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Lecture 31. Mean value theorem

» We recall:



Lecture 31. Mean value theorem

» We recall:

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at c if

im f(x) —f(c)

X—C X —C

exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.
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» Suppose {x,}nen is a sequence decreasing to c. Then
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» Similarly if {y,}nen is a sequence increasing to c,



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Sketch of proof.

» Suppose {x,}nen is a sequence decreasing to c. Then

f'(c) = lim 7“)(") —f(e)

n—00 Xp— C

<0.

» Similarly if {y,}nen is a sequence increasing to c,

» Combining two inequalities we get '(c) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Sketch of proof.
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» Sketch of proof.

» If f is non-zero it attains either supremum or infimum at some
interior point ¢ in (a, b).



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Sketch of proof.

» If f is non-zero it attains either supremum or infimum at some
interior point ¢ in (a, b).

» Then by interior extremum theorem f’(c) = 0.



Mean value theorem (MVT)

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
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» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
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Mean value theorem (MVT)

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
» Proof: Define g : [a,b] — R by

g0) = F() — () - "Iy

» Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also



Mean value theorem (MVT)

>

Theorem 31.1 (Mean value theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
Proof: Define g : [a, b] — R by

g0) = F() — () - "Iy

Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also
g(a) = g(b) =0.
Hence Rolle's theorem is applicable to g, and we get
¢ € (a, b) such that g’(c) = 0.



Continuation

» Using linearity of differentiation,

f(b) — f(a)
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b—a 0
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Continuation

» Using linearity of differentiation,

f(b) — f(a)

.1=0.
b—a 0

g'(c)="f(c)-0-

» Hence,
f'(c)(b— a) = f(b) — f(a).



Continuation

» Using linearity of differentiation,

f(b) — f(a)

.1=0.
b—a 0

g'(c)="f"(c)-0-
» Hence,
f'(c)(b— a) = f(b) — f(a).

> Note that Rolle's theorem is a special case of mean value
theorem.



Cauchy’s mean value theorem

» Theorem 31.2 (Cauchy’'s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(2)g’(c) = f'(c)(g(b) — &(a)).

» Proof: Consider f, g as in the hypothesis of the theorem.
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Theorem 31.2 (Cauchy’s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g'(c) = f'(c)(g(b) — &(a))-
Proof: Consider f, g as in the hypothesis of the theorem.
Define h : [a, b] — R by

h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+f(a)g(b)
for x € [a, b].

Then h is continuous on [a, b], differentiable on (a, b) and

h(a) = h(b) = 0.

Therefore Rolle’s theorem is applicable.

So we get ¢ € (a, b) such that h'(c) = 0 and that gives the
result.

Note that mean value theorem is a special case of Cauchy’s
mean value theorem with g(x) = x, x € [a, b].



Applications of mean value theorem

» Corollary 31.3: Let f : [a, b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
x € (a,b). Then f is a constant.
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» Proof: Fix any t € (a, b] and consider f restricted to [a, t].
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Applications of mean value theorem

» Corollary 31.3: Let f : [a, b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
x € (a,b). Then f is a constant.

» Proof: Fix any t € (a, b] and consider f restricted to [a, t].

» Clearly mean value theorem is applicable to this function and
we get
f(t)—f(a)=0.(t —a)=0.

» Therefore f(t) = f(a).



Applications of mean value theorem

» Corollary 31.3: Let f : [a,b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
€ (a,b). Then f is a constant.

» Proof: Fix any t € (a, b] and consider f restricted to [a, t].

» Clearly mean value theorem is applicable to this function and

we get
f(t) — f(a) = 0.(t — ) = 0.

» Therefore f(t) = f(a).
» In other words f(t) = f(a) for every t € [a, b].H



Equal derivatives

» Corollary 31.4: Let f,g : [a, b] = R be continuous functions
differentiable on (a, b). Suppose f'(x) = g’(x) for all
x € (a,b). Then f(x) = g(x)+ C, x € [a, b] for some C € R.



