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Lecture 7: Real Numbers

I God created the integers, all else is the work of man.
-Kronecker.

I You must be familiar with real numbers, which include natural
numbers, integers, rational numbers and also irrational
numbers such as

√
2, π, and e.

I Here we are going to assume that there exists a set called real
numbers, denoted by R, having a list of properties to be
specified.

I One may construct real numbers out of natural numbers, step
by step by constructing integers, rational numbers and so on.

I For instance, we construct positive rational numbers out of
N× N, by identifying (a, b) with (a′, b′) if ab′ = a′b. (Think
of (a, b) as a

b .) However, we will not take such an approach.

I If you wish, you may see the construction of real numbers in
due course once you are fully familiar with various properties
of real numbers.
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Algebraic axioms for real numbers

I The set R of real numbers has two binary operations, ‘+’
(addition) and ‘.’ (multiplication), with following properties:

I (You may recall that a binary operation on a non-empty set A
is a function from A× A to A.)

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.
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Addition Axioms continued

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.

I Note that we have explicitly assumed that 1 6= 0.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

I This axiom binds addition and multiplication.
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Consequences

I Theorem 7.1 : (i) (Uniqueness of 0). If e ∈ R satisfies
a+ e = e + a = a for all a ∈ R, then e = 0. (ii) (uniqueness of
1). If f ∈ R satisfies a.f = f .a = a for all a ∈ R, then f = 1.

I Proof: (i) Take a = 0. Then we get 0 + e = e + 0 = 0. But
by A3, 0 + e = e + 0 = e. Hence e = 0. (ii)Take a = 1 and
we get 1.f = f .1 = 1 and also 1.f = f .1 = f . Hence f = 1.

I Theorem 7.2 (Cancellation property of addition): For
a, b, c ∈ R, if a + b = a + c then b = c .

I Proof: Given a + b = a + c .
I Hence (−a) + (a + b) = (−a) + (a + c).
I By associativity of addition A2,

((−a) + a) + b = ((−a) + a) + c .
I So 0 + b = 0 + c , then by A3, b = c .
I Corollary 7.3 (Uniqueness of additive inverse:) For a ∈ R if

a + a1 = 0, then a1 = −a.
I Proof: This is clear from the cancellation property of addition,

as a + a1 = a + (−a).
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Consequences -2

I Theorem 7.4 (Cancellation property of multiplication): For
a, b, c ∈ R with a 6= 0, if a.b = a.c then b = c .

I The proof is similar to the proof of Theorem 7.2. This time
multiply by a−1 from the left.

I Corollary 7.5 (Uniqueness of multiplicative inverse): For
a ∈ R, if a.b = 1, then b = a−1.

I Proof: Clear from Theorem 7.4.
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Consequences -3

I Theorem 7.6: (i) (−0) = 0; 1−1 = 1. (ii) For a ∈ R a.0 = 0.
(iii) For a, b ∈ R, if a.b = 0 then either a = 0 or b = 0.

I Proof: (i) follows easily from previous results, as 0 + 0 = 0
and 1.1 = 1.

I (ii) For a ∈ R, by distributivity, a.0 = a.(0 + 0) = a.0 + a.0.
In other words, a.0 + 0 = a.0 + a.0. Hence by cancellation
property 0 = a.0.

I (iii) Given a, b ∈ R and a.b = 0.

I Now suppose a 6= 0, then a−1 exists and we get

a−1.(a.b) = a−1.0 = 0.

Hence by associativity of multiplication, (a−1.a).b = 0, or
1.b = 0, which implies b = 0. So either a = 0 or b = 0.
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I Proof: (i) follows easily from previous results, as 0 + 0 = 0
and 1.1 = 1.

I (ii) For a ∈ R, by distributivity, a.0 = a.(0 + 0) = a.0 + a.0.
In other words, a.0 + 0 = a.0 + a.0. Hence by cancellation
property 0 = a.0.

I (iii) Given a, b ∈ R and a.b = 0.

I Now suppose a 6= 0, then a−1 exists and we get

a−1.(a.b) = a−1.0 = 0.

Hence by associativity of multiplication, (a−1.a).b = 0, or
1.b = 0, which implies b = 0. So either a = 0 or b = 0.
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Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.
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Integers, rational numbers and irrational numbers

I Z is also thought of as a subset of R: 0 ∈ Z is identified with
0 of R and −n for n ∈ N is just the additive inverse of n.

I Definition 7.7: A real number a is said to be a rational
number if it is of the form a

b for some integers a, b with b 6= 0.
A real number which is not rational is said to be irrational.

I To show existence of irrational numbers we would need more
axioms.

I END OF LECTURE 7.
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