

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.
- ▶ You must be familiar with real numbers, which include natural numbers, integers, rational numbers and also irrational numbers such as $\sqrt{2}$, π , and e .

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.
- ▶ You must be familiar with real numbers, which include natural numbers, integers, rational numbers and also irrational numbers such as $\sqrt{2}$, π , and e .
- ▶ Here we are going to assume that there exists a set called real numbers, denoted by \mathbb{R} , having a list of properties to be specified.

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.
- ▶ You must be familiar with real numbers, which include natural numbers, integers, rational numbers and also irrational numbers such as $\sqrt{2}$, π , and e .
- ▶ Here we are going to assume that there exists a set called real numbers, denoted by \mathbb{R} , having a list of properties to be specified.
- ▶ One may construct real numbers out of natural numbers, step by step by constructing integers, rational numbers and so on.

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.
- ▶ You must be familiar with real numbers, which include natural numbers, integers, rational numbers and also irrational numbers such as $\sqrt{2}$, π , and e .
- ▶ Here we are going to assume that there exists a set called real numbers, denoted by \mathbb{R} , having a list of properties to be specified.
- ▶ One may construct real numbers out of natural numbers, step by step by constructing integers, rational numbers and so on.
- ▶ For instance, we construct positive rational numbers out of $\mathbb{N} \times \mathbb{N}$, by identifying (a, b) with (a', b') if $ab' = a'b$. (Think of (a, b) as $\frac{a}{b}$.) However, we will not take such an approach.

Lecture 7: Real Numbers

- ▶ God created the integers, all else is the work of man.
-Kronecker.
- ▶ You must be familiar with real numbers, which include natural numbers, integers, rational numbers and also irrational numbers such as $\sqrt{2}$, π , and e .
- ▶ Here we are going to assume that there exists a set called real numbers, denoted by \mathbb{R} , having a list of properties to be specified.
- ▶ One may construct real numbers out of natural numbers, step by step by constructing integers, rational numbers and so on.
- ▶ For instance, we construct positive rational numbers out of $\mathbb{N} \times \mathbb{N}$, by identifying (a, b) with (a', b') if $ab' = a'b$. (Think of (a, b) as $\frac{a}{b}$.) However, we will not take such an approach.
- ▶ If you wish, you may see the construction of real numbers in due course once you are fully familiar with various properties of real numbers.

Algebraic axioms for real numbers

- The set \mathbb{R} of real numbers has two binary operations, '+' (addition) and '.' (multiplication), with following properties:

Algebraic axioms for real numbers

- ▶ The set \mathbb{R} of real numbers has two binary operations, ‘+’ (addition) and ‘.’ (multiplication), with following properties:
- ▶ (You may recall that a binary operation on a non-empty set A is a function from $A \times A$ to A .)

Algebraic axioms for real numbers

- ▶ The set \mathbb{R} of real numbers has two binary operations, ‘+’ (addition) and ‘.’ (multiplication), with following properties:
- ▶ (You may recall that a binary operation on a non-empty set A is a function from $A \times A$ to A .)
- ▶ A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

Algebraic axioms for real numbers

- ▶ The set \mathbb{R} of real numbers has two binary operations, ‘+’ (addition) and ‘.’ (multiplication), with following properties:
- ▶ (You may recall that a binary operation on a non-empty set A is a function from $A \times A$ to A .)
- ▶ A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

- ▶ A2.

$$a + (b + c) = (a + b) + c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of addition.

Addition Axioms continued

- ▶ A3. There exists an element called 'zero', denoted by '0' in \mathbb{R} such that

$$a + 0 = 0 + a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of **zero**.

Addition Axioms continued

- ▶ **A3.** There exists an element called 'zero', denoted by '0' in \mathbb{R} such that

$$a + 0 = 0 + a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of **zero**.

- ▶ **A4.** For every $a \in \mathbb{R}$, there exists an element ' $-a$ ' in \mathbb{R} such that

$$a + (-a) = (-a) + a = 0.$$

-Existence of **additive inverse**. $-a$ is known as additive inverse of a .

Axioms for multiplication

► M1.

$$a \cdot b = b \cdot a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

- ▶ M3. There exists an element called 'one', denoted by '1' different from 0 in \mathbb{R} such that

$$a.1 = 1.a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of one.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

- ▶ M3. There exists an element called 'one', denoted by '1' different from 0 in \mathbb{R} such that

$$a.1 = 1.a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of one.

