

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 5: Countable and Uncountable sets

- ▶ **Definition 5.1** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$.
Empty set is equipotent to only itself.

Lecture 5: Countable and Uncountable sets

- ▶ **Definition 5.1** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ Some say B has same cardinality as A if B is equipotent with A .

Lecture 5: Countable and Uncountable sets

- ▶ **Definition 5.1** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ Some say B has same cardinality as A if B is equipotent with A .
- ▶ This means that B and A have 'same number of elements'. But currently we are not going to define 'cardinality' or number of elements for infinite sets. For this reason we prefer the terminology 'equipotent'.

Lecture 5: Countable and Uncountable sets

- ▶ **Definition 5.1** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ Some say B has same cardinality as A if B is equipotent with A .
- ▶ This means that B and A have 'same number of elements'. But currently we are not going to define 'cardinality' or number of elements for infinite sets. For this reason we prefer the terminology 'equipotent'.
- ▶ We write $A \sim B$ if B is equipotent with A .

Equivalence relation

- Theorem 5.2: Equipotency is an equivalence relation.

Equivalence relation

- **Theorem 5.2:** Equipotency is an equivalence relation.
- **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
- ▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
- ▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.
- ▶ Claim 2: If $A \sim B$ then $B \sim A$ (Symmetry).

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
- ▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.
- ▶ Claim 2: If $A \sim B$ then $B \sim A$ (Symmetry).
- ▶ If $f : A \rightarrow B$ is a bijection, then $f^{-1} : B \rightarrow A$ is a bijection.

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
- ▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.
- ▶ Claim 2: If $A \sim B$ then $B \sim A$ (Symmetry).
- ▶ If $f : A \rightarrow B$ is a bijection, then $f^{-1} : B \rightarrow A$ is a bijection.
- ▶ Indeed if $f^{-1}(x) = f^{-1}(y)$, then applying f , $x = y$. This shows that f^{-1} is injective.

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.
- ▶ Claim 2: If $A \sim B$ then $B \sim A$ (Symmetry).
▶ If $f : A \rightarrow B$ is a bijection, then $f^{-1} : B \rightarrow A$ is a bijection.
▶ Indeed if $f^{-1}(x) = f^{-1}(y)$, then applying f , $x = y$. This shows that f^{-1} is injective.
▶ If $a \in A$, then $a = f^{-1}(b)$, where $b = f(a)$. Hence f^{-1} is surjective. Combining the two statements, f^{-1} is bijective.

Equivalence relation

- ▶ **Theorem 5.2:** Equipotency is an equivalence relation.
- ▶ **Proof:** Claim 1: For any set A , $A \sim A$ (Reflexivity).
- ▶ If A is non-empty, we just take the identity function $i : A \rightarrow A$, defined by $i(a) = a$, $\forall a \in A$. If A is empty, $A \sim A$ by definition. This proves the claim.
- ▶ Claim 2: If $A \sim B$ then $B \sim A$ (Symmetry).
- ▶ If $f : A \rightarrow B$ is a bijection, then $f^{-1} : B \rightarrow A$ is a bijection.
- ▶ Indeed if $f^{-1}(x) = f^{-1}(y)$, then applying f , $x = y$. This shows that f^{-1} is injective.
- ▶ If $a \in A$, then $a = f^{-1}(b)$, where $b = f(a)$. Hence f^{-1} is surjective. Combining the two statements, f^{-1} is bijective.
- ▶ If A, B are empty then there is nothing to show.

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).
- ▶ Suppose $f : A \rightarrow B$ is a bijection and $g : B \rightarrow C$ is a bijection.

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).
- ▶ Suppose $f : A \rightarrow B$ is a bijection and $g : B \rightarrow C$ is a bijection.
- ▶ Then $h := g \circ f$ is a map from A to C .

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).
- ▶ Suppose $f : A \rightarrow B$ is a bijection and $g : B \rightarrow C$ is a bijection.
- ▶ Then $h := g \circ f$ is a map from A to C .
- ▶ It is easy to see that h is a bijection.

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).
- ▶ Suppose $f : A \rightarrow B$ is a bijection and $g : B \rightarrow C$ is a bijection.
- ▶ Then $h := g \circ f$ is a map from A to C .
- ▶ It is easy to see that h is a bijection.
- ▶ If A, B, C are empty, there is nothing to show.

