

ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 8: Real Numbers : Order axioms

- We are assuming that there is a set called set of real numbers \mathbb{R} with two binary operations', $+$, \cdot , satisfying certain axioms.

Axioms for addition

► A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

Axioms for addition

- ▶ A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

- ▶ A2.

$$a + (b + c) = (a + b) + c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of addition.

Axioms for addition

- ▶ A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

- ▶ A2.

$$a + (b + c) = (a + b) + c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of addition.

- ▶ A3. There exists an element called 'zero', denoted by '0' in \mathbb{R} such that

$$a + 0 = 0 + a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of zero.

Axioms for addition

- A1.

$$a + b = b + a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of addition.

- A2.

$$a + (b + c) = (a + b) + c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of addition.

- A3. There exists an element called 'zero', denoted by '0' in \mathbb{R} such that

$$a + 0 = 0 + a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of zero.

- A4. For every $a \in \mathbb{R}$, there exists an element ' $-a$ ' in \mathbb{R} such that

$$a + (-a) = (-a) + a = 0.$$

-Existence of additive inverse. $-a$ is known as additive inverse of a .

Axioms for multiplication

► M1.

$$a \cdot b = b \cdot a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

- ▶ M3. There exists an element called 'one', denoted by '1' different from 0 in \mathbb{R} such that

$$a.1 = 1.a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of one.

Axioms for multiplication

- ▶ M1.

$$a.b = b.a, \quad \forall a, b \in \mathbb{R}.$$

-Commutativity of multiplication.

- ▶ M2.

$$a.(b.c) = (a.b).c, \quad \forall a, b, c \in \mathbb{R}.$$

-Associativity of multiplication.

- ▶ M3. There exists an element called 'one', denoted by '1' different from 0 in \mathbb{R} such that

$$a.1 = 1.a = a, \quad \forall a \in \mathbb{R}.$$

-Existence of one.

- ▶ M4. For every $a \in \mathbb{R}$, with $a \neq 0$, there exists an element ' a^{-1} ' in \mathbb{R} such that

$$a.a^{-1} = a^{-1}.a = 1.$$

-Existence of multiplicative inverse. a^{-1} is known as multiplicative inverse of a .

Distributivity

- D. For a, b, c in \mathbb{R} ,

$$a.(b + c) = a.b + a.c$$

$$(a + b).c = a.c + b.c$$

-Distributivity.

Distributivity

- D. For a, b, c in \mathbb{R} ,

$$a.(b + c) = a.b + a.c$$

$$(a + b).c = a.c + b.c$$

-Distributivity.

- These axioms are known as algebraic axioms. They determine the 'algebraic structure' of real numbers.

Order axioms: Positive elements

- Here we have a bunch of three axioms as described below.

Order axioms: Positive elements

- ▶ Here we have a bunch of three axioms as described below.
- ▶ The set \mathbb{R} has a subset \mathbb{P} called the set of positive real numbers satisfying following axioms:

Order axioms: Positive elements

- ▶ Here we have a bunch of three axioms as described below.
- ▶ The set \mathbb{R} has a subset \mathbb{P} called the set of positive real numbers satisfying following axioms:
- ▶ **O1.** If $a, b \in \mathbb{P}$ then $a + b \in \mathbb{P}$. [The set of positive real numbers is closed under addition.]

Order axioms: Positive elements

- ▶ Here we have a bunch of three axioms as described below.
- ▶ The set \mathbb{R} has a subset \mathbb{P} called the set of positive real numbers satisfying following axioms:
- ▶ **O1.** If $a, b \in \mathbb{P}$ then $a + b \in \mathbb{P}$. [The set of positive real numbers is closed under addition.]
- ▶ **O2.** If $a, b \in \mathbb{P}$ then $a.b \in \mathbb{P}$. [The set of positive real numbers is closed under multiplication.]

