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Lecture 4: Natural numbers: Well-ordering and induction

I We have assumed familiarity with

I N = {1, 2, . . .}, the set of natural numbers.

I If we are to construct it abstractly from set theory, we may
take 1 as the set {∅}, 2 as the set {∅, 1} = {∅, {∅}}, 3 as the
set {∅, 1, 2} = {∅, {∅}, {∅, {∅}}, so on.

I We order the natural numbers in the usual way:

1 < 2 < 3 < 4 < · · · .

I Let us look at a few basic properties of the set of natural
numbers and its subsets.
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Well-ordering principle

I Well-ordering principle: The set of natural numbers satisfies
well-ordering principle, that is, every non-empty subset of
natural numbers has a smallest element.

I In other words, if R is a non-empty subset of N then there
exists an element m ∈ R such that m ≤ k for all k ∈ R.

I Note that clearly the minimal element of R is unique, for if
both k, l are minimal then we have k ≤ l and l ≤ k , and this
means k = l .

I We also note that if n ∈ R, then the minimal element of R is
contained in {1, 2, . . . , n}

⋂
R. So the existence of minimum

here is essentially a statement about finite sets.
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Mathematical Induction

I Principle of mathematical induction: Let S be a subset of N
having following properties:

I (i) 1 ∈ S .

I (ii) If k ∈ S , then k + 1 ∈ S .

I Then S = N.
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Strong Mathematical Induction

I Principle of strong mathematical induction : Let T be a
subset of N with following properties:

I (a) 1 ∈ T .

I (b) If {1, 2, . . . , k} ⊆ T then {1, 2, . . . , k + 1} ⊆ T

I Then T = N.
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Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.
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Proof continued

I (2)⇒ (3). Assume induction principle.

I Now suppose T ⊆ N satisfies (a), (b).

I We want to show that T = N.
I Take S = {m ∈ N : {1, 2, . . . ,m} ⊆ T}.
I In view of (a), 1 ∈ T and hence 1 ∈ S .

I In view of (b), if m ∈ S then m + 1 ∈ S . Then by the principle
of induction S = N. This clearly implies T = N.
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Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.
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Applications of Mathematical induction

I Suppose we have a property P defined for natural numbers,
where (i) 1 satisfies property P; (ii) If m ∈ N satisfies property
P then (m + 1) satisfies property P. Then property P is
satisfied by all natural numbers.

I This is clear from the principle of mathematical induction as
we can take R = {m ∈ N : m satisfies property P}.

I Example: Show that for all natural numbers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
, (P).

I Proof: Let S be the set of all natural numbers satisfying P.
I Clearly 1 ∈ S . If m ∈ S , then 1 + 2 + · · ·+ m = m(m+1)

2 .
I Now using induction hypothesis

1+2+· · ·+m+(m+1) =
m(m + 1)

2
+(m+1) =

(m + 1)(m + 2)

2
.

I Hence m + 1 ∈ S . Then by the principle of mathematical
induction S = N. In other words every natural number
satisfies P.
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A fake theorem

I ”Theorem”: If you take bag full of balls all of them would
have same color.

I ”Proof”:” We will prove this by induction.
I Let n be the number of balls in the bag.
I If n = 1, the claim is obvious. There is nothing to prove.
I Now assume the result for n = m and we will prove it for

n = m + 1.
I Suppose the bag has m + 1 balls. Remove one ball.
I Now there are m balls in the bag, and all of them have the

same color, say black, by the induction hypothesis.
I Now put the ball you have in hand in bag and remove some

other. Clearly the ball you have removed must be black color.
Consider the balls in the bag. Now there are only m of them,
also have to be of same color, same as the one ball we
removed.

I So all the m + 1 balls are black. Quite Easily Done!
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Pigeonhole principle

I Pigeonhole principle: Let m, n be natural numbers and m < n.
Let

f : {1, 2, . . . , n} → {1, 2, . . . ,m}

be a function. Then f can not be injective.

I You may think of n as the number of pigeons and m as the
number of holes. When we put n pigeons in to m holes with
m < n, at least one hole would have more than one pigeon.

I In other words, if m hostel rooms are assigned to n students
with m < n, then some students have to share rooms.

I The pigeonhole principle can be proved using mathematical
induction.

I You may see the Appendix of the book of Bartle and Sherbert.

I END OF LECTURE 4.
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