Proof Continued

- ▶ Claim 3: Suppose $A \sim B$ and $B \sim C$, then $A \sim C$ (Transitivity).
- ▶ Suppose $f : A \rightarrow B$ is a bijection and $g : B \rightarrow C$ is a bijection.
- ▶ Then $h := g \circ f$ is a map from A to C .
- ▶ It is easy to see that h is a bijection.
- ▶ If A, B, C are empty, there is nothing to show.
- ▶ This completes the proof that equipotency (\sim) is an equivalence relation.

Finite and infinite sets

- ▶ Definition 5.3: A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.

Finite and infinite sets

- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ From the pigeonhole principle, if A is equipotent with $\{1, 2, \dots, m\}$ and with $\{1, 2, \dots, n\}$ then $m = n$.

Finite and infinite sets

- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ From the pigeonhole principle, if A is equipotent with $\{1, 2, \dots, m\}$ and with $\{1, 2, \dots, n\}$ then $m = n$.
- ▶ This allows us to define the number of elements of a finite set A as n , if A is equipotent with $\{1, 2, \dots, n\}$. If A is empty then the number of elements A is defined to be zero.

Finite and infinite sets

- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ From the pigeonhole principle, if A is equipotent with $\{1, 2, \dots, m\}$ and with $\{1, 2, \dots, n\}$ then $m = n$.
- ▶ This allows us to define the number of elements of a finite set A as n , if A is equipotent with $\{1, 2, \dots, n\}$. If A is empty then the number of elements A is defined to be zero.
- ▶ **Example 5.4:** $A = \{a, b, c\}$ and $B = \{x, y, z\}$ have same number of elements, namely 3, as both of them are equipotent with $\{1, 2, 3\}$.

Finite and infinite sets

- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ From the pigeonhole principle, if A is equipotent with $\{1, 2, \dots, m\}$ and with $\{1, 2, \dots, n\}$ then $m = n$.
- ▶ This allows us to define the number of elements of a finite set A as n , if A is equipotent with $\{1, 2, \dots, n\}$. If A is empty then the number of elements A is defined to be zero.
- ▶ **Example 5.4:** $A = \{a, b, c\}$ and $B = \{x, y, z\}$ have same number of elements, namely 3, as both of them are equipotent with $\{1, 2, 3\}$.
- ▶ Even for infinite sets A, B we may informally say that A and B have same number of elements to mean that A and B are equipotent, even though we have not defined number of elements for infinite sets.

Countable sets

- Theorem 5.5: The set of natural numbers \mathbb{N} is infinite:

Countable sets

- ▶ **Theorem 5.5:** The set of natural numbers \mathbb{N} is infinite:
- ▶ **Proof:** Suppose $g : \mathbb{N} \rightarrow \{1, 2, \dots, n\}$ is a bijection for some $n \in \mathbb{N}$. In particular g is injective.

Countable sets

- ▶ **Theorem 5.5:** The set of natural numbers \mathbb{N} is infinite:
- ▶ **Proof:** Suppose $g : \mathbb{N} \rightarrow \{1, 2, \dots, n\}$ is a bijection for some $n \in \mathbb{N}$. In particular g is injective.
- ▶ Taking any $m > n$ and restricting g to $\{1, 2, \dots, m\}$ we get an injective map, as restriction of any injective map to a non-empty subset in the domain is injective. This contradicts pigeonhole principle. Hence \mathbb{N} is infinite.

Countable sets

- ▶ **Theorem 5.5:** The set of natural numbers \mathbb{N} is infinite:
- ▶ **Proof:** Suppose $g : \mathbb{N} \rightarrow \{1, 2, \dots, n\}$ is a bijection for some $n \in \mathbb{N}$. In particular g is injective.
- ▶ Taking any $m > n$ and restricting g to $\{1, 2, \dots, m\}$ we get an injective map, as restriction of any injective map to a non-empty subset in the domain is injective. This contradicts pigeonhole principle. Hence \mathbb{N} is infinite.
- ▶ **Definition 5.6:** A set A is said to be **countable** if it is equipotent with \mathbb{N} or if it is finite. It is said to be **countably infinite** if is countable and not finite. A set A is said to be **uncountable** if it is not countable.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.
- ▶ **Flexibility:** Suppose one day the hotel is houseful and a new guest arrives.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.
- ▶ **Flexibility:** Suppose one day the hotel is houseful and a new guest arrives.
- ▶ The hotel manager need not send away the new guest.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.
- ▶ **Flexibility:** Suppose one day the hotel is houseful and a new guest arrives.
- ▶ The hotel manager need not send away the new guest.
- ▶ The manager instructs the guest who is in room number 1 to move to room number 2, and the one in room number 2 to move to 3 and so on.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.
- ▶ **Flexibility:** Suppose one day the hotel is houseful and a new guest arrives.
- ▶ The hotel manager need not send away the new guest.
- ▶ The manager instructs the guest who is in room number 1 to move to room number 2, and the one in room number 2 to move to 3 and so on.
- ▶ This way no old guest has been asked to vacate, still room number 1 is free.