Order axioms: Positive elements

- ▶ Here we have a bunch of three axioms as described below.
- ▶ The set \mathbb{R} has a subset \mathbb{P} called the set of positive real numbers satisfying following axioms:
- ▶ **O1.** If $a, b \in \mathbb{P}$ then $a + b \in \mathbb{P}$. [The set of positive real numbers is closed under addition.]
- ▶ **O2.** If $a, b \in \mathbb{P}$ then $a \cdot b \in \mathbb{P}$. [The set of positive real numbers is closed under multiplication.]
- ▶ **O3.** If $a \in \mathbb{R}$, then exactly one of the following three properties is true:
 - (i) $a \in \mathbb{P}$;
 - (ii) $-a \in \mathbb{P}$;
 - (iii) $a = 0$.

[This is known as **trichotomy property** for real numbers.]

- ▶ Any element of \mathbb{P} is said to be positive.

Order axioms: Positive elements

- ▶ Here we have a bunch of three axioms as described below.
- ▶ The set \mathbb{R} has a subset \mathbb{P} called the set of positive real numbers satisfying following axioms:
- ▶ **O1.** If $a, b \in \mathbb{P}$ then $a + b \in \mathbb{P}$. [The set of positive real numbers is closed under addition.]
- ▶ **O2.** If $a, b \in \mathbb{P}$ then $a \cdot b \in \mathbb{P}$. [The set of positive real numbers is closed under multiplication.]
- ▶ **O3.** If $a \in \mathbb{R}$, then exactly one of the following three properties is true:
 - (i) $a \in \mathbb{P}$;
 - (ii) $-a \in \mathbb{P}$;
 - (iii) $a = 0$.

[This is known as **trichotomy property** for real numbers.]

- ▶ Any element of \mathbb{P} is said to be positive.
- ▶ **Warning:** The notation \mathbb{P} for positive real numbers is not standard. You may see \mathbb{R}^+ , $(0, \infty)$ as some of the alternative notations for the set of positive real numbers.

Natural numbers are positive

- Theorem 8.1: If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.

Natural numbers are positive

- **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom $M3$. Now if $(-1) \in \mathbb{P}$, then by axiom $O2$, $(-1).(-1) \in \mathbb{P}$.

Natural numbers are positive

- **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom $M3$. Now if $(-1) \in \mathbb{P}$, then by axiom $O2$, $(-1).(-1) \in \mathbb{P}$.
- But $(-1).(-1) = 1$ (Exercise: Show this!).

Natural numbers are positive

- ▶ **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- ▶ **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom $M3$. Now if $(-1) \in \mathbb{P}$, then by axiom $O2$, $(-1).(-1) \in \mathbb{P}$.
- ▶ But $(-1).(-1) = 1$ (Exercise: Show this!).
- ▶ This shows that both $1 \in \mathbb{P}$ and also $(-1) \in \mathbb{P}$ and that violates trichotomy property $O3$. Therefore $(-1) \in \mathbb{P}$ is not possible. The only other possibility is $1 \in \mathbb{P}$.

Natural numbers are positive

- ▶ **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- ▶ **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom $M3$. Now if $(-1) \in \mathbb{P}$, then by axiom $O2$, $(-1).(-1) \in \mathbb{P}$.
- ▶ But $(-1).(-1) = 1$ (Exercise: Show this!).
- ▶ This shows that both $1 \in \mathbb{P}$ and also $(-1) \in \mathbb{P}$ and that violates trichotomy property $O3$. Therefore $(-1) \in \mathbb{P}$ is not possible. The only other possibility is $1 \in \mathbb{P}$.
- ▶ Then by property $O1$, $2 = 1 + 1$ is in \mathbb{P} .

Natural numbers are positive

- ▶ **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- ▶ **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom $M3$. Now if $(-1) \in \mathbb{P}$, then by axiom $O2$, $(-1).(-1) \in \mathbb{P}$.
- ▶ But $(-1).(-1) = 1$ (Exercise: Show this!).
- ▶ This shows that both $1 \in \mathbb{P}$ and also $(-1) \in \mathbb{P}$ and that violates trichotomy property $O3$. Therefore $(-1) \in \mathbb{P}$ is not possible. The only other possibility is $1 \in \mathbb{P}$.
- ▶ Then by property $O1$, $2 = 1 + 1$ is in \mathbb{P} .
- ▶ Consider the set S of all natural numbers which are positive. Then $1 \in S$ and if $n \in S$, then $n + 1 \in S$.

