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» Definition 5.1 Let A, B be two non-empty sets. Then B is said
to be equipotent with A, if there exists a bijection f : A — B.
Empty set is equipotent to only itself.

» Some say B has same cardinality as A if B is equipotent with
A.

» This means that B and A have ‘same number of elements’.
But currently we are not going to define ‘cardinality’ or
number of elements for infinite sets. For this reason we prefer
the terminology ‘equipotent’.

> We write A ~ B if B is equipotent with A.
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Proof: Claim 1: For any set A, A ~ A (Reflexivity).

> If Ais non-empty, we just take the identity function
i:A— A, defined by i(a) =a, Vac A. If Ais empty, A~ A
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» Claim 2: If A~ B then B ~ A (Symmetry).

If f: A— B is a bijection, then f~1: B — A'is a bijection.

» Indeed if f~1(x) = f~1(y), then applying f, x = y. This
shows that f~1 is injective.

v

v



Equivalence relation

> Theorem 5.2: Equipotency is an equivalence relation.
Proof: Claim 1: For any set A, A ~ A (Reflexivity).

v

> If Ais non-empty, we just take the identity function
i:A— A, defined by i(a) =a, Vac A. If Ais empty, A~ A
by definition. This proves the claim.

» Claim 2: If A~ B then B ~ A (Symmetry).

» If f: A— B is a bijection, then f~1: B — A is a bijection.

» Indeed if f~1(x) = f~1(y), then applying f, x = y. This
shows that f~1 is injective.

» If a € A, then a= f~1(b), where b = f(a). Hence f~1is
surjective. Combining the two statements, ! is bijective.



Equivalence relation

> Theorem 5.2: Equipotency is an equivalence relation.
Proof: Claim 1: For any set A, A ~ A (Reflexivity).
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> If Ais non-empty, we just take the identity function
i:A— A, defined by i(a) =a, Vac A. If Ais empty, A~ A
by definition. This proves the claim.

» Claim 2: If A~ B then B ~ A (Symmetry).

» If f: A— B is a bijection, then f~1: B — A is a bijection.

» Indeed if f~1(x) = f~1(y), then applying f, x = y. This
shows that f~1 is injective.

» If a € A, then a= f~1(b), where b = f(a). Hence f~1is
surjective. Combining the two statements, ! is bijective.

> If A, B are empty then there is nothing to show.
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Proof Continued

v

Claim 3: Suppose A~ B and B ~ C, then A~ C
(Transitivity).

Suppose f : A — B is a bijection and g : B — C is a bijection.
Then h:=gof isa map from A to C.

It is easy to see that h is a bijection.

If A, B, C are empty, there is nothing to show.

vVvyYyyvyy

This completes the proof that equipotency (~) is an
equivalence relation.
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Finite and infinite sets

» Definition 5.3: A set A is said to be finite if it is equipotent
with {1,2,...,n} for some n € N or it is empty. A set A is
said to be infinite if it is not finite.

» From the pigeonhole principle, if A is equipotent with
{1,2,...,m} and with {1,2,...,n} then m = n.

» This allows us to define the number of elements of a finite set
A as n, if Ais equipotent with {1,2,...n}. If Ais empty then
the number of elements A is defined to be zero.

» Example 5.4: A={a,b,c} and B = {x,y,z} have same
number of elements, namely 3, as both of them are
equipotent with {1,2,3}.

» Even for infinite sets A, B we may informally say that A and B
have same number of elements to mean that A and B are
equipotent, even though we have not defined number of
elements for infinite sets.
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Countable sets

» Theorem 5.5: The set of natural numbers N is infinite:

» Proof: Suppose g : N — {1,2,...n} is a bijection for some
n € N. In particular g is injective.

» Taking any m > n and restricting g to {1,2,..., m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

» Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.
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A story

Hilbert's Hotel: Hilbert built a large hotel, which has a room
with room number n for every natural number n.

Here are some great features of this hotel.

Flexibility: Suppose one day the hotel is houseful and a new
guest arrives.

The hotel manager need not send away the new guest.

The manager instructs the guest who is in room number 1 to
move to room number 2, and the one in room number 2 to
move to 3 and so on.

This way no old guest has been asked to vacate, still room
number 1 is free.

The manager can ask the new guest to take room number 1.
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More guests

> What if there are two new guests?

> Well, either we can go through the previous procedure of
accommodating one new person twice, or we can simply ask
the present guest at room number n to go to room number
n 4+ 2 so that two rooms are freed up.

» What if there are infinitely many new guests? Say present
guests are g1, &2, ... and new guests are hy, ho, .. ...

> We can ask present guest g, in room number n to go to room
number 2n, so that all odd numbered rooms are freed up.

» Then new guest h, can go to room number number (2n — 1)
and we are done.
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Countably infinite sets

» Example 5.7: The set N, = {0,1,2,...} is countable.
» Indeed the function g : Ny — N defined by

g(n)=n+1, Vne Ny

is easily seen to be a bijection.
» Example 5.8: The set Z of integers is countable:
» Define h:Z — N by

2n if n>1
h(”)_{ —2n4+1 if n<0

» You may verify that h is a bijection.
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There are more even numbers or more natural numbers?
E=1{2,4,6,8,...}

N={1,2,3,...}.

On first look, it seems there are more natural numbers than
even numbers.

However, g : N — E defined by g(n) = 2n is a bijection. So
there are as many even numbers as there are natural numbers.
Not less! Note more!

Moral of the story: For infinite sets, a subset may have as
many elements as the full set.
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Disjoint union

» Consider the set of odd natural numbers H = {1,3,5,...}
and the set of even natural numbers E = {2,4,6,...}.

» Now H, E have same number of elements and their union N
also has same number of elements!

» In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.
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Cartesian product

» Theorem 5.9: N x N is countable.

» Proof: Here is Cantor's argument.

» Look at N x N.

>
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)

» Zig-zag counting.
» We count the elements here as

(1,1),(2,1),(1,2),(1,3),(2,2),(3,1),(4,1),(3,2),(2,3),(1,4), ...

» This way we are able to exhaust all the elements of N x N,
without repeating any element twice.

» In other words we have a bijection between N and N x N. In
particular, N x N is countable.
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Explicit bijections

» Exercise 5.10.1: Define g : N x N — N by
g(m,n)=2""12n-1), (mn)eNxN.

> Show that g is a bijection.
» Exercise 5.10.2: Define h: N x N — N by

(m+n—=1)(m+n-2)

h(m,n) = m+ | >

], (mn)eNxN.

» Show that h is a bijection.

» Challenge Problem 3: Obtain another ‘explicit’ bijection
between N x N and N different from g, h, g, h, where
g(m,n) = g(n,m), and h(m,n) = h(n,m), ¥Ym,ne€ N x N.

» This problem is not very clearly stated. But we leave it at
that.
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» The pigeon hole principle suggests that if we have an injective
function f : A — B, then B should be having ‘more’ elements
than A.

» What if there is an injective function from A to B and another
injective function from B to A?

» Theorem 5.11 (Schroder-Bernstein theorem): Let A, B be
non-empty sets. Suppose there exist injective functions
f:A— Band g: B— A. Then there exists a bijective
function h: A — B. Consequently A and B are equipotent.

» Exercise 5.12: Prove Schroder-Bernstein theorem. If you are
unable to prove it yourself, discuss with your friends. Still if
you can't do it, get a proof from the internet and understand
it!
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