A story

- ▶ **Hilbert's Hotel:** Hilbert built a large hotel, which has a room with room number n for every natural number n .
- ▶ Here are some great features of this hotel.
- ▶ **Flexibility:** Suppose one day the hotel is houseful and a new guest arrives.
- ▶ The hotel manager need not send away the new guest.
- ▶ The manager instructs the guest who is in room number 1 to move to room number 2, and the one in room number 2 to move to 3 and so on.
- ▶ This way no old guest has been asked to vacate, still room number 1 is free.
- ▶ The manager can ask the new guest to take room number 1.

More guests

- ▶ What if there are two new guests?

More guests

- ▶ What if there are two new guests?
- ▶ Well, either we can go through the previous procedure of accommodating one new person twice, or we can simply ask the present guest at room number n to go to room number $n + 2$ so that two rooms are freed up.

More guests

- ▶ What if there are two new guests?
- ▶ Well, either we can go through the previous procedure of accommodating one new person twice, or we can simply ask the present guest at room number n to go to room number $n + 2$ so that two rooms are freed up.
- ▶ What if there are infinitely many new guests? Say present guests are g_1, g_2, \dots and new guests are h_1, h_2, \dots .

More guests

- ▶ What if there are two new guests?
- ▶ Well, either we can go through the previous procedure of accommodating one new person twice, or we can simply ask the present guest at room number n to go to room number $n + 2$ so that two rooms are freed up.
- ▶ What if there are infinitely many new guests? Say present guests are g_1, g_2, \dots and new guests are h_1, h_2, \dots .
- ▶ We can ask present guest g_n in room number n to go to room number $2n$, so that all odd numbered rooms are freed up.

More guests

- ▶ What if there are two new guests?
- ▶ Well, either we can go through the previous procedure of accommodating one new person twice, or we can simply ask the present guest at room number n to go to room number $n + 2$ so that two rooms are freed up.
- ▶ What if there are infinitely many new guests? Say present guests are g_1, g_2, \dots and new guests are h_1, h_2, \dots .
- ▶ We can ask present guest g_n in room number n to go to room number $2n$, so that all odd numbered rooms are freed up.
- ▶ Then new guest h_n can go to room number $(2n - 1)$ and we are done.

Countably infinite sets

- ▶ Example 5.7: The set $\mathbb{N}_+ = \{0, 1, 2, \dots\}$ is countable.

Countably infinite sets

- ▶ **Example 5.7:** The set $\mathbb{N}_+ = \{0, 1, 2, \dots\}$ is countable.
- ▶ Indeed the function $g : \mathbb{N}_+ \rightarrow \mathbb{N}$ defined by

$$g(n) = n + 1, \quad \forall n \in \mathbb{N}_+$$

is easily seen to be a bijection.

Countably infinite sets

- ▶ **Example 5.7:** The set $\mathbb{N}_+ = \{0, 1, 2, \dots\}$ is countable.
- ▶ Indeed the function $g : \mathbb{N}_+ \rightarrow \mathbb{N}$ defined by

$$g(n) = n + 1, \quad \forall n \in \mathbb{N}_+$$

is easily seen to be a bijection.

- ▶ **Example 5.8:** The set \mathbb{Z} of integers is countable:

Countably infinite sets

- ▶ **Example 5.7:** The set $\mathbb{N}_+ = \{0, 1, 2, \dots\}$ is countable.
- ▶ Indeed the function $g : \mathbb{N}_+ \rightarrow \mathbb{N}$ defined by

$$g(n) = n + 1, \quad \forall n \in \mathbb{N}_+$$

is easily seen to be a bijection.

