal derivatives

I Corollary 31.4: Let f , g : [a, b]→ R be continuous functions
differentiable on (a, b). Suppose f ′(x) = g ′(x) for all
x ∈ (a, b). Then f (x) = g(x) +C , x ∈ [a, b] for some C ∈ R.

I Proof: This is clear from the previous corollary, by considering
the function, h : [a, b]→ R defined by

h(x) = f (x)− g(x), x ∈ [a, b].
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Monotonicity

I Recall that a function f : [a, b]→ R is said to be increasing
(respectively decreasing) if f (x) ≤ f (y) (respectively
f (x) ≥ f (y) ) for all x , y in [a, b] with x ≤ y .

I Theorem 31.5: Let f : [a, b]→ R be a continuous function
which is differentiable on (a, b).

I (i) f is increasing on [a, b] if and only if f ′(x) ≥ 0 for all
x ∈ (a, b).

I (ii) f is decreasing on [a, b] if and only if f ′(x) ≤ 0 for all
x ∈ (a, b).

I Proof: (i) Suppose f is increasing and x ∈ (a, b).

I Consider any sequence {xn} in (a, b) with x < xn ≤ b,
converging to x . Then f (xn)− f (x) ≥ 0 for all n and we get

f ′(x) = lim
n→∞

f (xn)− f (x)

xn − x
≥ 0.
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Continuation

I Conversely suppose f ′(x) ≥ 0 for all x ∈ (a, b).

I For any x , y in [a, b] with x < y , consider f restricted to [x , y ]

I Then f is continuous on [x , y ] and is differntiable on (x , y)
and hence mean value theorem is applicable.

I So we get
f (y)− f (x) = f ′(z)(y − x)

I for some z ∈ [x , y ]. Then by the hypothesis, f ′(z) ≥ 0 and
therefore f (y)− f (x) ≥ 0 or f (y) ≥ f (x).

I Proof of (ii) is similar. �
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Strictly increasing functions

I Suppose f : [a, b]→ R is continuous on [a, b] and
differentiable on (a, b). Suppose f ′(x) > 0 for all x ∈ (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.

I However, the converse is not true.

I Example 31.6: Consider f : [−1, 1]→ R defined by

f (x) = x3, x ∈ [−1, 1].

I Then f is strictly increasing but f ′(0) = 0.

I Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x , y ∈ [−1, 1] with x < y , f (y)− f (x) = f ′(0)(y − x). Can we
characterize such points?

I END OF LECTURE 31.
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