

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 4: Natural numbers: Well-ordering and induction

- ▶ We have assumed familiarity with

Lecture 4: Natural numbers: Well-ordering and induction

- ▶ We have assumed familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$, the set of natural numbers.

Lecture 4: Natural numbers: Well-ordering and induction

- ▶ We have assumed familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$, the set of natural numbers.
- ▶ If we are to construct it abstractly from set theory, we may take 1 as the set $\{\emptyset\}$, 2 as the set $\{\emptyset, 1\} = \{\emptyset, \{\emptyset\}\}$, 3 as the set $\{\emptyset, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$, so on.

Lecture 4: Natural numbers: Well-ordering and induction

- ▶ We have assumed familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$, the set of natural numbers.
- ▶ If we are to construct it abstractly from set theory, we may take 1 as the set $\{\emptyset\}$, 2 as the set $\{\emptyset, 1\} = \{\emptyset, \{\emptyset\}\}$, 3 as the set $\{\emptyset, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$, so on.
- ▶ We order the natural numbers in the usual way:

$$1 < 2 < 3 < 4 < \dots$$

Lecture 4: Natural numbers: Well-ordering and induction

- ▶ We have assumed familiarity with
- ▶ $\mathbb{N} = \{1, 2, \dots\}$, the set of natural numbers.
- ▶ If we are to construct it abstractly from set theory, we may take 1 as the set $\{\emptyset\}$, 2 as the set $\{\emptyset, 1\} = \{\emptyset, \{\emptyset\}\}$, 3 as the set $\{\emptyset, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$, so on.
- ▶ We order the natural numbers in the usual way:

$$1 < 2 < 3 < 4 < \dots$$

- ▶ Let us look at a few basic properties of the set of natural numbers and its subsets.

Well-ordering principle

- **Well-ordering principle:** The set of natural numbers satisfies well-ordering principle, that is, every non-empty subset of natural numbers has a smallest element.

Well-ordering principle

- ▶ **Well-ordering principle:** The set of natural numbers satisfies well-ordering principle, that is, every non-empty subset of natural numbers has a smallest element.
- ▶ In other words, if R is a non-empty subset of \mathbb{N} then there exists an element $m \in R$ such that $m \leq k$ for all $k \in R$.

Well-ordering principle

- ▶ **Well-ordering principle:** The set of natural numbers satisfies well-ordering principle, that is, every non-empty subset of natural numbers has a smallest element.
- ▶ In other words, if R is a non-empty subset of \mathbb{N} then there exists an element $m \in R$ such that $m \leq k$ for all $k \in R$.
- ▶ Note that clearly the minimal element of R is unique, for if both k, l are minimal then we have $k \leq l$ and $l \leq k$, and this means $k = l$.

Well-ordering principle

- ▶ **Well-ordering principle:** The set of natural numbers satisfies well-ordering principle, that is, every non-empty subset of natural numbers has a smallest element.
- ▶ In other words, if R is a non-empty subset of \mathbb{N} then there exists an element $m \in R$ such that $m \leq k$ for all $k \in R$.
- ▶ Note that clearly the minimal element of R is unique, for if both k, l are minimal then we have $k \leq l$ and $l \leq k$, and this means $k = l$.
- ▶ We also note that if $n \in R$, then the minimal element of R is contained in $\{1, 2, \dots, n\} \cap R$. So the existence of minimum here is essentially a statement about finite sets.

Mathematical Induction

- **Principle of mathematical induction:** Let S be a subset of \mathbb{N} having following properties:

Mathematical Induction

- ▶ **Principle of mathematical induction:** Let S be a subset of \mathbb{N} having following properties:
- ▶ (i) $1 \in S$.

Mathematical Induction

- ▶ **Principle of mathematical induction:** Let S be a subset of \mathbb{N} having following properties:
 - ▶ (i) $1 \in S$.
 - ▶ (ii) If $k \in S$, then $k + 1 \in S$.

Mathematical Induction

- ▶ **Principle of mathematical induction:** Let S be a subset of \mathbb{N} having following properties:
 - ▶ (i) $1 \in S$.
 - ▶ (ii) If $k \in S$, then $k + 1 \in S$.
 - ▶ Then $S = \mathbb{N}$.

Strong Mathematical Induction

- Principle of strong mathematical induction : Let T be a subset of \mathbb{N} with following properties:

Strong Mathematical Induction

- ▶ Principle of strong mathematical induction : Let T be a subset of \mathbb{N} with following properties:
 - ▶ (a) $1 \in T$.

