

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 6: Uncountable sets

- ▶ To begin with we recall a few definitions from last lecture.

Lecture 6: Uncountable sets

- ▶ To begin with we recall a few definitions from last lecture.
- ▶ **Definition 5.1:** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.

Lecture 6: Uncountable sets

- ▶ To begin with we recall a few definitions from last lecture.
- ▶ **Definition 5.1:** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ **Definition 5.6:** A set A is said to be **countable** if it is equipotent with \mathbb{N} or if it is finite. It is said to be **countably infinite** if it is countable and not finite. A set A is said to be **uncountable** if it is not countable.

Lecture 6: Uncountable sets

- ▶ To begin with we recall a few definitions from last lecture.
- ▶ **Definition 5.1:** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ **Definition 5.6:** A set A is said to be **countable** if it is equipotent with \mathbb{N} or if it is finite. It is said to be **countably infinite** if is countable and not finite. A set A is said to be **uncountable** if it is not countable.
- ▶ We saw that $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$ are all countable.

Lecture 6: Uncountable sets

- ▶ To begin with we recall a few definitions from last lecture.
- ▶ **Definition 5.1:** Let A, B be two non-empty sets. Then B is said to be **equipotent** with A , if there exists a bijection $f : A \rightarrow B$. Empty set is equipotent to only itself.
- ▶ **Definition 5.3:** A set A is said to be **finite** if it is equipotent with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ or it is empty. A set A is said to be **infinite** if it is not finite.
- ▶ **Definition 5.6:** A set A is said to be **countable** if it is equipotent with \mathbb{N} or if it is finite. It is said to be **countably infinite** if it is countable and not finite. A set A is said to be **uncountable** if it is not countable.
- ▶ We saw that $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$ are all countable.
- ▶ Now it is time to see some uncountable sets.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.
- ▶ \mathbb{B} is the set of all possible binary sequences. ([Warning](#): This notation is not standard.)

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.
- ▶ \mathbb{B} is the set of all possible binary sequences. ([Warning](#): This notation is not standard.)
- ▶ [Theorem 6.1](#): \mathbb{B} is uncountable.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.
- ▶ \mathbb{B} is the set of all possible binary sequences. ([Warning](#): This notation is not standard.)
- ▶ [Theorem 6.1](#): \mathbb{B} is uncountable.
- ▶ The proof is by contradiction and the argument is known as Cantor's diagonal argument.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.
- ▶ \mathbb{B} is the set of all possible binary sequences. ([Warning](#): This notation is not standard.)
- ▶ [Theorem 6.1](#): \mathbb{B} is uncountable.
- ▶ The proof is by contradiction and the argument is known as Cantor's diagonal argument.
- ▶ [Proof](#): Suppose that there exists a bijection $f : \mathbb{N} \rightarrow \mathbb{B}$. In particular f is a surjection.

Binary sequences

- ▶ Let $\mathbb{B} = \{(w_1, w_2, w_3, \dots) : w_j \in \{0, 1\}\}$.
- ▶ Each w_j is either 0 or 1. We call (w_1, w_2, \dots) as a binary sequence.
- ▶ \mathbb{B} is the set of all possible binary sequences. ([Warning](#): This notation is not standard.)
- ▶ [Theorem 6.1](#): \mathbb{B} is uncountable.
- ▶ The proof is by contradiction and the argument is known as Cantor's diagonal argument.
- ▶ [Proof](#): Suppose that there exists a bijection $f : \mathbb{N} \rightarrow \mathbb{B}$. In particular f is a surjection.
- ▶ Then for every $i \in \mathbb{N}$, $f(i)$ is a binary sequence.

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$
- ▶ Each w_{ij} is either 0 or 1.