Natural numbers are positive

- ▶ **Theorem 8.1:** If $n \in \mathbb{N}$ then $n \in \mathbb{P}$.
- ▶ **Proof:** First we show that $1 \in \mathbb{P}$. We have $1 \neq 0$ by axiom *M3*. Now if $(-1) \in \mathbb{P}$, then by axiom *O2*, $(-1).(-1) \in \mathbb{P}$.
- ▶ But $(-1).(-1) = 1$ (Exercise: Show this!).
- ▶ This shows that both $1 \in \mathbb{P}$ and also $(-1) \in \mathbb{P}$ and that violates trichotomy property *O3*. Therefore $(-1) \in \mathbb{P}$ is not possible. The only other possibility is $1 \in \mathbb{P}$.
- ▶ Then by property *O1*, $2 = 1 + 1$ is in \mathbb{P} .
- ▶ Consider the set S of all natural numbers which are positive. Then $1 \in S$ and if $n \in S$, then $n + 1 \in S$.
- ▶ Now a simple application of mathematical induction shows that $n \in \mathbb{P}$ for every $n \in \mathbb{N}$.

Inequalities

- ▶ **Notation:** For real numbers, a, b , we write $a < b$ or $b > a$ if $b - a \in \mathbb{P}$. We write $a \leq b$ or $b \geq a$ if $b - a \in \mathbb{P} \cup \{0\}$.

Inequalities

- ▶ **Notation:** For real numbers, a, b , we write $a < b$ or $b > a$ if $b - a \in \mathbb{P}$. We write $a \leq b$ or $b \geq a$ if $b - a \in \mathbb{P} \cup \{0\}$.
- ▶ In particular, $a > 0$ iff $a \in \mathbb{P}$. Similarly $a \geq 0$ iff $a \in \mathbb{P} \cup \{0\}$.

Inequalities

- ▶ **Notation:** For real numbers, a, b , we write $a < b$ or $b > a$ if $b - a \in \mathbb{P}$. We write $a \leq b$ or $b \geq a$ if $b - a \in \mathbb{P} \cup \{0\}$.
- ▶ In particular, $a > 0$ iff $a \in \mathbb{P}$. Similarly $a \geq 0$ iff $a \in \mathbb{P} \cup \{0\}$.
- ▶ Now order axioms under this notation, becomes:
 - (1) $O1.$: If $a > 0$ and $b > 0$ then $a + b > 0$.
 - (2) $O2.$: If $a > 0$ and $b > 0$ then $ab > 0$.
 - (3) $O3.$: If $a \in \mathbb{R}$ then exactly one of the following holds: (i) $a > 0$; (ii) $a < 0$; (iii) $a = 0$.

Inequalities

- ▶ **Notation:** For real numbers, a, b , we write $a < b$ or $b > a$ if $b - a \in \mathbb{P}$. We write $a \leq b$ or $b \geq a$ if $b - a \in \mathbb{P} \cup \{0\}$.
- ▶ In particular, $a > 0$ iff $a \in \mathbb{P}$. Similarly $a \geq 0$ iff $a \in \mathbb{P} \cup \{0\}$.
- ▶ Now order axioms under this notation, becomes:
 - (1) $O1.$: If $a > 0$ and $b > 0$ then $a + b > 0$.
 - (2) $O2.$: If $a > 0$ and $b > 0$ then $ab > 0$.
 - (3) $O3.$: If $a \in \mathbb{R}$ then exactly one of the following holds: (i) $a > 0$; (ii) $a < 0$; (iii) $a = 0$.
- ▶ Here after we may not use the notation \mathbb{P} at all!

