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Lecture 8: Real Numbers : Order axioms

» We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.
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-Commutativity of addition.
> A2,
a+(b+c)=(a+b)+c, Vab,ceR.

-Associativity of addition.

> A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that
a+0=0+a=a, VacR

-Existence of zero.
> A4. For every a € R, there exists an element ‘—a’ in R such
that
a+(—a)=(—a)+a=0.
-Existence of additive inverse. —a is known as additive inverse
of a.
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Axioms for multiplication

> MI1.
a.b=b.a, Va,beR.

-Commutativity of multiplication.
> M2.
a.(b.c) =(a.b).c, Va,b,c eR.

-Associativity of multiplication.
> M3. There exists an element called ‘one’, denoted by ‘1’
different from 0 in R such that

al=1la=a VaeR.

-Existence of one.
> M4. For every a € R, with a = 0, there exists an element
‘a1 in R such that

-Existence of multiplicative inverse. a—! is known as
multiplicative inverse of a.



Distributivity

» D. For a,b,cin R,
a(b+c)=ab+ac

(a+ b).c=a.c+b.c
-Distributivity.



Distributivity

» D. For a,b,cin R,
a.b+c)=ab+ac

(a+ b).c=a.c+b.c

-Distributivity.
P> These axioms are known as algebraic axioms. They determine
the ‘algebraic structure' of real numbers.
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>
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>
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Here we have a bunch of three axioms as described below.
The set R has a subset P called the set of positive real
numbers satisfying following axioms:

Ol. If a,b € P then a+ b € P. [ The set of positive real
numbers is closed under addition.]

02. If a,b € P then a.b € P. [ The set of positive real
numbers is closed under multiplication.]

O3. If a € R, then exactly one of the following three
properties is true:

(i) a € P

(i) —aeP;

(iii) a = 0.

[This is known as trichotomy property for real numbers.]
Any element of P is said to be positive.

Warning: The notation P for positive real numbers is not
standard. You may see RT, (0,00) as some of the alternative
notations for the set of positive real numbers.
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Natural numbers are positive

» Theorem 8.1: If n € N then n € P.

» Proof: First we show that 1 € P. We have 1 # 0 by axiom
M3. Now if (—1) € P, then by axiom 02, (—1).(—1) € P.

» But (—1).(—1) = 1 (Exercise: Show this!).

» This shows that both 1 € P and also (—1) € PP and that

violates trichotomy property O3. Therefore (—1) € P is not
possible. The only other possibility is 1 € P.

» Then by property O1,2=1+1isin P.

» Consider the set S of all natural numbers which are positive.
Thenle Sandifne S, thenn+1¢€ S.

> Now a simple application of mathematical induction shows
that n € IP for every n € N.
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» Notation: For real numbers, a, b, we write a< bor b > a if
b—acP. Wewritea<borb>aif b—acPJ{0}.
» In particular, a > 0 iff a € P. Similarly a > 0 iff a € P{J{0}.
» Now order axioms under this notation, becomes:
(1) O1. : If a>0and b >0 then a+ b > 0.
(2) 02.:If a>0and b> 0 then ab > 0.
(3) 03.: If a € R then exactly one of the following holds: (i)
a>0; (i) a<0; (iii) a=0.
» Here after we may not use the notation P at all!

> We may call a real number a as negative if —a is positive.
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» Theorem 8.2: Suppose a, b, ¢, d are real numbers. Then
(i) If a< b, thena+c< b+c.
(i) Ifa< b, then a+c<b+ec.
(i) Ifa< band c < d, thena+c< b+d.
(iv) If a < b and ¢ > 0, then ac < bc.
(v) If a< band c <0, then a > b.
(vi) If a< b and ¢ =0, then ac = bc = 0.
(vii) If a< 0 and b > 0, then ab < 0.
(viii) If a < 0 and b < 0, then ab > 0.

» Proof. Exercise.

» Often we show two real numbers a, b are equal by showing
a < b and b < a. The equality follows by trichotomy property.
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More inequalities

» Inequalities play a crucial role in whole of Analysis.

» Notation. For any real number a, a° is defined a.a. More
generally, for any a € R and n € N, 3" is defined as
a.a.a....a (n times).

» Theorem 8.3: If a, b are positive real numbers, then a® < b? if
and only if a < b.

» Proof. Suppose a < b. Now b? — a2 = (b + a)(b — a). As,
both (b + a) and (b — a) are positive, b> — a? is positive. In
other words, a® < b2.

» Conversely, suppose a*> < b?. Hence
(b?> — a%) = (b+ a)(b — a) is positive. As a, b are assumed to
be positive, (b + a) is positive. Now from Theorem 8.1 it is
clear that for the product (b + a)(b — a) to be positive, we
also need (b — a) positive.
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Modulus
» For any real number a, the modulus of a, denoted by |al, is

defined by
la] = a if a>0;
| —a if a<O.

» Note that |a] > 0 for every real number a and |a] = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a,b € R.

» Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then

la+ b| < |a| + |b].

» Proof: If aor bis zero, it is easily seen that |a+ b| = |a| + |b|.

» If both a, b are positive, then a + b is also positive, and we
get |a+ b| =a+ b=|a| +|b|.

» Now if a is positive and b is negative, say b = —|b|, with
0 < |b| < a, we get
la+ bl =]a—|b]|=a—|b| <a=|a| <|a|+|b|

» Similarly if a is positive and b is negative with 0 < a < |b|, we
get |a+ b| = |a— |b|| = |b| — a < |b|] <]a|+ |b|. Other-cases
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Why is this triangle inequality?

» Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b — a.

» The triangle inequality tells us that for any three points a, b, ¢
in R,
dist(a, b) < dist(a, ¢) + dist(c, b).
» Now it should be clear as to why this is called triangle
inequality.

» You will see that this notion of distance has far reaching
applications in Analysis.
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» Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number «, such that a < a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number 3, such
that a < 3 for every positive real number a.

» Proof: Suppose « is a positive real number. Then we claim
0<s<a

> It is easy to see that 271 = % is positive (Otherwise 1 = 2.271
would be negative). Hence § = a.% is positive.

» So a— 5 = 7 is also positive.

» This means that 0 < § < a. Hence no real number a can be
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» (ii) If 5 is any positive element, then 8 < 8 + 1. This proves
the second statement.

» END OF LECTURE 8.