Strong Mathematical Induction

- ▶ Principle of strong mathematical induction : Let T be a subset of \mathbb{N} with following properties:
 - ▶ (a) $1 \in T$.
 - ▶ (b) If $\{1, 2, \dots, k\} \subseteq T$ then $\{1, 2, \dots, k + 1\} \subseteq T$

Strong Mathematical Induction

- ▶ Principle of strong mathematical induction : Let T be a subset of \mathbb{N} with following properties:
 - ▶ (a) $1 \in T$.
 - ▶ (b) If $\{1, 2, \dots, k\} \subseteq T$ then $\{1, 2, \dots, k + 1\} \subseteq T$
 - ▶ Then $T = \mathbb{N}$.

Equivalence

- Theorem 4.1: The following properties of \mathbb{N} are equivalent:

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;
 - ▶ (3) \mathbb{N} satisfies the strong mathematical induction principle.

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;
 - ▶ (3) \mathbb{N} satisfies the strong mathematical induction principle.
- ▶ **Proof:** (1) \Rightarrow (2). Assume well ordering principle. Now suppose S is a subset of \mathbb{N} satisfying (i) and (ii). We want to show that $S = \mathbb{N}$. Suppose not. Then $R = \mathbb{N} \setminus S$ is non-empty.

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;
 - ▶ (3) \mathbb{N} satisfies the strong mathematical induction principle.
- ▶ **Proof:** (1) \Rightarrow (2). Assume well ordering principle. Now suppose S is a subset of \mathbb{N} satisfying (i) and (ii). We want to show that $S = \mathbb{N}$. Suppose not. Then $R = \mathbb{N} \setminus S$ is non-empty.
- ▶ By well ordering principle, R has a minimal element, say $m \in R$.

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;
 - ▶ (3) \mathbb{N} satisfies the strong mathematical induction principle.
- ▶ **Proof:** (1) \Rightarrow (2). Assume well ordering principle. Now suppose S is a subset of \mathbb{N} satisfying (i) and (ii). We want to show that $S = \mathbb{N}$. Suppose not. Then $R = \mathbb{N} \setminus S$ is non-empty.
- ▶ By well ordering principle, R has a minimal element, say $m \in R$.
- ▶ Now $m \neq 1$ as $1 \in S$. Therefore, $m - 1 \in \mathbb{N}$. As m is the minimal element of R , $m - 1 \in S$. By property (ii), this yields, $m = (m - 1) + 1 \in S$. This is a contradiction as $m \in R$ and $R \cap S = \emptyset$.

Equivalence

- ▶ **Theorem 4.1:** The following properties of \mathbb{N} are equivalent:
 - ▶ (1) \mathbb{N} satisfies well-ordering principle;
 - ▶ (2) \mathbb{N} satisfies the mathematical induction principle;
 - ▶ (3) \mathbb{N} satisfies the strong mathematical induction principle.
- ▶ **Proof:** (1) \Rightarrow (2). Assume well ordering principle. Now suppose S is a subset of \mathbb{N} satisfying (i) and (ii). We want to show that $S = \mathbb{N}$. Suppose not. Then $R = \mathbb{N} \setminus S$ is non-empty.
- ▶ By well ordering principle, R has a minimal element, say $m \in R$.
- ▶ Now $m \neq 1$ as $1 \in S$. Therefore, $m - 1 \in \mathbb{N}$. As m is the minimal element of R , $m - 1 \in S$. By property (ii), this yields, $m = (m - 1) + 1 \in S$. This is a contradiction as $m \in R$ and $R \cap S = \emptyset$.
- ▶ Hence $S = \mathbb{N}$.

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.
- ▶ Now suppose $T \subseteq \mathbb{N}$ satisfies (a), (b).

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.
- ▶ Now suppose $T \subseteq \mathbb{N}$ satisfies (a), (b).
- ▶ We want to show that $T = \mathbb{N}$.

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.
- ▶ Now suppose $T \subseteq \mathbb{N}$ satisfies (a), (b).
- ▶ We want to show that $T = \mathbb{N}$.
- ▶ Take $S = \{m \in \mathbb{N} : \{1, 2, \dots, m\} \subseteq T\}$.

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.
- ▶ Now suppose $T \subseteq \mathbb{N}$ satisfies (a), (b).
- ▶ We want to show that $T = \mathbb{N}$.
- ▶ Take $S = \{m \in \mathbb{N} : \{1, 2, \dots, m\} \subseteq T\}$.
- ▶ In view of (a), $1 \in T$ and hence $1 \in S$.