- ▶ M4. For every $a \in \mathbb{R}$, with $a \neq 0$, there exists an element ' a^{-1} ' in \mathbb{R} such that

$$a.a^{-1} = a^{-1}.a = 1.$$

-Existence of multiplicative inverse. a^{-1} is known as multiplicative inverse of a .

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

- ▶ M3. There exists an element called 'one', denoted by '1' different from 0 in \mathbb{R} such that

$$a.1 = 1.a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of one.

- ▶ M4. For every $a \in \mathbb{R}$, with $a \neq 0$, there exists an element ' a^{-1} ' in \mathbb{R} such that

$$a.a^{-1} = a^{-1}.a = 1.$$

-Existence of multiplicative inverse. a^{-1} is known as multiplicative inverse of a .

- ▶ Note that we have explicitly assumed that $1 \neq 0$

Distributivity

- D. For a, b, c in \mathbb{R} ,

$$a.(b + c) = a.b + a.c$$

$$(a + b).c = a.c + b.c$$

Distributivity

- D. For a, b, c in \mathbb{R} ,

$$a.(b + c) = a.b + a.c$$

$$(a + b).c = a.c + b.c$$

- This axiom binds addition and multiplication.

Consequences

- **Theorem 7.1** : (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.
- ▶ Hence $(-a) + (a + b) = (-a) + (a + c)$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.
- ▶ Hence $(-a) + (a + b) = (-a) + (a + c)$.
- ▶ By associativity of addition A2,
$$((-a) + a) + b = ((-a) + a) + c.$$

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.
- ▶ Hence $(-a) + (a + b) = (-a) + (a + c)$.
- ▶ By associativity of addition A2,
$$((-a) + a) + b = ((-a) + a) + c.$$
- ▶ So $0 + b = 0 + c$, then by A3, $b = c$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.
- ▶ Hence $(-a) + (a + b) = (-a) + (a + c)$.
- ▶ By associativity of addition A2,
$$((-a) + a) + b = ((-a) + a) + c.$$
- ▶ So $0 + b = 0 + c$, then by A3, $b = c$.
- ▶ **Corollary 7.3 (Uniqueness of additive inverse):** For $a \in \mathbb{R}$ if $a + a_1 = 0$, then $a_1 = -a$.

Consequences

- ▶ **Theorem 7.1 :** (i) (Uniqueness of 0). If $e \in \mathbb{R}$ satisfies $a + e = e + a = a$ for all $a \in \mathbb{R}$, then $e = 0$. (ii) (uniqueness of 1). If $f \in \mathbb{R}$ satisfies $a.f = f.a = a$ for all $a \in \mathbb{R}$, then $f = 1$.
- ▶ **Proof:** (i) Take $a = 0$. Then we get $0 + e = e + 0 = 0$. But by A3, $0 + e = e + 0 = e$. Hence $e = 0$. (ii) Take $a = 1$ and we get $1.f = f.1 = 1$ and also $1.f = f.1 = f$. Hence $f = 1$.
- ▶ **Theorem 7.2 (Cancellation property of addition):** For $a, b, c \in \mathbb{R}$, if $a + b = a + c$ then $b = c$.
- ▶ **Proof:** Given $a + b = a + c$.
- ▶ Hence $(-a) + (a + b) = (-a) + (a + c)$.
- ▶ By associativity of addition A2,
$$((-a) + a) + b = ((-a) + a) + c.$$
- ▶ So $0 + b = 0 + c$, then by A3, $b = c$.
- ▶ **Corollary 7.3 (Uniqueness of additive inverse):** For $a \in \mathbb{R}$ if $a + a_1 = 0$, then $a_1 = -a$.
- ▶ **Proof:** This is clear from the cancellation property of addition, as $a + a_1 = a + (-a)$.

Consequences -2

- Theorem 7.4 (Cancellation property of multiplication): For $a, b, c \in \mathbb{R}$ with $a \neq 0$, if $a.b = a.c$ then $b = c$.

Consequences -2

- ▶ **Theorem 7.4 (Cancellation property of multiplication):** For $a, b, c \in \mathbb{R}$ with $a \neq 0$, if $a.b = a.c$ then $b = c$.
- ▶ The proof is similar to the proof of Theorem 7.2. This time multiply by a^{-1} from the left.