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$
- ▶ Each w_{ij} is either 0 or 1.
- ▶ Look at the infinite matrix:

$$\begin{matrix} w_{11} & w_{12} & w_{13} & w_{14} & \cdots \\ w_{21} & w_{22} & w_{23} & w_{24} & \cdots \\ w_{31} & w_{32} & w_{33} & w_{34} & \cdots \\ w_{41} & w_{42} & w_{43} & w_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix}$$

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$
- ▶ Each w_{ij} is either 0 or 1.
- ▶ Look at the infinite matrix:

$$\begin{matrix} w_{11} & w_{12} & w_{13} & w_{14} & \cdots \\ w_{21} & w_{22} & w_{23} & w_{24} & \cdots \\ w_{31} & w_{32} & w_{33} & w_{34} & \cdots \\ w_{41} & w_{42} & w_{43} & w_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix}$$

- ▶ formed by writing down $f(1), f(2), \dots$ as rows.

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$
- ▶ Each w_{ij} is either 0 or 1.
- ▶ Look at the infinite matrix:

$$\begin{matrix} w_{11} & w_{12} & w_{13} & w_{14} & \cdots \\ w_{21} & w_{22} & w_{23} & w_{24} & \cdots \\ w_{31} & w_{32} & w_{33} & w_{34} & \cdots \\ w_{41} & w_{42} & w_{43} & w_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix}$$

- ▶ formed by writing down $f(1), f(2), \dots$ as rows.
- ▶ Form a binary sequence using the diagonal entries:
 $(w_{11}, w_{22}, w_{33}, \dots)$.

Proof Continued

- ▶ Suppose $f(i) = (w_{i1}, w_{i2}, w_{i3}, \dots)$
- ▶ Each w_{ij} is either 0 or 1.
- ▶ Look at the infinite matrix:

$$\begin{matrix} w_{11} & w_{12} & w_{13} & w_{14} & \cdots \\ w_{21} & w_{22} & w_{23} & w_{24} & \cdots \\ w_{31} & w_{32} & w_{33} & w_{34} & \cdots \\ w_{41} & w_{42} & w_{43} & w_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix}$$

- ▶ formed by writing down $f(1), f(2), \dots$ as rows.
- ▶ Form a binary sequence using the diagonal entries: $(w_{11}, w_{22}, w_{33}, \dots)$.
- ▶ We flip the entries to get a new binary sequence, $v = (v_1, v_2, v_3, \dots)$ where $v_j = 1 - w_{jj}$ for every $j \in \mathbb{N}$. Now we claim that v is not in the range of f .

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.
- ▶ $v \neq f(2)$ as $v = (v_1, v_2, \dots)$, $f(2) = (w_{21}, w_{22}, \dots)$ and $v_2 = 1 - w_{22} \neq w_{22}$. So the second entry does not match.

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.
- ▶ $v \neq f(2)$ as $v = (v_1, v_2, \dots)$, $f(2) = (w_{21}, w_{22}, \dots)$ and $v_2 = 1 - w_{22} \neq w_{22}$. So the second entry does not match.
- ▶ In fact, for every $i \in \mathbb{N}$, $f(i) \neq v$ as $v_i \neq w_{ii}$. Here i^{th} entry does not match.

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.
- ▶ $v \neq f(2)$ as $v = (v_1, v_2, \dots)$, $f(2) = (w_{21}, w_{22}, \dots)$ and $v_2 = 1 - w_{22} \neq w_{22}$. So the second entry does not match.
- ▶ In fact, for every $i \in \mathbb{N}$, $f(i) \neq v$ as $v_i \neq w_{ii}$. Here i^{th} entry does not match.
- ▶ Therefore v is not in the range of f .

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.
- ▶ $v \neq f(2)$ as $v = (v_1, v_2, \dots)$, $f(2) = (w_{21}, w_{22}, \dots)$ and $v_2 = 1 - w_{22} \neq w_{22}$. So the second entry does not match.
- ▶ In fact, for every $i \in \mathbb{N}$, $f(i) \neq v$ as $v_i \neq w_{ii}$. Here i^{th} entry does not match.
- ▶ Therefore v is not in the range of f .
- ▶ Actually, we have shown that no function $f : \mathbb{N} \rightarrow \mathbb{B}$ can be surjective.

