

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 31. Mean value theorem

- We recall:

Lecture 31. Mean value theorem

- ▶ We recall:
- ▶ **Definition 29.1:** Let $A \subseteq \mathbb{R}$. Let $c \in A$ be a cluster point of A . Let $f : A \rightarrow \mathbb{R}$ be a function. Then f is said to be differentiable at c if

$$\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}$$

exists. In such a case, $f'(c)$ is defined as this limit. If the limit does not exist f is said to be not differentiable at c .

Interior Extremum theorem and Rolle's theorem

- Theorem 30.9 (Interior Extremum theorem): Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

Interior Extremum theorem and Rolle's theorem

- Theorem 30.9 (Interior Extremum theorem): Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- Sketch of proof.

Interior Extremum theorem and Rolle's theorem

- Theorem 30.9 (Interior Extremum theorem): Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- Sketch of proof.
- Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence decreasing to c . Then

$$f'(c) = \lim_{n \rightarrow \infty} \frac{f(x_n) - f(c)}{x_n - c} \leq 0.$$

Interior Extremum theorem and Rolle's theorem

- Theorem 30.9 (Interior Extremum theorem): Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- Sketch of proof.
- Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence decreasing to c . Then

$$f'(c) = \lim_{n \rightarrow \infty} \frac{f(x_n) - f(c)}{x_n - c} \leq 0.$$

- Similarly if $\{y_n\}_{n \in \mathbb{N}}$ is a sequence increasing to c ,

$$f'(c) = \lim_{n \rightarrow \infty} \frac{f(y_n) - f(c)}{y_n - c} \geq 0$$

Interior Extremum theorem and Rolle's theorem

- Theorem 30.9 (Interior Extremum theorem): Let $f : I \rightarrow \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f . If f is differentiable at c then

$$f'(c) = 0.$$

- Sketch of proof.
- Suppose $\{x_n\}_{n \in \mathbb{N}}$ is a sequence decreasing to c . Then

$$f'(c) = \lim_{n \rightarrow \infty} \frac{f(x_n) - f(c)}{x_n - c} \leq 0.$$

- Similarly if $\{y_n\}_{n \in \mathbb{N}}$ is a sequence increasing to c ,

$$f'(c) = \lim_{n \rightarrow \infty} \frac{f(y_n) - f(c)}{y_n - c} \geq 0$$

- Combining two inequalities we get $f'(c) = 0$.

Rolle's theorem

- Theorem 30.10 (Rolle's theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

Rolle's theorem

- Theorem 30.10 (Rolle's theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- Sketch of proof.

Rolle's theorem

- Theorem 30.10 (Rolle's theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- Sketch of proof.
- If f is non-zero it attains either supremum or infimum at some interior point c in (a, b) .

Rolle's theorem

- Theorem 30.10 (Rolle's theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Suppose $f(a) = f(b) = 0$. Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

- Sketch of proof.
- If f is non-zero it attains either supremum or infimum at some interior point c in (a, b) .
- Then by interior extremum theorem $f'(c) = 0$.

Mean value theorem (MVT)

- Theorem 31.1 (Mean value theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

Mean value theorem (MVT)

- **Theorem 31.1 (Mean value theorem):** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

- **Proof:** Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Mean value theorem (MVT)

- Theorem 31.1 (Mean value theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

- Proof: Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

- Then clearly g is continuous on $[a, b]$ and is differentiable on (a, b) . Also

$$g(a) = g(b) = 0.$$

Mean value theorem (MVT)

- Theorem 31.1 (Mean value theorem): Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

- Proof: Define $g : [a, b] \rightarrow \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

- Then clearly g is continuous on $[a, b]$ and is differentiable on (a, b) . Also

$$g(a) = g(b) = 0.$$

- Hence Rolle's theorem is applicable to g , and we get $c \in (a, b)$ such that $g'(c) = 0$.

Continuation

- ▶ Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a} \cdot 1 = 0.$$

Continuation

- ▶ Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a} \cdot 1 = 0.$$

- ▶ Hence,

$$f'(c)(b - a) = f(b) - f(a).$$

Continuation

- ▶ Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a} \cdot 1 = 0.$$

- ▶ Hence,

$$f'(c)(b - a) = f(b) - f(a).$$

- ▶ Note that Rolle's theorem is a special case of mean value theorem.

Cauchy's mean value theorem

- **Theorem 31.2 (Cauchy's Mean value theorem):** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof:** Consider f, g as in the hypothesis of the theorem.

Cauchy's mean value theorem

- **Theorem 31.2 (Cauchy's Mean value theorem):** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof:** Consider f, g as in the hypothesis of the theorem.
- Define $h : [a, b] \rightarrow \mathbb{R}$ by

$$h(x) = (f(b) - f(a))g(x) - f(x)(g(b) - g(a)) - f(b)g(a) + f(a)g(b)$$

for $x \in [a, b]$.