- ▶ **Example 5.8:** The set \mathbb{Z} of integers is countable:
- ▶ Define $h : \mathbb{Z} \rightarrow \mathbb{N}$ by

$$h(n) = \begin{cases} 2n & \text{if } n \geq 1 \\ -2n + 1 & \text{if } n \leq 0 \end{cases}$$

Countably infinite sets

- ▶ **Example 5.7:** The set $\mathbb{N}_+ = \{0, 1, 2, \dots\}$ is countable.
- ▶ Indeed the function $g : \mathbb{N}_+ \rightarrow \mathbb{N}$ defined by

$$g(n) = n + 1, \quad \forall n \in \mathbb{N}_+$$

is easily seen to be a bijection.

- ▶ **Example 5.8:** The set \mathbb{Z} of integers is countable:
- ▶ Define $h : \mathbb{Z} \rightarrow \mathbb{N}$ by

$$h(n) = \begin{cases} 2n & \text{if } n \geq 1 \\ -2n + 1 & \text{if } n \leq 0 \end{cases}$$

- ▶ You may verify that h is a bijection.

More or less

- ▶ There are more even numbers or more natural numbers?

More or less

- ▶ There are more even numbers or more natural numbers?
- ▶ $E = \{2, 4, 6, 8, \dots\}$

More or less

- ▶ There are more even numbers or more natural numbers?
- ▶ $E = \{2, 4, 6, 8, \dots\}$
- ▶ $\mathbb{N} = \{1, 2, 3, \dots\}$.

More or less

- ▶ There are more even numbers or more natural numbers?
- ▶ $E = \{2, 4, 6, 8, \dots\}$
- ▶ $\mathbb{N} = \{1, 2, 3, \dots\}$.
- ▶ On first look, it seems there are more natural numbers than even numbers.

More or less

- ▶ There are more even numbers or more natural numbers?
- ▶ $E = \{2, 4, 6, 8, \dots\}$
- ▶ $\mathbb{N} = \{1, 2, 3, \dots\}$.
- ▶ On first look, it seems there are more natural numbers than even numbers.
- ▶ However, $g : \mathbb{N} \rightarrow E$ defined by $g(n) = 2n$ is a bijection. So there are as many even numbers as there are natural numbers. Not less! Note more!

More or less

- ▶ There are more even numbers or more natural numbers?
- ▶ $E = \{2, 4, 6, 8, \dots\}$
- ▶ $\mathbb{N} = \{1, 2, 3, \dots\}$.
- ▶ On first look, it seems there are more natural numbers than even numbers.
- ▶ However, $g : \mathbb{N} \rightarrow E$ defined by $g(n) = 2n$ is a bijection. So there are as many even numbers as there are natural numbers. Not less! Note more!
- ▶ Moral of the story: For infinite sets, a subset may have as many elements as the full set.

Disjoint union

- ▶ Consider the set of odd natural numbers $H = \{1, 3, 5, \dots\}$ and the set of even natural numbers $E = \{2, 4, 6, \dots\}$.

Disjoint union

- ▶ Consider the set of odd natural numbers $H = \{1, 3, 5, \dots\}$ and the set of even natural numbers $E = \{2, 4, 6, \dots\}$.
- ▶ Now H, E have same number of elements and their union \mathbb{N} also has same number of elements!

Disjoint union

- ▶ Consider the set of odd natural numbers $H = \{1, 3, 5, \dots\}$ and the set of even natural numbers $E = \{2, 4, 6, \dots\}$.
- ▶ Now H, E have same number of elements and their union \mathbb{N} also has same number of elements!
- ▶ In other words for infinite sets disjoint union of sets of equal number of elements may again have same number of elements.

Cartesian product

- Theorem 5.9: $\mathbb{N} \times \mathbb{N}$ is countable.

Cartesian product

- Theorem 5.9: $\mathbb{N} \times \mathbb{N}$ is countable.
- Proof: Here is Cantor's argument.

Cartesian product

- ▶ **Theorem 5.9:** $\mathbb{N} \times \mathbb{N}$ is countable.
- ▶ **Proof:** Here is Cantor's argument.
- ▶ Look at $\mathbb{N} \times \mathbb{N}$.