Equal derivatives

» Corollary 31.4: Let f,g : [a, b] = R be continuous functions
differentiable on (a, b). Suppose f'(x) = g’(x) for all
x € (a,b). Then f(x) = g(x)+ C, x € [a, b] for some C € R.
» Proof: This is clear from the previous corollary, by considering
the function, h: [a, b] — R defined by

h(x) = f(x) — g(x), x € |a,b].



Monotonicity

» Recall that a function f : [a, b] — R is said to be increasing
(respectively decreasing) if f(x) < f(y) (respectively
f(x) > f(y) ) for all x,y in [a, b] with x < y.
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which is differentiable on (a, b).



Monotonicity

» Recall that a function f : [a, b] — R is said to be increasing
(respectively decreasing) if f(x) < f(y) (respectively
f(x) > f(y) ) for all x,y in [a, b] with x < y.

» Theorem 31.5: Let f : [a, b] — R be a continuous function
which is differentiable on (a, b).

» (i) f is increasing on [a, b] if and only if f/(x) > 0 for all
x € (a, b).



Monotonicity

» Recall that a function f : [a, b] — R is said to be increasing
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which is differentiable on (a, b).
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» Theorem 31.5: Let f : [a, b] — R be a continuous function
which is differentiable on (a, b).

» (i) f is increasing on [a, b] if and only if f/(x) > 0 for all
x € (a, b).

» (ii) f is decreasing on [a, b] if and only if f'(x) < 0 for all
x € (a, b).

» Proof: (i) Suppose f is increasing and x € (a, b).



Monotonicity

» Recall that a function f : [a, b] — R is said to be increasing
(respectively decreasing) if f(x) < f(y) (respectively
f(x) > f(y) ) for all x,y in [a, b] with x < y.

» Theorem 31.5: Let f : [a, b] — R be a continuous function
which is differentiable on (a, b).

» (i) f is increasing on [a, b] if and only if f/(x) > 0 for all
x € (a, b).

» (ii) f is decreasing on [a, b] if and only if f'(x) < 0 for all
x € (a, b).

» Proof: (i) Suppose f is increasing and x € (a, b).

» Consider any sequence {x,} in (a, b) with x < x, < b,
converging to x. Then f(x,) — f(x) > 0 for all n and we get

f'(x) = lim 7“)(") —f()

n—o0 Xp — X

> 0.
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» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.



Continuation

» Conversely suppose f'(x) > 0 for all x € (a, b).
» For any x,y in [a, b] with x < y, consider f restricted to [x, y]

» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.

> So we get
Fly) = f(x) = f'(2)(y —x)



Continuation

» Conversely suppose f'(x) > 0 for all x € (a, b).

v

For any x, y in [a, b] with x < y, consider f restricted to [x, y]

» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.

> So we get
Fly) = f(x) = f'(2)(y —x)

» for some z € [x, y]. Then by the hypothesis, f'(z) > 0 and
therefore f(y) — f(x) > 0 or f(y) > f(x).



Continuation

» Conversely suppose f'(x) > 0 for all x € (a, b).

v

For any x, y in [a, b] with x < y, consider f restricted to [x, y]

» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.

> So we get
F(y) = f(x) = f(2)(y — x)
» for some z € [x, y]. Then by the hypothesis, f'(z) > 0 and
therefore f(y) — f(x) > 0 or f(y) > f(x).
» Proof of (ii) is similar. W



Strictly increasing functions

» Suppose f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Suppose f'(x) > 0 for all x € (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.
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» Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x,y € [-1,1] with x < y, f(y) — f(x) = f'(0)(y — x). Can we
characterize such points?



Strictly increasing functions

» Suppose f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Suppose f'(x) > 0 for all x € (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.

» However, the converse is not true.
» Example 31.6: Consider f : [—1,1] — R defined by

f(x)=x3 xe[-1,1].

» Then f is strictly increasing but '(0) = 0.

» Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x,y € [-1,1] with x < y, f(y) — f(x) = f'(0)(y — x). Can we
characterize such points?

» END OF LECTURE 31.



