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Lecture 6: Uncountable sets

I To begin with we recall a few definitions from last lecture.

I Definition 5.1: Let A,B be two non-empty sets. Then B is
said to be equipotent with A, if there exists a bijection
f : A→ B. Empty set is equipotent to only itself.

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

I We saw that N,Z,N× N are all countable.

I Now it is time to see some uncountable sets.
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Binary sequences

I Let B = {(w1,w2,w3, . . .) : wj ∈ {0, 1}}.

I Each wj is either 0 or 1. We call (w1,w2, . . .) as a binary
sequence.

I B is the set of all possible binary sequences. (Warning: This
notation is not standard.)

I Theorem 6.1: B is uncountable.

I The proof is by contradiction and the argument is known as
Cantor’s diagonal argument.

I Proof: Suppose that there exists a bijection f : N→ B. In
particular f is a surjection.

I Then for every i ∈ N, f (i) is a binary sequence.
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Proof Continued

I Suppose f (i) = (wi1,wi2,wi3, . . .)

I Each wij is either 0 or 1.

I Look at the infinite matrix:

w11 w12 w13 w14 · · ·
w21 w22 w23 w24 · · ·
w31 w32 w33 w34 · · ·
w41 w42 w43 w44 · · ·

...
...

...
...

. . .

I formed by writing down f (1), f (2), . . . as rows.

I Form a binary sequence using the diagonal entries:
(w11,w22,w33, . . .).

I We flip the entries to get a new binary sequence,
v = (v1, v2, v3, . . .) where vj = 1− wjj for every j ∈ N. Now
we claim that v is not in the range of f .
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Proof Continued

I v 6= f (1) as v = (v1, v2, . . .), f (1) = (w11,w12, . . .) and
v1 = 1− w11 6= w11. So the first entry does not match.

I v 6= f (2) as v = (v1, v2, . . .), f (2) = (w21,w22, . . .) and
v2 = 1− w22 6= w22. So the second entry does not match.

I In fact, for every i ∈ N, f (i) 6= v as vi 6= wii . Here i th entry
does not match.

I Therefore v is not in the range of f .

I Actually, we have shown that no function f : N→ B can be
surjective.

I In particular B is not countable.
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Power sets

I Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) = {B : B ⊆ A}.

I In other words, the power set of A is the set of all subsets of
A.

I If A = ∅, then P(A) = {∅}.
I If A = {1}, then P(A) = {∅, {1}}.
I If A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.
I If A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
I Exercise: If A is a finite set with n elements, show that P(A)

has 2n elements.

I We guess that P(A) should be having ‘more’ elements than A.
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Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.
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I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).
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Proof continued

I Recall: D = {a ∈ A : a /∈ f (a)}.
I Assume that D is in the range of f .

I So D = f (a0) for some a0 ∈ A.

I Now either a0 ∈ D or a0 /∈ D.

I If a0 ∈ D, then by the definition of D,

a0 /∈ f (a0).

I But f (a0) = D. Hence a0 /∈ D. This contradicts a0 ∈ D.

I On the other hand, if a0 is not in D, as D = f (a0), a0 is not
in f (a0). Then by the definition of D, a0 is in D. Once again
we have a contradiction.

I Therefore our assumption that D is in the range of f must be
wrong. Consequently f is not surjective.
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Remarks

I The proof of the previous theorem is reminiscent of Russel’s
paradox. However, here there is no paradox. The conclusion
that D is not in the range of f resolves everything.

I Consider the case A = N.

I Show that the power set of N is equipotent with the set B of
binary sequences.

I If C is a subset of N, map it to the binary sequence
c = (c1, c2, . . .), where cj = 1 if j ∈ C and cj = 0 if j /∈ C .

I In other words, c(j) := cj , is just the ‘indicator function’ of
the set C .

I Now go back and see that the proof of last theorem and that
of uncountability of B use the same idea!
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Bigger and bigger infinities

I We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

I Now by the previous theorem P(P(N)) is even bigger than
P(N).

I We can go on.

I So there are bigger and bigger infinities.
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Spaces of functions

I Let A,B be non-empty sets. Let BA denote the set of all
functions from A to B.

I For n ∈ N, if A = {1, 2, . . . , n} and B = {0, 1}, then observe
that BA has 2n elements.

I More generally, if A,B are non-empty finite sets, A has n
elements and B has m elements, then BA has mn elements.

I Observe that for any non-empty set A, if B = {0, 1} then BA

is equipotent with the power set of A.

I Observe that BN is same as the space of sequences with
elements from B. In particular, if B = {0, 1}, then BN is
same as the space of binary sequences.
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