Cauchy's mean value theorem

- **Theorem 31.2 (Cauchy's Mean value theorem):** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof:** Consider f, g as in the hypothesis of the theorem.
- Define $h : [a, b] \rightarrow \mathbb{R}$ by

$$h(x) = (f(b) - f(a))g(x) - f(x)(g(b) - g(a)) - f(b)g(a) + f(a)g(b)$$

for $x \in [a, b]$.

- Then h is continuous on $[a, b]$, differentiable on (a, b) and $h(a) = h(b) = 0$.

Cauchy's mean value theorem

- Theorem 31.2 (Cauchy's Mean value theorem): Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- Proof: Consider f, g as in the hypothesis of the theorem.
- Define $h : [a, b] \rightarrow \mathbb{R}$ by

$$h(x) = (f(b) - f(a))g(x) - f(x)(g(b) - g(a)) - f(b)g(a) + f(a)g(b)$$

for $x \in [a, b]$.

- Then h is continuous on $[a, b]$, differentiable on (a, b) and $h(a) = h(b) = 0$.
- Therefore Rolle's theorem is applicable.

Cauchy's mean value theorem

- **Theorem 31.2 (Cauchy's Mean value theorem):** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof:** Consider f, g as in the hypothesis of the theorem.
- Define $h : [a, b] \rightarrow \mathbb{R}$ by

$$h(x) = (f(b) - f(a))g(x) - f(x)(g(b) - g(a)) - f(b)g(a) + f(a)g(b)$$

for $x \in [a, b]$.

- Then h is continuous on $[a, b]$, differentiable on (a, b) and $h(a) = h(b) = 0$.
- Therefore Rolle's theorem is applicable.
- So we get $c \in (a, b)$ such that $h'(c) = 0$ and that gives the result.

Cauchy's mean value theorem

- **Theorem 31.2 (Cauchy's Mean value theorem):** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof:** Consider f, g as in the hypothesis of the theorem.
- Define $h : [a, b] \rightarrow \mathbb{R}$ by

$$h(x) = (f(b) - f(a))g(x) - f(x)(g(b) - g(a)) - f(b)g(a) + f(a)g(b)$$

for $x \in [a, b]$.

- Then h is continuous on $[a, b]$, differentiable on (a, b) and $h(a) = h(b) = 0$.
- Therefore Rolle's theorem is applicable.
- So we get $c \in (a, b)$ such that $h'(c) = 0$ and that gives the result.
- Note that mean value theorem is a special case of Cauchy's mean value theorem with $g(x) = x$, $x \in [a, b]$.

Applications of mean value theorem

- **Corollary 31.3:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is a constant.

Applications of mean value theorem

- ▶ **Corollary 31.3:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is a constant.
- ▶ **Proof:** Fix any $t \in (a, b]$ and consider f restricted to $[a, t]$.

Applications of mean value theorem

- ▶ **Corollary 31.3:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is a constant.
- ▶ **Proof:** Fix any $t \in (a, b]$ and consider f restricted to $[a, t]$.
- ▶ Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0 \cdot (t - a) = 0.$$

Applications of mean value theorem

- ▶ **Corollary 31.3:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is a constant.
- ▶ **Proof:** Fix any $t \in (a, b]$ and consider f restricted to $[a, t]$.
- ▶ Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0 \cdot (t - a) = 0.$$

- ▶ Therefore $f(t) = f(a)$.

Applications of mean value theorem

- ▶ **Corollary 31.3:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is a constant.
- ▶ **Proof:** Fix any $t \in (a, b]$ and consider f restricted to $[a, t]$.
- ▶ Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0 \cdot (t - a) = 0.$$

- ▶ Therefore $f(t) = f(a)$.
- ▶ In other words $f(t) = f(a)$ for every $t \in [a, b]$. ■

Equal derivatives

- **Corollary 31.4:** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions differentiable on (a, b) . Suppose $f'(x) = g'(x)$ for all $x \in (a, b)$. Then $f(x) = g(x) + C$, $x \in [a, b]$ for some $C \in \mathbb{R}$.

Equal derivatives

- ▶ **Corollary 31.4:** Let $f, g : [a, b] \rightarrow \mathbb{R}$ be continuous functions differentiable on (a, b) . Suppose $f'(x) = g'(x)$ for all $x \in (a, b)$. Then $f(x) = g(x) + C$, $x \in [a, b]$ for some $C \in \mathbb{R}$.
- ▶ **Proof:** This is clear from the previous corollary, by considering the function, $h : [a, b] \rightarrow \mathbb{R}$ defined by

$$h(x) = f(x) - g(x), \quad x \in [a, b].$$

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.
- ▶ **Theorem 31.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) .

