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You must be familiar with real numbers, which include natural
numbers, integers, rational numbers and also irrational
numbers such as v/2, 7, and e.

Here we are going to assume that there exists a set called real
numbers, denoted by R, having a list of properties to be
specified.

One may construct real numbers out of natural numbers, step
by step by constructing integers, rational numbers and so on.
For instance, we construct positive rational numbers out of

N x N, by identifying (a, b) with (&', b') if ab’ = a’'b. (Think
of (a,b) as 2.) However, we will not take such an approach.
If you wish, you may see the construction of real numbers in
due course once you are fully familiar with various properties
of real numbers.
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» D. For a,b,cin R,
ab+c)=ab+ac

(a+b).c=a.c+ b.c

» This axiom binds addition and multiplication.
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So0+ b=0+c, then by A3, b=c.

Corollary 7.3 (Uniqueness of additive inverse:) For a € R if
a+a; =0, then a; = —a.

Proof: This is clear from the cancellation property of addition,
asa+a;=a+(—a).



Consequences -2

» Theorem 7.4 (Cancellation property of multiplication): For
a,b,c € Rwith a#0, if a.b = a.c then b= c.



Consequences -2

» Theorem 7.4 (Cancellation property of multiplication): For
a,b,c € Rwith a#0, if a.b = a.c then b= c.

» The proof is similar to the proof of Theorem 7.2. This time
multiply by a=! from the left.



Consequences -2

» Theorem 7.4 (Cancellation property of multiplication): For
a,b,c € Rwith a#0, if a.b = a.c then b= c.

» The proof is similar to the proof of Theorem 7.2. This time
multiply by a=! from the left.

» Corollary 7.5 (Uniqueness of multiplicative inverse): For
acR, ifab=1 then b=al



Consequences -2

» Theorem 7.4 (Cancellation property of multiplication): For
a,b,c € Rwith a#0, if a.b = a.c then b= c.

» The proof is similar to the proof of Theorem 7.2. This time
multiply by a=! from the left.

» Corollary 7.5 (Uniqueness of multiplicative inverse): For
acR, ifab=1 then b=al
» Proof: Clear from Theorem 7.4.
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1

» Now suppose a # 0, then a~" exists and we get

at(ab)=at0=0.

Hence by associativity of multiplication, (a=*.a).b =0, or
1.b =0, which implies b = 0. So either a=0or b = 0.
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Notation: Here after for real numbers a, b write ab to mean

a.b. We write a+ (—b) as a— b and if b # 0, we write ab™1

a . . _1 1
as 7. In particular, we may write b™* as ¢.

We take N as a subset of R, where,

we identify 1 € N with 1 of R,

2e¢ Nwith1+4+1inR,

Note that 1 # 2, as otherwise, we get 0+ 1 =1+ 1, and that
would mean 0 = 1, by cancellation property.

We identify 3 € N with 2+ 1 (or equivalently with 1 + 2 or
1+1+1)of R

More generally, n € N is identified with

1+1+---41(n times).

You may verify that all natural numbers are distinct.
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Integers, rational numbers and irrational numbers

>

>

Z is also thought of as a subset of R: 0 € Z is identified with
0 of R and —n for n € N is just the additive inverse of n.

Definition 7.7: A real number a is said to be a rational
number if it is of the form 7 for some integers a, b with b # 0.
A real number which is not rational is said to be irrational.

To show existence of irrational numbers we would need more
axioms.
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