Proof Continued

- ▶ $v \neq f(1)$ as $v = (v_1, v_2, \dots)$, $f(1) = (w_{11}, w_{12}, \dots)$ and $v_1 = 1 - w_{11} \neq w_{11}$. So the first entry does not match.
- ▶ $v \neq f(2)$ as $v = (v_1, v_2, \dots)$, $f(2) = (w_{21}, w_{22}, \dots)$ and $v_2 = 1 - w_{22} \neq w_{22}$. So the second entry does not match.
- ▶ In fact, for every $i \in \mathbb{N}$, $f(i) \neq v$ as $v_i \neq w_{ii}$. Here i^{th} entry does not match.
- ▶ Therefore v is not in the range of f .
- ▶ Actually, we have shown that no function $f : \mathbb{N} \rightarrow \mathbb{B}$ can be surjective.
- ▶ In particular \mathbb{B} is not countable.

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.
- ▶ If $A = \{1\}$, then $P(A) = \{\emptyset, \{1\}\}$.

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.
- ▶ If $A = \{1\}$, then $P(A) = \{\emptyset, \{1\}\}$.
- ▶ If $A = \{1, 2\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.
- ▶ If $A = \{1\}$, then $P(A) = \{\emptyset, \{1\}\}$.
- ▶ If $A = \{1, 2\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- ▶ If $A = \{1, 2, 3\}$, then

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.
- ▶ If $A = \{1\}$, then $P(A) = \{\emptyset, \{1\}\}$.
- ▶ If $A = \{1, 2\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- ▶ If $A = \{1, 2, 3\}$, then
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$
- ▶ **Exercise:** If A is a finite set with n elements, show that $P(A)$ has 2^n elements.

Power sets

- ▶ **Definition 6.2:** Let A be any set. Then the **power set** of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A .
- ▶ If $A = \emptyset$, then $P(A) = \{\emptyset\}$.
- ▶ If $A = \{1\}$, then $P(A) = \{\emptyset, \{1\}\}$.
- ▶ If $A = \{1, 2\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- ▶ If $A = \{1, 2, 3\}$, then
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$
- ▶ **Exercise:** If A is a finite set with n elements, show that $P(A)$ has 2^n elements.
- ▶ We guess that $P(A)$ should be having 'more' elements than A .

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A " .

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.
- ▶ Note that for every $a \in A$, $f(a)$ is a subset of A .

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.
- ▶ Note that for every $a \in A$, $f(a)$ is a subset of A .
- ▶ It is possible that a is an element of $f(a)$ and it is also possible that a is not an element of $f(a)$.

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.
- ▶ Note that for every $a \in A$, $f(a)$ is a subset of A .
- ▶ It is possible that a is an element of $f(a)$ and it is also possible that a is not an element of $f(a)$.
- ▶ Define a set D by

$$D = \{a \in A : a \notin f(a)\}.$$

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.
- ▶ Note that for every $a \in A$, $f(a)$ is a subset of A .
- ▶ It is possible that a is an element of $f(a)$ and it is also possible that a is not an element of $f(a)$.
- ▶ Define a set D by

$$D = \{a \in A : a \notin f(a)\}.$$

- ▶ Clearly D is a subset of A , and hence it is an element of $P(A)$.

Power sets -continued

- ▶ **Theorem 6.3:** Let A be a non-empty set. Let $f : A \rightarrow P(A)$ be a function. Then f is not surjective.
- ▶ This is really a way of saying " $P(A)$ has 'more' elements than A ".
- ▶ **Proof:** Given that $f : A \rightarrow P(A)$ is a function.
- ▶ Note that for every $a \in A$, $f(a)$ is a subset of A .
- ▶ It is possible that a is an element of $f(a)$ and it is also possible that a is not an element of $f(a)$.
- ▶ Define a set D by

$$D = \{a \in A : a \notin f(a)\}.$$

- ▶ Clearly D is a subset of A , and hence it is an element of $P(A)$.
- ▶ We claim that D is not in the range of f . That would show that f is not surjective.