Proof continued

- ▶ (2) \Rightarrow (3). Assume induction principle.
- ▶ Now suppose $T \subseteq \mathbb{N}$ satisfies (a), (b).
- ▶ We want to show that $T = \mathbb{N}$.
- ▶ Take $S = \{m \in \mathbb{N} : \{1, 2, \dots, m\} \subseteq T\}$.
- ▶ In view of (a), $1 \in T$ and hence $1 \in S$.
- ▶ In view of (b), if $m \in S$ then $m + 1 \in S$. Then by the principle of induction $S = \mathbb{N}$. This clearly implies $T = \mathbb{N}$.

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.
- ▶ We may take $1 \in T$, otherwise, $1 \in R$, and 1 becomes the minimal element of R .

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.
- ▶ We may take $1 \in T$, otherwise, $1 \in R$, and 1 becomes the minimal element of R .
- ▶ If for $m \in \mathbb{N}$, $\{1, 2, \dots, m\} \subseteq T$, then $m + 1 \in T$, as otherwise, $m + 1$ is the minimal element of R .

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.
- ▶ We may take $1 \in T$, otherwise, $1 \in R$, and 1 becomes the minimal element of R .
- ▶ If for $m \in \mathbb{N}$, $\{1, 2, \dots, m\} \subseteq T$, then $m + 1 \in T$, as otherwise, $m + 1$ is the minimal element of R .
- ▶ Now by strong mathematical induction $T = \mathbb{N}$. This means that R is empty and we have a contradiction.

Proof Continued

- ▶ $(iii) \Rightarrow (i)$. Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.
- ▶ We may take $1 \in T$, otherwise, $1 \in R$, and 1 becomes the minimal element of R .
- ▶ If for $m \in \mathbb{N}$, $\{1, 2, \dots, m\} \subseteq T$, then $m + 1 \in T$, as otherwise, $m + 1$ is the minimal element of R .
- ▶ Now by strong mathematical induction $T = \mathbb{N}$. This means that R is empty and we have a contradiction.
- ▶ This proves that R has a minimal element.

Proof Continued

- ▶ (iii) \Rightarrow (i). Assume strong mathematical induction.
- ▶ Suppose R is a non-empty subset of \mathbb{N} .
- ▶ We want to show that R has a minimal element.
- ▶ Suppose not. Take $T = \mathbb{N} \setminus R$.
- ▶ We may take $1 \in T$, otherwise, $1 \in R$, and 1 becomes the minimal element of R .
- ▶ If for $m \in \mathbb{N}$, $\{1, 2, \dots, m\} \subseteq T$, then $m + 1 \in T$, as otherwise, $m + 1$ is the minimal element of R .
- ▶ Now by strong mathematical induction $T = \mathbb{N}$. This means that R is empty and we have a contradiction.
- ▶ This proves that R has a minimal element.
- ▶ **Note.** Here after we take it for granted that \mathbb{N} has all these three properties.

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.
- ▶ **Example:** Show that for all natural numbers n ,

$$1 + 2 + \cdots + n = \frac{n(n + 1)}{2}, \quad (P).$$

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.
- ▶ **Example:** Show that for all natural numbers n ,

$$1 + 2 + \cdots + n = \frac{n(n + 1)}{2}, \quad (P).$$

- ▶ **Proof:** Let S be the set of all natural numbers satisfying P .

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.
- ▶ **Example:** Show that for all natural numbers n ,

$$1 + 2 + \cdots + n = \frac{n(n + 1)}{2}, \quad (P).$$

- ▶ **Proof:** Let S be the set of all natural numbers satisfying P .
- ▶ Clearly $1 \in S$. If $m \in S$, then $1 + 2 + \cdots + m = \frac{m(m+1)}{2}$.

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.
- ▶ **Example:** Show that for all natural numbers n ,

$$1 + 2 + \cdots + n = \frac{n(n + 1)}{2}, \quad (P).$$

- ▶ **Proof:** Let S be the set of all natural numbers satisfying P .
- ▶ Clearly $1 \in S$. If $m \in S$, then $1 + 2 + \cdots + m = \frac{m(m+1)}{2}$.
- ▶ Now using induction hypothesis

$$1+2+\cdots+m+(m+1) = \frac{m(m+1)}{2} + (m+1) = \frac{(m+1)(m+2)}{2}.$$

Applications of Mathematical induction

- ▶ Suppose we have a property P defined for natural numbers, where (i) 1 satisfies property P ; (ii) If $m \in \mathbb{N}$ satisfies property P then $(m + 1)$ satisfies property P . Then property P is satisfied by all natural numbers.
- ▶ This is clear from the principle of mathematical induction as we can take $R = \{m \in \mathbb{N} : m \text{ satisfies property } P\}$.
- ▶ **Example:** Show that for all natural numbers n ,

$$1 + 2 + \cdots + n = \frac{n(n + 1)}{2}, \quad (P).$$

- ▶ **Proof:** Let S be the set of all natural numbers satisfying P .
- ▶ Clearly $1 \in S$. If $m \in S$, then $1 + 2 + \cdots + m = \frac{m(m+1)}{2}$.
- ▶ Now using induction hypothesis

$$1 + 2 + \cdots + m + (m+1) = \frac{m(m+1)}{2} + (m+1) = \frac{(m+1)(m+2)}{2}.$$

