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Lecture 8: Real Numbers : Order axioms

I We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

-Distributivity.

I These axioms are known as algebraic axioms. They determine
the ‘algebraic structure’ of real numbers.
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Order axioms: Positive elements

I Here we have a bunch of three axioms as described below.

I The set R has a subset P called the set of positive real
numbers satisfying following axioms:

I O1. If a, b ∈ P then a + b ∈ P. [ The set of positive real
numbers is closed under addition.]

I O2. If a, b ∈ P then a.b ∈ P. [ The set of positive real
numbers is closed under multiplication.]

I O3. If a ∈ R, then exactly one of the following three
properties is true:
(i) a ∈ P;
(ii) −a ∈ P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

I Any element of P is said to be positive.
I Warning: The notation P for positive real numbers is not

standard. You may see R+, (0,∞) as some of the alternative
notations for the set of positive real numbers.
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Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.

I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom
M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.

I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.

I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.
I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.
I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.
I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.
I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.
I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom

M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.
I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.



Inequalities

I Notation: For real numbers, a, b, we write a < b or b > a if
b − a ∈ P. We write a ≤ b or b ≥ a if b − a ∈ P

⋃
{0}.

I In particular, a > 0 iff a ∈ P. Similarly a ≥ 0 iff a ∈ P
⋃
{0}.

I Now order axioms under this notation, becomes:
(1) O1. : If a > 0 and b > 0 then a + b > 0.
(2) O2. : If a > 0 and b > 0 then ab > 0.
(3) O3.: If a ∈ R then exactly one of the following holds: (i)
a > 0; (ii) a < 0; (iii) a = 0.

I Here after we may not use the notation P at all!

I We may call a real number a as negative if −a is positive.
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Simple inequalities

I Theorem 8.2: Suppose a, b, c , d are real numbers. Then
(i) If a < b, then a + c < b + c .
(ii) If a ≤ b, then a + c ≤ b + c .
(iii) If a < b and c < d , then a + c < b + d .
(iv) If a < b and c > 0, then ac < bc.
(v) If a < b and c < 0, then a > b.
(vi) If a < b and c = 0, then ac = bc = 0.
(vii) If a < 0 and b > 0, then ab < 0.
(viii) If a < 0 and b < 0, then ab > 0.

I Proof. Exercise.

I Often we show two real numbers a, b are equal by showing
a ≤ b and b ≤ a. The equality follows by trichotomy property.
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More inequalities

I Inequalities play a crucial role in whole of Analysis.

I Notation. For any real number a, a2 is defined a.a. More
generally, for any a ∈ R and n ∈ N, an is defined as
a.a.a . . . .a (n times ).

I Theorem 8.3: If a, b are positive real numbers, then a2 < b2 if
and only if a < b.

I Proof. Suppose a < b. Now b2 − a2 = (b + a)(b − a). As,
both (b + a) and (b − a) are positive, b2 − a2 is positive. In
other words, a2 < b2.

I Conversely, suppose a2 < b2. Hence
(b2 − a2) = (b + a)(b − a) is positive. As a, b are assumed to
be positive, (b + a) is positive. Now from Theorem 8.1 it is
clear that for the product (b + a)(b − a) to be positive, we
also need (b − a) positive.
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Modulus

I For any real number a, the modulus of a, denoted by |a|, is
defined by

|a| =

{
a if a ≥ 0;
−a if a < 0.

I Note that |a| ≥ 0 for every real number a and |a| = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a, b ∈ R.

I Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then

|a + b| ≤ |a|+ |b|.
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Why is this triangle inequality?

I Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b − a|.

I The triangle inequality tells us that for any three points a, b, c
in R,

dist(a, b) ≤ dist(a, c) + dist(c, b).

I Now it should be clear as to why this is called triangle
inequality.

I You will see that this notion of distance has far reaching
applications in Analysis.
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No smallest or largest positive elements

I Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number α, such that α ≤ a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number β, such
that a ≤ β for every positive real number a.

I Proof: Suppose α is a positive real number. Then we claim
0 < α

2 < α.

I It is easy to see that 2−1 = 1
2 is positive (Otherwise 1 = 2.2−1

would be negative). Hence α
2 = α.12 is positive.

I So α− α
2 = α

2 is also positive.

I This means that 0 < α
2 < α. Hence no real number α can be

the smallest positive element.

I (ii) If β is any positive element, then β < β + 1. This proves
the second statement.

I END OF LECTURE 8.
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