Consequences -2

- ▶ **Theorem 7.4 (Cancellation property of multiplication):** For $a, b, c \in \mathbb{R}$ with $a \neq 0$, if $a.b = a.c$ then $b = c$.
- ▶ The proof is similar to the proof of Theorem 7.2. This time multiply by a^{-1} from the left.
- ▶ **Corollary 7.5 (Uniqueness of multiplicative inverse):** For $a \in \mathbb{R}$, if $a.b = 1$, then $b = a^{-1}$.

Consequences -2

- ▶ **Theorem 7.4 (Cancellation property of multiplication):** For $a, b, c \in \mathbb{R}$ with $a \neq 0$, if $a.b = a.c$ then $b = c$.
- ▶ The proof is similar to the proof of Theorem 7.2. This time multiply by a^{-1} from the left.
- ▶ **Corollary 7.5 (Uniqueness of multiplicative inverse):** For $a \in \mathbb{R}$, if $a.b = 1$, then $b = a^{-1}$.
- ▶ **Proof:** Clear from Theorem 7.4.

Consequences -3

- **Theorem 7.6:** (i) $(-0) = 0$; $1^{-1} = 1$. (ii) For $a \in \mathbb{R}$ $a.0 = 0$.
(iii) For $a, b \in \mathbb{R}$, if $a.b = 0$ then either $a = 0$ or $b = 0$.

Consequences -3

- ▶ **Theorem 7.6:** (i) $(-0) = 0$; $1^{-1} = 1$. (ii) For $a \in \mathbb{R}$ $a.0 = 0$.
(iii) For $a, b \in \mathbb{R}$, if $a.b = 0$ then either $a = 0$ or $b = 0$.
- ▶ **Proof:** (i) follows easily from previous results, as $0 + 0 = 0$ and $1.1 = 1$.

Consequences -3

- **Theorem 7.6:** (i) $(-0) = 0$; $1^{-1} = 1$. (ii) For $a \in \mathbb{R}$ $a.0 = 0$.
(iii) For $a, b \in \mathbb{R}$, if $a.b = 0$ then either $a = 0$ or $b = 0$.
- **Proof:** (i) follows easily from previous results, as $0 + 0 = 0$ and $1.1 = 1$.
- (ii) For $a \in \mathbb{R}$, by distributivity, $a.0 = a.(0 + 0) = a.0 + a.0$.
In other words, $a.0 + 0 = a.0 + a.0$. Hence by cancellation property $0 = a.0$.

Consequences -3

- ▶ **Theorem 7.6:** (i) $(-0) = 0$; $1^{-1} = 1$. (ii) For $a \in \mathbb{R}$ $a.0 = 0$.
(iii) For $a, b \in \mathbb{R}$, if $a.b = 0$ then either $a = 0$ or $b = 0$.
- ▶ **Proof:** (i) follows easily from previous results, as $0 + 0 = 0$ and $1.1 = 1$.
- ▶ (ii) For $a \in \mathbb{R}$, by distributivity, $a.0 = a.(0 + 0) = a.0 + a.0$.
In other words, $a.0 + 0 = a.0 + a.0$. Hence by cancellation property $0 = a.0$.
- ▶ (iii) Given $a, b \in \mathbb{R}$ and $a.b = 0$.

Consequences -3

- **Theorem 7.6:** (i) $(-0) = 0$; $1^{-1} = 1$. (ii) For $a \in \mathbb{R}$ $a.0 = 0$.
(iii) For $a, b \in \mathbb{R}$, if $a.b = 0$ then either $a = 0$ or $b = 0$.
- **Proof:** (i) follows easily from previous results, as $0 + 0 = 0$ and $1.1 = 1$.
- (ii) For $a \in \mathbb{R}$, by distributivity, $a.0 = a.(0 + 0) = a.0 + a.0$.
In other words, $a.0 + 0 = a.0 + a.0$. Hence by cancellation property $0 = a.0$.
- (iii) Given $a, b \in \mathbb{R}$ and $a.b = 0$.
- Now suppose $a \neq 0$, then a^{-1} exists and we get

$$a^{-1}.(a.b) = a^{-1}.0 = 0.$$

Hence by associativity of multiplication, $(a^{-1}.a).b = 0$, or $1.b = 0$, which implies $b = 0$. So either $a = 0$ or $b = 0$.