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.
- ▶ **Theorem 31.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) .
- ▶ (i) f is increasing on $[a, b]$ if and only if $f'(x) \geq 0$ for all $x \in (a, b)$.

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.
- ▶ **Theorem 31.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) .
- ▶ (i) f is increasing on $[a, b]$ if and only if $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ (ii) f is decreasing on $[a, b]$ if and only if $f'(x) \leq 0$ for all $x \in (a, b)$.

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.
- ▶ **Theorem 31.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) .
- ▶ (i) f is increasing on $[a, b]$ if and only if $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ (ii) f is decreasing on $[a, b]$ if and only if $f'(x) \leq 0$ for all $x \in (a, b)$.
- ▶ **Proof:** (i) Suppose f is increasing and $x \in (a, b)$.

Monotonicity

- ▶ Recall that a function $f : [a, b] \rightarrow \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all x, y in $[a, b]$ with $x \leq y$.
- ▶ **Theorem 31.5:** Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b) .
- ▶ (i) f is increasing on $[a, b]$ if and only if $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ (ii) f is decreasing on $[a, b]$ if and only if $f'(x) \leq 0$ for all $x \in (a, b)$.
- ▶ **Proof:** (i) Suppose f is increasing and $x \in (a, b)$.
- ▶ Consider any sequence $\{x_n\}$ in (a, b) with $x < x_n \leq b$, converging to x . Then $f(x_n) - f(x) \geq 0$ for all n and we get

$$f'(x) = \lim_{n \rightarrow \infty} \frac{f(x_n) - f(x)}{x_n - x} \geq 0.$$

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ For any x, y in $[a, b]$ with $x < y$, consider f restricted to $[x, y]$

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ For any x, y in $[a, b]$ with $x < y$, consider f restricted to $[x, y]$
- ▶ Then f is continuous on $[x, y]$ and is differentiable on (x, y) and hence mean value theorem is applicable.

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ For any x, y in $[a, b]$ with $x < y$, consider f restricted to $[x, y]$
- ▶ Then f is continuous on $[x, y]$ and is differentiable on (x, y) and hence mean value theorem is applicable.
- ▶ So we get

$$f(y) - f(x) = f'(z)(y - x)$$

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ For any x, y in $[a, b]$ with $x < y$, consider f restricted to $[x, y]$
- ▶ Then f is continuous on $[x, y]$ and is differentiable on (x, y) and hence mean value theorem is applicable.
- ▶ So we get

$$f(y) - f(x) = f'(z)(y - x)$$

- ▶ for some $z \in [x, y]$. Then by the hypothesis, $f'(z) \geq 0$ and therefore $f(y) - f(x) \geq 0$ or $f(y) \geq f(x)$.

Continuation

- ▶ Conversely suppose $f'(x) \geq 0$ for all $x \in (a, b)$.
- ▶ For any x, y in $[a, b]$ with $x < y$, consider f restricted to $[x, y]$
- ▶ Then f is continuous on $[x, y]$ and is differentiable on (x, y) and hence mean value theorem is applicable.
- ▶ So we get

$$f(y) - f(x) = f'(z)(y - x)$$

- ▶ for some $z \in [x, y]$. Then by the hypothesis, $f'(z) \geq 0$ and therefore $f(y) - f(x) \geq 0$ or $f(y) \geq f(x)$.
- ▶ Proof of (ii) is similar. ■

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- ▶ Example 31.6: Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x^3, \quad x \in [-1, 1].$$

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- ▶ Example 31.6: Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x^3, \quad x \in [-1, 1].$$

- ▶ Then f is strictly increasing but $f'(0) = 0$.

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- ▶ **Example 31.6:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x^3, \quad x \in [-1, 1].$$

- ▶ Then f is strictly increasing but $f'(0) = 0$.
- ▶ **Remark 31.7:** In this Example, 0 is a point which is never picked up by the mean value theorem. That is, for no $x, y \in [-1, 1]$ with $x < y$, $f(y) - f(x) = f'(0)(y - x)$. Can we characterize such points?

Strictly increasing functions

- ▶ Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Suppose $f'(x) > 0$ for all $x \in (a, b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- ▶ **Example 31.6:** Consider $f : [-1, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x^3, \quad x \in [-1, 1].$$

- ▶ Then f is strictly increasing but $f'(0) = 0$.
- ▶ **Remark 31.7:** In this Example, 0 is a point which is never picked up by the mean value theorem. That is, for no $x, y \in [-1, 1]$ with $x < y$, $f(y) - f(x) = f'(0)(y - x)$. Can we characterize such points?
- ▶ **END OF LECTURE 31.**