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Lecture 5: Countable and Uncountable sets

I Definition 5.1 Let A,B be two non-empty sets. Then B is said
to be equipotent with A, if there exists a bijection f : A→ B.
Empty set is equipotent to only itself.

I Some say B has same cardinality as A if B is equipotent with
A.

I This means that B and A have ‘same number of elements’.
But currently we are not going to define ‘cardinality’ or
number of elements for infinite sets. For this reason we prefer
the terminology ‘equipotent’.

I We write A ∼ B if B is equipotent with A.
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Equivalence relation

I Theorem 5.2: Equipotency is an equivalence relation.

I Proof: Claim 1: For any set A, A ∼ A (Reflexivity).

I If A is non-empty, we just take the identity function
i : A→ A, defined by i(a) = a, ∀a ∈ A. If A is empty, A ∼ A
by definition. This proves the claim.

I Claim 2: If A ∼ B then B ∼ A (Symmetry).

I If f : A→ B is a bijection, then f −1 : B → A is a bijection.

I Indeed if f −1(x) = f −1(y), then applying f , x = y . This
shows that f −1 is injective.

I If a ∈ A, then a = f −1(b), where b = f (a). Hence f −1 is
surjective. Combining the two statements, f −1 is bijective.

I If A,B are empty then there is nothing to show.
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Proof Continued

I Claim 3: Suppose A ∼ B and B ∼ C , then A ∼ C
(Transitivity).

I Suppose f : A→ B is a bijection and g : B → C is a bijection.

I Then h := g ◦ f is a map from A to C .

I It is easy to see that h is a bijection.

I If A,B,C are empty, there is nothing to show.

I This completes the proof that equipotency (∼) is an
equivalence relation.
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Finite and infinite sets

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I From the pigeonhole principle, if A is equipotent with
{1, 2, . . . ,m} and with {1, 2, . . . , n} then m = n.

I This allows us to define the number of elements of a finite set
A as n, if A is equipotent with {1, 2, . . . n}. If A is empty then
the number of elements A is defined to be zero.

I Example 5.4: A = {a, b, c} and B = {x , y , z} have same
number of elements, namely 3, as both of them are
equipotent with {1, 2, 3}.

I Even for infinite sets A,B we may informally say that A and B
have same number of elements to mean that A and B are
equipotent, even though we have not defined number of
elements for infinite sets.
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Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.
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A story

I Hilbert’s Hotel: Hilbert built a large hotel, which has a room
with room number n for every natural number n.

I Here are some great features of this hotel.

I Flexibility: Suppose one day the hotel is houseful and a new
guest arrives.

I The hotel manager need not send away the new guest.

I The manager instructs the guest who is in room number 1 to
move to room number 2, and the one in room number 2 to
move to 3 and so on.

I This way no old guest has been asked to vacate, still room
number 1 is free.

I The manager can ask the new guest to take room number 1.
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More guests

I What if there are two new guests?

I Well, either we can go through the previous procedure of
accommodating one new person twice, or we can simply ask
the present guest at room number n to go to room number
n + 2 so that two rooms are freed up.

I What if there are infinitely many new guests? Say present
guests are g1, g2, . . . and new guests are h1, h2, . . . ,.

I We can ask present guest gn in room number n to go to room
number 2n, so that all odd numbered rooms are freed up.

I Then new guest hn can go to room number number (2n − 1)
and we are done.
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Countably infinite sets

I Example 5.7: The set N+ = {0, 1, 2, . . .} is countable.

I Indeed the function g : N+ → N defined by

g(n) = n + 1, ∀n ∈ N+

is easily seen to be a bijection.

I Example 5.8: The set Z of integers is countable:

I Define h : Z→ N by

h(n) =

{
2n if n ≥ 1

−2n + 1 if n ≤ 0

I You may verify that h is a bijection.
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More or less

I There are more even numbers or more natural numbers?

I E = {2, 4, 6, 8, . . .}
I N = {1, 2, 3, . . .}.
I On first look, it seems there are more natural numbers than

even numbers.

I However, g : N→ E defined by g(n) = 2n is a bijection. So
there are as many even numbers as there are natural numbers.
Not less! Note more!

I Moral of the story: For infinite sets, a subset may have as
many elements as the full set.
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Disjoint union

I Consider the set of odd natural numbers H = {1, 3, 5, . . .}
and the set of even natural numbers E = {2, 4, 6, . . .}.

I Now H,E have same number of elements and their union N
also has same number of elements!

I In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.
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Cartesian product

I Theorem 5.9: N× N is countable.

I Proof: Here is Cantor’s argument.
I Look at N× N.
I

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·

...
...

...
...

. . .

I Zig-zag counting.
I We count the elements here as

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), . . .,
I This way we are able to exhaust all the elements of N× N,

without repeating any element twice.
I In other words we have a bijection between N and N× N. In

particular, N× N is countable.
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Explicit bijections

I Exercise 5.10.1: Define g : N× N→ N by

g(m, n) = 2m−1(2n − 1), (m, n) ∈ N× N.

I Show that g is a bijection.

I Exercise 5.10.2: Define h : N× N→ N by

h(m, n) = m + [
(m + n − 1)(m + n − 2)

2
], (m, n) ∈ N× N.

I Show that h is a bijection.

I Challenge Problem 3: Obtain another ‘explicit’ bijection
between N× N and N different from g , h, g̃ , h̃, where
g̃(m, n) = g(n,m), and h̃(m, n) = h(n,m), ∀m, n ∈ N× N.

I This problem is not very clearly stated. But we leave it at
that.
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Schroder-Bernstein theorem

I The pigeon hole principle suggests that if we have an injective
function f : A→ B, then B should be having ‘more’ elements
than A.

I What if there is an injective function from A to B and another
injective function from B to A?

I Theorem 5.11 (Schroder-Bernstein theorem): Let A,B be
non-empty sets. Suppose there exist injective functions
f : A→ B and g : B → A. Then there exists a bijective
function h : A→ B. Consequently A and B are equipotent.

I Exercise 5.12: Prove Schroder-Bernstein theorem. If you are
unable to prove it yourself, discuss with your friends. Still if
you can’t do it, get a proof from the internet and understand
it!

I END OF LECTURE 5
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