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,
- ▶ we identify $1 \in \mathbb{N}$ with 1 of \mathbb{R} ,

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,
- ▶ we identify $1 \in \mathbb{N}$ with 1 of \mathbb{R} ,
- ▶ $2 \in \mathbb{N}$ with $1 + 1$ in \mathbb{R} ,

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,
- ▶ we identify $1 \in \mathbb{N}$ with 1 of \mathbb{R} ,
- ▶ $2 \in \mathbb{N}$ with $1 + 1$ in \mathbb{R} ,
- ▶ Note that $1 \neq 2$, as otherwise, we get $0 + 1 = 1 + 1$, and that would mean $0 = 1$, by cancellation property.
- ▶ We identify $3 \in \mathbb{N}$ with $2 + 1$ (or equivalently with $1 + 2$ or $1 + 1 + 1$) of \mathbb{R} .

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,
- ▶ we identify $1 \in \mathbb{N}$ with 1 of \mathbb{R} ,
- ▶ $2 \in \mathbb{N}$ with $1 + 1$ in \mathbb{R} ,
- ▶ Note that $1 \neq 2$, as otherwise, we get $0 + 1 = 1 + 1$, and that would mean $0 = 1$, by cancellation property.
- ▶ We identify $3 \in \mathbb{N}$ with $2 + 1$ (or equivalently with $1 + 2$ or $1 + 1 + 1$) of \mathbb{R} .
- ▶ More generally, $n \in \mathbb{N}$ is identified with $1 + 1 + \cdots + 1$ (n times).

Natural numbers

- ▶ **Notation:** Here after for real numbers a, b write ab to mean $a \cdot b$. We write $a + (-b)$ as $a - b$ and if $b \neq 0$, we write ab^{-1} as $\frac{a}{b}$. In particular, we may write b^{-1} as $\frac{1}{b}$.
- ▶ We take \mathbb{N} as a subset of \mathbb{R} , where,
- ▶ we identify $1 \in \mathbb{N}$ with 1 of \mathbb{R} ,
- ▶ $2 \in \mathbb{N}$ with $1 + 1$ in \mathbb{R} ,
- ▶ Note that $1 \neq 2$, as otherwise, we get $0 + 1 = 1 + 1$, and that would mean $0 = 1$, by cancellation property.
- ▶ We identify $3 \in \mathbb{N}$ with $2 + 1$ (or equivalently with $1 + 2$ or $1 + 1 + 1$) of \mathbb{R} .
- ▶ More generally, $n \in \mathbb{N}$ is identified with $1 + 1 + \cdots + 1$ (n times).
- ▶ You may verify that all natural numbers are distinct.

Integers, rational numbers and irrational numbers

- ▶ \mathbb{Z} is also thought of as a subset of \mathbb{R} : $0 \in \mathbb{Z}$ is identified with 0 of \mathbb{R} and $-n$ for $n \in \mathbb{N}$ is just the additive inverse of n .

Integers, rational numbers and irrational numbers

- ▶ \mathbb{Z} is also thought of as a subset of \mathbb{R} : $0 \in \mathbb{Z}$ is identified with 0 of \mathbb{R} and $-n$ for $n \in \mathbb{N}$ is just the additive inverse of n .
- ▶ **Definition 7.7:** A real number a is said to be a **rational** number if it is of the form $\frac{a}{b}$ for some integers a, b with $b \neq 0$. A real number which is not rational is said to be **irrational**.

Integers, rational numbers and irrational numbers

- ▶ \mathbb{Z} is also thought of as a subset of \mathbb{R} : $0 \in \mathbb{Z}$ is identified with 0 of \mathbb{R} and $-n$ for $n \in \mathbb{N}$ is just the additive inverse of n .
- ▶ **Definition 7.7:** A real number a is said to be a **rational** number if it is of the form $\frac{a}{b}$ for some integers a, b with $b \neq 0$. A real number which is not rational is said to be **irrational**.
- ▶ To show existence of irrational numbers we would need more axioms.

Integers, rational numbers and irrational numbers

- ▶ \mathbb{Z} is also thought of as a subset of \mathbb{R} : $0 \in \mathbb{Z}$ is identified with 0 of \mathbb{R} and $-n$ for $n \in \mathbb{N}$ is just the additive inverse of n .
- ▶ **Definition 7.7:** A real number a is said to be a **rational** number if it is of the form $\frac{a}{b}$ for some integers a, b with $b \neq 0$. A real number which is not rational is said to be **irrational**.
- ▶ To show existence of irrational numbers we would need more axioms.
- ▶ **END OF LECTURE 7.**