Inequalities

- ▶ **Notation:** For real numbers, a, b , we write $a < b$ or $b > a$ if $b - a \in \mathbb{P}$. We write $a \leq b$ or $b \geq a$ if $b - a \in \mathbb{P} \cup \{0\}$.
- ▶ In particular, $a > 0$ iff $a \in \mathbb{P}$. Similarly $a \geq 0$ iff $a \in \mathbb{P} \cup \{0\}$.
- ▶ Now order axioms under this notation, becomes:
 - (1) $O1.$: If $a > 0$ and $b > 0$ then $a + b > 0$.
 - (2) $O2.$: If $a > 0$ and $b > 0$ then $ab > 0$.
 - (3) $O3.$: If $a \in \mathbb{R}$ then exactly one of the following holds: (i) $a > 0$; (ii) $a < 0$; (iii) $a = 0$.
- ▶ Here after we may not use the notation \mathbb{P} at all!
- ▶ We may call a real number a as negative if $-a$ is positive.

Simple inequalities

- **Theorem 8.2:** Suppose a, b, c, d are real numbers. Then
- (i) If $a < b$, then $a + c < b + c$.
 - (ii) If $a \leq b$, then $a + c \leq b + c$.
 - (iii) If $a < b$ and $c < d$, then $a + c < b + d$.
 - (iv) If $a < b$ and $c > 0$, then $ac < bc$.
 - (v) If $a < b$ and $c < 0$, then $a > b$.
 - (vi) If $a < b$ and $c = 0$, then $ac = bc = 0$.
 - (vii) If $a < 0$ and $b > 0$, then $ab < 0$.
 - (viii) If $a < 0$ and $b < 0$, then $ab > 0$.

Simple inequalities

- ▶ **Theorem 8.2:** Suppose a, b, c, d are real numbers. Then
 - (i) If $a < b$, then $a + c < b + c$.
 - (ii) If $a \leq b$, then $a + c \leq b + c$.
 - (iii) If $a < b$ and $c < d$, then $a + c < b + d$.
 - (iv) If $a < b$ and $c > 0$, then $ac < bc$.
 - (v) If $a < b$ and $c < 0$, then $a > b$.
 - (vi) If $a < b$ and $c = 0$, then $ac = bc = 0$.
 - (vii) If $a < 0$ and $b > 0$, then $ab < 0$.
 - (viii) If $a < 0$ and $b < 0$, then $ab > 0$.
- ▶ **Proof.** Exercise.

Simple inequalities

- ▶ **Theorem 8.2:** Suppose a, b, c, d are real numbers. Then
 - (i) If $a < b$, then $a + c < b + c$.
 - (ii) If $a \leq b$, then $a + c \leq b + c$.
 - (iii) If $a < b$ and $c < d$, then $a + c < b + d$.
 - (iv) If $a < b$ and $c > 0$, then $ac < bc$.
 - (v) If $a < b$ and $c < 0$, then $a > b$.
 - (vi) If $a < b$ and $c = 0$, then $ac = bc = 0$.
 - (vii) If $a < 0$ and $b > 0$, then $ab < 0$.
 - (viii) If $a < 0$ and $b < 0$, then $ab > 0$.
- ▶ **Proof. Exercise.**
- ▶ Often we show two real numbers a, b are equal by showing $a \leq b$ and $b \leq a$. The equality follows by trichotomy property.

More inequalities

- ▶ Inequalities play a crucial role in whole of Analysis.

More inequalities

- ▶ Inequalities play a crucial role in whole of Analysis.
- ▶ **Notation.** For any real number a , a^2 is defined $a.a$. More generally, for any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, a^n is defined as $a.a.a\dots.a$ (n times).

More inequalities

- ▶ Inequalities play a crucial role in whole of Analysis.
- ▶ **Notation.** For any real number a , a^2 is defined $a.a$. More generally, for any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, a^n is defined as $a.a.a\dots.a$ (n times).
- ▶ **Theorem 8.3:** If a, b are positive real numbers, then $a^2 < b^2$ if and only if $a < b$.

More inequalities

- ▶ Inequalities play a crucial role in whole of Analysis.
- ▶ **Notation.** For any real number a , a^2 is defined $a.a$. More generally, for any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, a^n is defined as $a.a.a\dots.a$ (n times).
- ▶ **Theorem 8.3:** If a, b are positive real numbers, then $a^2 < b^2$ if and only if $a < b$.
- ▶ **Proof.** Suppose $a < b$. Now $b^2 - a^2 = (b + a)(b - a)$. As, both $(b + a)$ and $(b - a)$ are positive, $b^2 - a^2$ is positive. In other words, $a^2 < b^2$.