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.
- ▶ Now either $a_0 \in D$ or $a_0 \notin D$.

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.
- ▶ Now either $a_0 \in D$ or $a_0 \notin D$.
- ▶ If $a_0 \in D$, then by the definition of D ,

$$a_0 \notin f(a_0).$$

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.
- ▶ Now either $a_0 \in D$ or $a_0 \notin D$.
- ▶ If $a_0 \in D$, then by the definition of D ,

$$a_0 \notin f(a_0).$$

- ▶ But $f(a_0) = D$. Hence $a_0 \notin D$. This contradicts $a_0 \in D$.

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.
- ▶ Now either $a_0 \in D$ or $a_0 \notin D$.
- ▶ If $a_0 \in D$, then by the definition of D ,

$$a_0 \notin f(a_0).$$

- ▶ But $f(a_0) = D$. Hence $a_0 \notin D$. This contradicts $a_0 \in D$.
- ▶ On the other hand, if a_0 is not in D , as $D = f(a_0)$, a_0 is not in $f(a_0)$. Then by the definition of D , a_0 is in D . Once again we have a contradiction.

Proof continued

- ▶ Recall: $D = \{a \in A : a \notin f(a)\}$.
- ▶ Assume that D is in the range of f .
- ▶ So $D = f(a_0)$ for some $a_0 \in A$.
- ▶ Now either $a_0 \in D$ or $a_0 \notin D$.
- ▶ If $a_0 \in D$, then by the definition of D ,

$$a_0 \notin f(a_0).$$

- ▶ But $f(a_0) = D$. Hence $a_0 \notin D$. This contradicts $a_0 \in D$.
- ▶ On the other hand, if a_0 is not in D , as $D = f(a_0)$, a_0 is not in $f(a_0)$. Then by the definition of D , a_0 is in D . Once again we have a contradiction.
- ▶ Therefore our assumption that D is in the range of f must be wrong. Consequently f is not surjective.

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.
- ▶ Consider the case $A = \mathbb{N}$.

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.
- ▶ Consider the case $A = \mathbb{N}$.
- ▶ Show that the power set of \mathbb{N} is equipotent with the set \mathbb{B} of binary sequences.

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.
- ▶ Consider the case $A = \mathbb{N}$.
- ▶ Show that the power set of \mathbb{N} is equipotent with the set \mathbb{B} of binary sequences.
- ▶ If C is a subset of \mathbb{N} , map it to the binary sequence $c = (c_1, c_2, \dots)$, where $c_j = 1$ if $j \in C$ and $c_j = 0$ if $j \notin C$.

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.
- ▶ Consider the case $A = \mathbb{N}$.
- ▶ Show that the power set of \mathbb{N} is equipotent with the set \mathbb{B} of binary sequences.
- ▶ If C is a subset of \mathbb{N} , map it to the binary sequence $c = (c_1, c_2, \dots)$, where $c_j = 1$ if $j \in C$ and $c_j = 0$ if $j \notin C$.
- ▶ In other words, $c(j) := c_j$, is just the 'indicator function' of the set C .

Remarks

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that D is not in the range of f resolves everything.
- ▶ Consider the case $A = \mathbb{N}$.
- ▶ Show that the power set of \mathbb{N} is equipotent with the set \mathbb{B} of binary sequences.
- ▶ If C is a subset of \mathbb{N} , map it to the binary sequence $c = (c_1, c_2, \dots)$, where $c_j = 1$ if $j \in C$ and $c_j = 0$ if $j \notin C$.
- ▶ In other words, $c(j) := c_j$, is just the 'indicator function' of the set C .
- ▶ Now go back and see that the proof of last theorem and that of uncountability of \mathbb{B} use the same idea!

Bigger and bigger infinities

- ▶ We have seen that $P(\mathbb{N})$ is bigger than \mathbb{N} in the sense that there is no surjective function from \mathbb{N} to $P(\mathbb{N})$. [There are of course, surjective functions from $P(\mathbb{N})$ to \mathbb{N} . [\(Why?\)](#).]