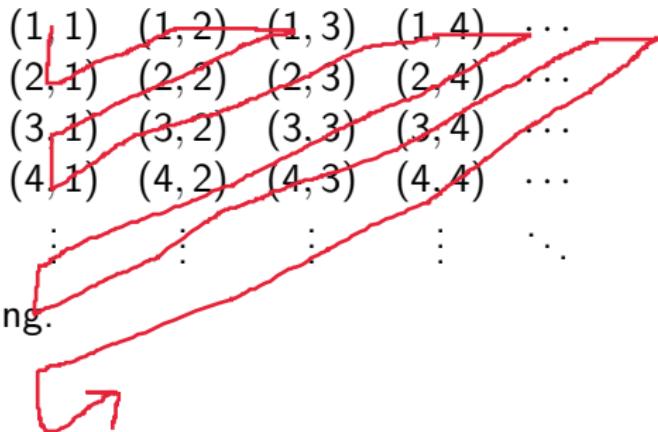
Cartesian product

- **Theorem 5.9:** $\mathbb{N} \times \mathbb{N}$ is countable.
- **Proof:** Here is Cantor's argument.
- Look at $\mathbb{N} \times \mathbb{N}$.
-

(1, 1)	(1, 2)	(1, 3)	(1, 4)	...
(2, 1)	(2, 2)	(2, 3)	(2, 4)	...
(3, 1)	(3, 2)	(3, 3)	(3, 4)	...
(4, 1)	(4, 2)	(4, 3)	(4, 4)	...
:	:	:	:	..

Cartesian product

- Theorem 5.9: $\mathbb{N} \times \mathbb{N}$ is countable.
- Proof: Here is Cantor's argument.
- Look at $\mathbb{N} \times \mathbb{N}$.
-



- Zig-zag counting.

Cartesian product

- **Theorem 5.9:** $\mathbb{N} \times \mathbb{N}$ is countable.
- **Proof:** Here is Cantor's argument.
- Look at $\mathbb{N} \times \mathbb{N}$.
-

(1, 1)	(1, 2)	(1, 3)	(1, 4)	...
(2, 1)	(2, 2)	(2, 3)	(2, 4)	...
(3, 1)	(3, 2)	(3, 3)	(3, 4)	...
(4, 1)	(4, 2)	(4, 3)	(4, 4)	...
:	:	:	:	..

- Zig-zag counting.
- We count the elements here as
 $(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), \dots$

Cartesian product

- **Theorem 5.9:** $\mathbb{N} \times \mathbb{N}$ is countable.
- **Proof:** Here is Cantor's argument.
- Look at $\mathbb{N} \times \mathbb{N}$.
-

(1, 1)	(1, 2)	(1, 3)	(1, 4)	...
(2, 1)	(2, 2)	(2, 3)	(2, 4)	...
(3, 1)	(3, 2)	(3, 3)	(3, 4)	...
(4, 1)	(4, 2)	(4, 3)	(4, 4)	...
:	:	:	:	..

- Zig-zag counting.
- We count the elements here as
 $(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), \dots$
- This way we are able to exhaust all the elements of $\mathbb{N} \times \mathbb{N}$, without repeating any element twice.

Cartesian product

- **Theorem 5.9:** $\mathbb{N} \times \mathbb{N}$ is countable.
- **Proof:** Here is Cantor's argument.
- Look at $\mathbb{N} \times \mathbb{N}$.
-

(1, 1)	(1, 2)	(1, 3)	(1, 4)	...
(2, 1)	(2, 2)	(2, 3)	(2, 4)	...
(3, 1)	(3, 2)	(3, 3)	(3, 4)	...
(4, 1)	(4, 2)	(4, 3)	(4, 4)	...
:	:	:	:	..

- Zig-zag counting.
- We count the elements here as
 $(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), \dots$
- This way we are able to exhaust all the elements of $\mathbb{N} \times \mathbb{N}$, without repeating any element twice.
- In other words we have a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. In particular, $\mathbb{N} \times \mathbb{N}$ is countable.

Explicit bijections

► Exercise 5.10.1: Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

Explicit bijections

- ▶ Exercise 5.10.1: Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- ▶ Show that g is a bijection.

