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> We saw that N, Z,N x N are all countable.

> Now it is time to see some uncountable sets.
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Binary sequences

> let B = {(Wl, Wo, W3, .. ) /S {0, 1}}
» Each wj; is either 0 or 1. We call (wy, wo,...) as a binary
sequence.

» B is the set of all possible binary sequences. (Warning: This
notation is not standard.)

» Theorem 6.1: B is uncountable.

» The proof is by contradiction and the argument is known as
Cantor’s diagonal argument.

» Proof: Suppose that there exists a bijection f : N — B. In
particular f is a surjection.

» Then for every i € N, f(i) is a binary sequence.
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Proof Continued

> Suppose f(l) = (W,'l7 Wio, Wi3, .. )
» Each wj; is either 0 or 1.

» Look at the infinite matrix;

w11 Wwi2 Wiz Wig
W21 W22 W23 W24
W31 W32 W33 W34
W41 Wa2 W43 Wi4

» formed by writing down f(1),7(2),... as rows.

» Form a binary sequence using the diagonal entries:
(W11, W22, W33, . . )

» We flip the entries to get a new binary sequence,
v = (vi,v2,v3,...) where vj = 1 — wj; for every j € N. Now
we claim that v is not in the range of f.
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> v 75 f(].) as v = (Vl, Vo, .. .)7 f(l) = (W11, W12, .. ) and
vi =1 — wyg # wip. So the first entry does not match.
> v#f(2) asv=_(v1,w,...), f(2) = (w1, wa,...) and
vo = 1 — woo # wao. So the second entry does not match.
» In fact, for every i € N, f(i) # v as v; # w;;. Here it" entry
does not match.
» Therefore v is not in the range of f.

» Actually, we have shown that no function f : N — B can be
surjective.

P In particular B is not countable.
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Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) ={B: B C A}.
In other words, the power set of A is the set of all subsets of
A.
If A=, then P(A) = {0}.
If A= {1}, then P(A) ={0,{1}}.
If A= {1,2}, then P(A) = {0,{1},{2},{1,2}}.
If A={1,2,3}, then
P(A) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Exercise: If Ais a finite set with n elements, show that P(A)
has 2" elements.

We guess that P(A) should be having ‘more’ elements than A.



Power sets -continued

» Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.



Power sets -continued

» Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

» This is really a way of saying " P(A) has ‘more’ elements than
A"



Power sets -continued

» Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

» This is really a way of saying " P(A) has ‘more’ elements than
A"

» Proof: Given that f : A— P(A) is a function.



Power sets -continued

» Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

» This is really a way of saying " P(A) has ‘more’ elements than
A"

» Proof: Given that f : A— P(A) is a function.
» Note that for every a € A, f(a) is a subset of A.



Power sets -continued

» Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

» This is really a way of saying " P(A) has ‘more’ elements than
A"

» Proof: Given that f : A— P(A) is a function.
» Note that for every a € A, f(a) is a subset of A.

» |t is possible that a is an element of f(a) and it is also
possible that a is not an element of f(a).



Power

sets -continued

Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

This is really a way of saying " P(A) has ‘more’ elements than
A"

Proof: Given that f : A — P(A) is a function.
Note that for every a € A, f(a) is a subset of A.

It is possible that a is an element of f(a) and it is also
possible that a is not an element of f(a).

Define a set D by

D={acA:aé¢f(a)}



Power

sets -continued

Theorem 6.3: Let A be a non-empty set. Let £ : A — P(A)
be a function. Then f is not surjective.

This is really a way of saying " P(A) has ‘more’ elements than
A"

Proof: Given that f : A — P(A) is a function.
Note that for every a € A, f(a) is a subset of A.

It is possible that a is an element of f(a) and it is also
possible that a is not an element of f(a).

Define a set D by
D={acA:aé¢f(a)}

Clearly D is a subset of A, and hence it is an element of P(A).



Power

sets -continued

Theorem 6.3: Let A be a non-empty set. Let f : A — P(A)
be a function. Then f is not surjective.

This is really a way of saying " P(A) has ‘more’ elements than
A"

Proof: Given that f : A — P(A) is a function.
Note that for every a € A, f(a) is a subset of A.

It is possible that a is an element of f(a) and it is also
possible that a is not an element of f(a).

Define a set D by
D={acA:aé¢f(a)}

Clearly D is a subset of A, and hence it is an element of P(A).

We claim that D is not in the range of f. That would show
that f is not surjective.
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Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

But f(ag) = D. Hence ap ¢ D. This contradicts ag € D.

On the other hand, if ag is not in D, as D = f(ap), ap is not
in f(ap). Then by the definition of D, ag is in D. Once again
we have a contradiction.
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Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

But f(ag) = D. Hence ap ¢ D. This contradicts ag € D.

On the other hand, if ag is not in D, as D = f(ap), ap is not
in f(ap). Then by the definition of D, ag is in D. Once again
we have a contradiction.

Therefore our assumption that D is in the range of f must be
wrong. Consequently f is not surjective.
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Remarks

» The proof of the previous theorem is reminiscent of Russel's
paradox. However, here there is no paradox. The conclusion
that D is not in the range of f resolves everything.

» Consider the case A = N.

» Show that the power set of N is equipotent with the set B of
binary sequences.

> If C is a subset of N, map it to the binary sequence
c=(c1,0,...), where¢g=1if je Cand ¢c;=01if j ¢ C.

» In other words, c(j) := ¢;, is just the ‘indicator function’ of
the set C.

» Now go back and see that the proof of last theorem and that
of uncountability of B use the same idea!
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» We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

» Now by the previous theorem P(P(N)) is even bigger than
P(N).

> We can go on.

» So there are bigger and bigger infinities.
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Spaces of functions

» Let A, B be non-empty sets. Let BA denote the set of all
functions from A to B.

» Forne N, if A={1,2,...,n} and B = {0,1}, then observe
that B” has 2" elements.

> More generally, if A, B are non-empty finite sets, A has n
elements and B has m elements, then BA has m" elements.

» Observe that for any non-empty set A, if B = {0,1} then BA
is equipotent with the power set of A.

» Observe that BY is same as the space of sequences with
elements from B. In particular, if B = {0,1}, then B is
same as the space of binary sequences.
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