More inequalities

- ▶ Inequalities play a crucial role in whole of Analysis.
- ▶ **Notation.** For any real number a , a^2 is defined $a.a$. More generally, for any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, a^n is defined as $a.a.a\dots.a$ (n times).
- ▶ **Theorem 8.3:** If a, b are positive real numbers, then $a^2 < b^2$ if and only if $a < b$.
- ▶ **Proof.** Suppose $a < b$. Now $b^2 - a^2 = (b + a)(b - a)$. As, both $(b + a)$ and $(b - a)$ are positive, $b^2 - a^2$ is positive. In other words, $a^2 < b^2$.
- ▶ Conversely, suppose $a^2 < b^2$. Hence $(b^2 - a^2) = (b + a)(b - a)$ is positive. As a, b are assumed to be positive, $(b + a)$ is positive. Now from Theorem 8.1 it is clear that for the product $(b + a)(b - a)$ to be positive, we also need $(b - a)$ positive.

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.
- ▶ **Theorem 8.4 (Triangle inequality):** Let a, b be real numbers. Then

$$|a + b| \leq |a| + |b|.$$

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.
- ▶ **Theorem 8.4 (Triangle inequality):** Let a, b be real numbers. Then

$$|a + b| \leq |a| + |b|.$$

- ▶ **Proof:** If a or b is zero, it is easily seen that $|a + b| = |a| + |b|$.

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.
- ▶ **Theorem 8.4 (Triangle inequality):** Let a, b be real numbers. Then

$$|a + b| \leq |a| + |b|.$$

- ▶ **Proof:** If a or b is zero, it is easily seen that $|a + b| = |a| + |b|$.
- ▶ If both a, b are positive, then $a + b$ is also positive, and we get $|a + b| = a + b = |a| + |b|$.

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.
- ▶ **Theorem 8.4 (Triangle inequality):** Let a, b be real numbers. Then

$$|a + b| \leq |a| + |b|.$$

- ▶ **Proof:** If a or b is zero, it is easily seen that $|a + b| = |a| + |b|$.
- ▶ If both a, b are positive, then $a + b$ is also positive, and we get $|a + b| = a + b = |a| + |b|$.
- ▶ Now if a is positive and b is negative, say $b = -|b|$, with $0 < |b| \leq a$, we get

$$|a + b| = |a - |b|| = a - |b| \leq a = |a| \leq |a| + |b|.$$

Modulus

- ▶ For any real number a , the **modulus** of a , denoted by $|a|$, is defined by

$$|a| = \begin{cases} a & \text{if } a \geq 0; \\ -a & \text{if } a < 0. \end{cases}$$

- ▶ Note that $|a| \geq 0$ for every real number a and $|a| = 0$ if and only if $a = 0$. Further $|ab| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$.
- ▶ **Theorem 8.4 (Triangle inequality):** Let a, b be real numbers. Then

$$|a + b| \leq |a| + |b|.$$

- ▶ **Proof:** If a or b is zero, it is easily seen that $|a + b| = |a| + |b|$.
- ▶ If both a, b are positive, then $a + b$ is also positive, and we get $|a + b| = a + b = |a| + |b|$.
- ▶ Now if a is positive and b is negative, say $b = -|b|$, with $0 < |b| \leq a$, we get

$$|a + b| = |a - |b|| = a - |b| \leq a = |a| \leq |a| + |b|.$$

- ▶ Similarly if a is positive and b is negative with $0 < a \leq |b|$, we get $|a + b| = |a - |b|| = |b| - a \leq |b| \leq |a| + |b|$. Other cases

Why is this triangle inequality?

- ▶ Suppose a, b are any two real numbers. Define the 'distance' between a and b as

$$\text{dist } (a, b) = |b - a|.$$

Why is this triangle inequality?