- ▶ Hence $m + 1 \in S$. Then by the principle of mathematical induction $S = \mathbb{N}$. In other words every natural number satisfies P .

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.
- ▶ Now assume the result for $n = m$ and we will prove it for $n = m + 1$.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.
- ▶ Now assume the result for $n = m$ and we will prove it for $n = m + 1$.
- ▶ Suppose the bag has $m + 1$ balls. Remove one ball.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.
- ▶ Now assume the result for $n = m$ and we will prove it for $n = m + 1$.
- ▶ Suppose the bag has $m + 1$ balls. Remove one ball.
- ▶ Now there are m balls in the bag, and all of them have the same color, say black, by the induction hypothesis.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.
- ▶ Now assume the result for $n = m$ and we will prove it for $n = m + 1$.
- ▶ Suppose the bag has $m + 1$ balls. Remove one ball.
- ▶ Now there are m balls in the bag, and all of them have the same color, say black, by the induction hypothesis.
- ▶ Now put the ball you have in hand in bag and remove some other. Clearly the ball you have removed must be black color. Consider the balls in the bag. Now there are only m of them, also have to be of same color, same as the one ball we removed.

A fake theorem

- ▶ "Theorem": If you take bag full of balls all of them would have same color.
- ▶ "Proof": We will prove this by induction.
- ▶ Let n be the number of balls in the bag.
- ▶ If $n = 1$, the claim is obvious. There is nothing to prove.
- ▶ Now assume the result for $n = m$ and we will prove it for $n = m + 1$.
- ▶ Suppose the bag has $m + 1$ balls. Remove one ball.
- ▶ Now there are m balls in the bag, and all of them have the same color, say black, by the induction hypothesis.
- ▶ Now put the ball you have in hand in bag and remove some other. Clearly the ball you have removed must be black color. Consider the balls in the bag. Now there are only m of them, also have to be of same color, same as the one ball we removed.
- ▶ So all the $m + 1$ balls are black. Quite Easily Done!

Pigeonhole principle

- Pigeonhole principle: Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

Pigeonhole principle

- Pigeonhole principle: Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

- You may think of n as the number of pigeons and m as the number of holes. When we put n pigeons in to m holes with $m < n$, at least one hole would have more than one pigeon.

Pigeonhole principle

- **Pigeonhole principle:** Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

- You may think of n as the number of pigeons and m as the number of holes. When we put n pigeons in to m holes with $m < n$, at least one hole would have more than one pigeon.
- In other words, if m hostel rooms are assigned to n students with $m < n$, then some students have to share rooms.

Pigeonhole principle

- **Pigeonhole principle:** Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

- You may think of n as the number of pigeons and m as the number of holes. When we put n pigeons in to m holes with $m < n$, at least one hole would have more than one pigeon.
- In other words, if m hostel rooms are assigned to n students with $m < n$, then some students have to share rooms.
- The pigeonhole principle can be proved using mathematical induction.

Pigeonhole principle

- **Pigeonhole principle:** Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

- You may think of n as the number of pigeons and m as the number of holes. When we put n pigeons in to m holes with $m < n$, at least one hole would have more than one pigeon.
- In other words, if m hostel rooms are assigned to n students with $m < n$, then some students have to share rooms.
- The pigeonhole principle can be proved using mathematical induction.
- You may see the Appendix of the book of Bartle and Sherbert.

Pigeonhole principle

- **Pigeonhole principle:** Let m, n be natural numbers and $m < n$.
Let

$$f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, m\}$$

be a function. Then f can not be injective.

- You may think of n as the number of pigeons and m as the number of holes. When we put n pigeons in to m holes with $m < n$, at least one hole would have more than one pigeon.
- In other words, if m hostel rooms are assigned to n students with $m < n$, then some students have to share rooms.
- The pigeonhole principle can be proved using mathematical induction.
- You may see the Appendix of the book of Bartle and Sherbert.
- **END OF LECTURE 4.**