Bigger and bigger infinities

- ▶ We have seen that $P(\mathbb{N})$ is bigger than \mathbb{N} in the sense that there is no surjective function from \mathbb{N} to $P(\mathbb{N})$. [There are of course, surjective functions from $P(\mathbb{N})$ to \mathbb{N} . ([Why?](#).)]
- ▶ Now by the previous theorem $P(P(\mathbb{N}))$ is even bigger than $P(\mathbb{N})$.

Bigger and bigger infinities

- ▶ We have seen that $P(\mathbb{N})$ is bigger than \mathbb{N} in the sense that there is no surjective function from \mathbb{N} to $P(\mathbb{N})$. [There are of course, surjective functions from $P(\mathbb{N})$ to \mathbb{N} . ([Why?](#)).]
- ▶ Now by the previous theorem $P(P(\mathbb{N}))$ is even bigger than $P(\mathbb{N})$.
- ▶ We can go on.

Bigger and bigger infinities

- ▶ We have seen that $P(\mathbb{N})$ is bigger than \mathbb{N} in the sense that there is no surjective function from \mathbb{N} to $P(\mathbb{N})$. [There are of course, surjective functions from $P(\mathbb{N})$ to \mathbb{N} . ([Why?](#)).]
- ▶ Now by the previous theorem $P(P(\mathbb{N}))$ is even bigger than $P(\mathbb{N})$.
- ▶ We can go on.
- ▶ So there are bigger and bigger infinities.

Spaces of functions

- ▶ Let A, B be non-empty sets. Let B^A denote the set of all functions from A to B .

Spaces of functions

- ▶ Let A, B be non-empty sets. Let B^A denote the set of all functions from A to B .
- ▶ For $n \in \mathbb{N}$, if $A = \{1, 2, \dots, n\}$ and $B = \{0, 1\}$, then observe that B^A has 2^n elements.

Spaces of functions

- ▶ Let A, B be non-empty sets. Let B^A denote the set of all functions from A to B .
- ▶ For $n \in \mathbb{N}$, if $A = \{1, 2, \dots, n\}$ and $B = \{0, 1\}$, then observe that B^A has 2^n elements.
- ▶ More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then B^A has m^n elements.

Spaces of functions

- ▶ Let A, B be non-empty sets. Let B^A denote the set of all functions from A to B .
- ▶ For $n \in \mathbb{N}$, if $A = \{1, 2, \dots, n\}$ and $B = \{0, 1\}$, then observe that B^A has 2^n elements.
- ▶ More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then B^A has m^n elements.
- ▶ Observe that for any non-empty set A , if $B = \{0, 1\}$ then B^A is equipotent with the power set of A .

Spaces of functions

- ▶ Let A, B be non-empty sets. Let B^A denote the set of all functions from A to B .
- ▶ For $n \in \mathbb{N}$, if $A = \{1, 2, \dots, n\}$ and $B = \{0, 1\}$, then observe that B^A has 2^n elements.
- ▶ More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then B^A has m^n elements.
- ▶ Observe that for any non-empty set A , if $B = \{0, 1\}$ then B^A is equipotent with the power set of A .
- ▶ Observe that $B^{\mathbb{N}}$ is same as the space of sequences with elements from B . In particular, if $B = \{0, 1\}$, then $B^{\mathbb{N}}$ is same as the space of binary sequences.

Hilbert's hotel

- ▶ Link 1:

<https://youtu.be/OxGsU8oIWjY>

Hilbert's hotel

- ▶ Link 1:

<https://youtu.be/OxGsU8oIWjY>

- ▶ Link 2:

<https://youtu.be/Uj3Kqkl9Zo>

Hilbert's hotel

- ▶ Link 1:

<https://youtu.be/OxGsU8oIWjY>

- ▶ Link 2:

<https://youtu.be/Uj3Kqkl9Zo>

- ▶ END OF LECTURE 6