- ▶ Suppose a, b are any two real numbers. Define the 'distance' between a and b as

$$\text{dist}(a, b) = |b - a|.$$

- ▶ The triangle inequality tells us that for any three points a, b, c in \mathbb{R} ,

$$\text{dist}(a, b) \leq \text{dist}(a, c) + \text{dist}(c, b).$$

Why is this triangle inequality?

- ▶ Suppose a, b are any two real numbers. Define the 'distance' between a and b as

$$\text{dist}(a, b) = |b - a|.$$

- ▶ The triangle inequality tells us that for any three points a, b, c in \mathbb{R} ,

$$\text{dist}(a, b) \leq \text{dist}(a, c) + \text{dist}(c, b).$$

- ▶ Now it should be clear as to why this is called triangle inequality.

Why is this triangle inequality?

- ▶ Suppose a, b are any two real numbers. Define the 'distance' between a and b as

$$\text{dist}(a, b) = |b - a|.$$

- ▶ The triangle inequality tells us that for any three points a, b, c in \mathbb{R} ,

$$\text{dist}(a, b) \leq \text{dist}(a, c) + \text{dist}(c, b).$$

- ▶ Now it should be clear as to why this is called triangle inequality.
- ▶ You will see that this notion of distance has far reaching applications in Analysis.

No smallest or largest positive elements

- **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.
- ▶ It is easy to see that $2^{-1} = \frac{1}{2}$ is positive (Otherwise $1 = 2 \cdot 2^{-1}$ would be negative). Hence $\frac{\alpha}{2} = \alpha \cdot \frac{1}{2}$ is positive.

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.
- ▶ It is easy to see that $2^{-1} = \frac{1}{2}$ is positive (Otherwise $1 = 2 \cdot 2^{-1}$ would be negative). Hence $\frac{\alpha}{2} = \alpha \cdot \frac{1}{2}$ is positive.
- ▶ So $\alpha - \frac{\alpha}{2} = \frac{\alpha}{2}$ is also positive.

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.
- ▶ It is easy to see that $2^{-1} = \frac{1}{2}$ is positive (Otherwise $1 = 2 \cdot 2^{-1}$ would be negative). Hence $\frac{\alpha}{2} = \alpha \cdot \frac{1}{2}$ is positive.
- ▶ So $\alpha - \frac{\alpha}{2} = \frac{\alpha}{2}$ is also positive.
- ▶ This means that $0 < \frac{\alpha}{2} < \alpha$. Hence no real number α can be the smallest positive element.

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.
- ▶ It is easy to see that $2^{-1} = \frac{1}{2}$ is positive (Otherwise $1 = 2 \cdot 2^{-1}$ would be negative). Hence $\frac{\alpha}{2} = \alpha \cdot \frac{1}{2}$ is positive.
- ▶ So $\alpha - \frac{\alpha}{2} = \frac{\alpha}{2}$ is also positive.
- ▶ This means that $0 < \frac{\alpha}{2} < \alpha$. Hence no real number α can be the smallest positive element.
- ▶ (ii) If β is any positive element, then $\beta < \beta + 1$. This proves the second statement.

No smallest or largest positive elements

- ▶ **Theorem 8.5:** (i) The set \mathbb{P} has no least element, that is, there exists no positive real number α , such that $\alpha \leq a$ for every positive real number a . (ii) The set \mathbb{P} has no largest element, that is, there exists no positive real number β , such that $a \leq \beta$ for every positive real number a .
- ▶ **Proof:** Suppose α is a positive real number. Then we claim $0 < \frac{\alpha}{2} < \alpha$.
- ▶ It is easy to see that $2^{-1} = \frac{1}{2}$ is positive (Otherwise $1 = 2 \cdot 2^{-1}$ would be negative). Hence $\frac{\alpha}{2} = \alpha \cdot \frac{1}{2}$ is positive.
- ▶ So $\alpha - \frac{\alpha}{2} = \frac{\alpha}{2}$ is also positive.
- ▶ This means that $0 < \frac{\alpha}{2} < \alpha$. Hence no real number α can be the smallest positive element.
- ▶ (ii) If β is any positive element, then $\beta < \beta + 1$. This proves the second statement.
- ▶ **END OF LECTURE 8.**