Explicit bijections

- **Exercise 5.10.1:** Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- Show that g is a bijection.
- **Exercise 5.10.2:** Define $h : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$h(m, n) = m + \left[\frac{(m+n-1)(m+n-2)}{2} \right], \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

Explicit bijections

- ▶ **Exercise 5.10.1:** Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- ▶ Show that g is a bijection.
- ▶ **Exercise 5.10.2:** Define $h : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$h(m, n) = m + \left[\frac{(m+n-1)(m+n-2)}{2} \right], \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- ▶ Show that h is a bijection.

Explicit bijections

- ▶ **Exercise 5.10.1:** Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- ▶ Show that g is a bijection.
- ▶ **Exercise 5.10.2:** Define $h : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$h(m, n) = m + \left[\frac{(m+n-1)(m+n-2)}{2} \right], \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- ▶ Show that h is a bijection.
- ▶ **Challenge Problem 3:** Obtain another 'explicit' bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} different from $g, h, \tilde{g}, \tilde{h}$, where $\tilde{g}(m, n) = g(n, m)$, and $\tilde{h}(m, n) = h(n, m)$, $\forall m, n \in \mathbb{N} \times \mathbb{N}$.

Explicit bijections

- **Exercise 5.10.1:** Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$g(m, n) = 2^{m-1}(2n - 1), \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- Show that g is a bijection.
- **Exercise 5.10.2:** Define $h : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by

$$h(m, n) = m + \left[\frac{(m+n-1)(m+n-2)}{2} \right], \quad (m, n) \in \mathbb{N} \times \mathbb{N}.$$

- Show that h is a bijection.
- **Challenge Problem 3:** Obtain another 'explicit' bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} different from $g, h, \tilde{g}, \tilde{h}$, where $\tilde{g}(m, n) = g(n, m)$, and $\tilde{h}(m, n) = h(n, m)$, $\forall m, n \in \mathbb{N} \times \mathbb{N}$.
- This problem is not very clearly stated. But we leave it at that.

Schroder-Bernstein theorem

- The pigeon hole principle suggests that if we have an injective function $f : A \rightarrow B$, then B should be having 'more' elements than A .

Schroder-Bernstein theorem

- ▶ The pigeon hole principle suggests that if we have an injective function $f : A \rightarrow B$, then B should be having 'more' elements than A .
- ▶ What if there is an injective function from A to B and another injective function from B to A ?

Schroder-Bernstein theorem

- ▶ The pigeon hole principle suggests that if we have an injective function $f : A \rightarrow B$, then B should be having 'more' elements than A .
- ▶ What if there is an injective function from A to B and another injective function from B to A ?
- ▶ **Theorem 5.11 (Schroder-Bernstein theorem):** Let A, B be non-empty sets. Suppose there exist injective functions $f : A \rightarrow B$ and $g : B \rightarrow A$. Then there exists a bijective function $h : A \rightarrow B$. Consequently A and B are equipotent.

Schroder-Bernstein theorem

- ▶ The pigeon hole principle suggests that if we have an injective function $f : A \rightarrow B$, then B should be having 'more' elements than A .
- ▶ What if there is an injective function from A to B and another injective function from B to A ?
- ▶ **Theorem 5.11 (Schroder-Bernstein theorem):** Let A, B be non-empty sets. Suppose there exist injective functions $f : A \rightarrow B$ and $g : B \rightarrow A$. Then there exists a bijective function $h : A \rightarrow B$. Consequently A and B are equipotent.
- ▶ **Exercise 5.12:** Prove Schroder-Bernstein theorem. If you are unable to prove it yourself, discuss with your friends. Still if you can't do it, get a proof from the internet and understand it!

Schroder-Bernstein theorem

- ▶ The pigeon hole principle suggests that if we have an injective function $f : A \rightarrow B$, then B should be having 'more' elements than A .
- ▶ What if there is an injective function from A to B and another injective function from B to A ?
- ▶ **Theorem 5.11 (Schroder-Bernstein theorem):** Let A, B be non-empty sets. Suppose there exist injective functions $f : A \rightarrow B$ and $g : B \rightarrow A$. Then there exists a bijective function $h : A \rightarrow B$. Consequently A and B are equipotent.
- ▶ **Exercise 5.12:** Prove Schroder-Bernstein theorem. If you are unable to prove it yourself, discuss with your friends. Still if you can't do it, get a proof from the internet and understand it!
- ▶ **END OF LECTURE 5**