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What do we do in mathematics?
We do logical thinking.

Given a set of statements, what are the statements we can
deduce is what bothers us most of the time.

We learn to make these deductions systematically.

The statements we start with or which we take for granted are
axioms.

We think of some deductions as important or beautiful. We
call them as theorems.
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We need to be careful in making deductions.
A statement seen: "Smoking causes cancer”.

Some one does not believe in it and tries to refute it by:
"Well, a friend of mine got cancer though no one in his family
smoked! "

There is no contradiction here! Non-smoking also may cause
cancer!

Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.
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We use Mathematics to know the real life.

We do this by modeling what we see.

We model: The space around us through geometry.
Dynamics through calculus.

Randomness through probability.

So on.

We see structural, logical similarities in many different
contexts.
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Amazing diversity of Applications

» Physics: Have a look at this famous essay: " The
Unreasonable Effectiveness of Mathematics in the Natural
Sciences”, by E. Wigner.

» Computer Science, Biology, Chemistry, Statistics,
Economics,... Everywhere there are mathematical models.
» All our technology is built using mathematics.

> We are living in a digital world. We convert all the
information into digits. A sequence of 0's and 1's, The
information could be audio, image, video, currency,...

» Keeping the information safe is done using cryptology. That
also uses mathematics in a non-trivial way.
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Clarity and rigour.

» Mathematicians try to be precise.
P The setting should be clear. The statements should be clear,
the deductions should be clear and so on.
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A story from the internet

» Black sheep:

» An engineer, a physicist, and a mathematician were on a train
heading north, and had just crossed the border into Scotland.

» The engineer looked out of the window and said " Look!
Scottish sheep are black!”

» The physicist said, "No, no. Some Scottish sheep are black.”

> The mathematician looked irritated and said: " All we can say

is that there is one field, containing at least one sheep, of
which at least one side is black, as of now.”
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To begin with people talk of ‘pure mathematics’ and ‘applied
mathematics’.

Like for instance you may considering modeling COVID
situation as applied mathematics.

In pure mathematics we have areas like algebra, analysis,
geometry, number theory, complex analysis, combinatorics and
so on.

It is very important to understand that these are broad
classifications. There are no strict borders. More importantly
very often methods and results become useful in another area.
For instance, complex analysis is routinely used to do number
theory.

In other words all these topics are deeply inter-connected.
Simply said, mathematics is one subject.

You should learn basics of all the areas for now. Specialization
comes only at an advanced level. You should not bother
about it for now. Just have an open mind about all the areas.
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Text books

» Main text book: Introduction to Real Analysis: R. G. Bartle
and D. R. Sherbert.

Other references:

Terrance Tao: Analysis | and II.

H. Royden: Real Analysis.

T. M. Apostol: Mathematical Analysis.
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Fix n € N and take S = {1,2,...,n}.

Let F be a collection of subsets with following two properties:
(i) F#0; F #{0}.

(i) f A€ F and B € F then A|UB € F.

Suppose M = #.F. Here {f denotes number of elements in a set.
Show that there exists j € S such that

M

In other words, there exists an element j which is contained in
at least half the sets in F.
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Examples

Take S ={1,2,...,10}.

Fr = {0,{1,2},{2,3},{1,2,3}}
Fo={ACS:1€eA}

F3={ACS:1¢ A}

Fa={ACS:4A=2}.

Then Fi1, Fa, F3 satisfy conditions (i), (ii). Fa does not
satisfy condition (iii).
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Continuation

> S=1{1,2,...,10}.

> F={0,{1,2},{2,3},{1,2,3}}.

> #F1 = 4; and we can take j = 2. There are three sets in F3
containing J.

> F,={ACS:1e€A}.

> #F> =2 and we can take j = 1 and #{A € Fr : j € A} = 2°.

> F3={ACS:1¢ A}

> £F; = 2% and we can take j = 2 (or any number in S
different from 1) and #{A € F3:j € A} = 28,

» END OF LECTURE 1.
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Lecture 2: Set theory and Russell's paradox

» What is a set?

» Informal Definition: A set is a collection of well-defined
objects.

» Example: A={2,3,4}. B={a,b,c}.
N = {1,2,...} the set of natural numbers.
» Z=4{...,—-2,—-1,0,1,2,...}-the set of integers.
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Why to have the phrase ‘well-defined'?

» The collection of students in this class. This is a set.
» The collection of tall students in this class. This is not
well-defined, unless we specify what exactly we mean by ‘tall’.

» The collection of ‘smart’ students in this class. This is also
not well-defined unless we are clear as to who is smart and
who is not.

> The main point here is that given an object we should be
clear as to whether it is an element of the set or not.

» This is a requirement so that we do not have any confusion.
Still the definition is only an informal one.
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Russell's barber paradox

P There is a village with just one barber.

» The barber cuts hair of some villager if and only if the villager
does not cut it himself/herself.

» Does the barber cut his/her own hair or not?
P> You see that either way you have a problem.

P> Let us see some more paradoxes of similar type.
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Assume that there exists a god, who is almighty. That is
he/she is all powerful.

Qn: Can god create a small stone?
Ans: Yes!

Qn: Can god create a huge stone?
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Assume that there exists a god, who is almighty. That is
he/she is all powerful.

Qn: Can god create a small stone?
Ans: Yes!

Qn: Can god create a huge stone?
Ans: Yes!

Qn: Can god lift a small stone?
Ans: Yes!
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Assume that there exists a god, who is almighty. That is
he/she is all powerful.

Qn: Can god create a small stone?
Ans: Yes!
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Qn: Can god lift a small stone?
Ans: Yes!

Qn: Can god lift a huge stone?
Ans: Yes!

Qn: Can god create a huge stone which is so big that god
also can't lift it?

vVvvyVvYvVvyVvYVYyYVYyyYy



Almighty god

v

Assume that there exists a god, who is almighty. That is
he/she is all powerful.

Qn: Can god create a small stone?
Ans: Yes!

Qn: Can god create a huge stone?
Ans: Yes!

Qn: Can god lift a small stone?
Ans: Yes!

Qn: Can god lift a huge stone?
Ans: Yes!

Qn: Can god create a huge stone which is so big that god
also can't lift it?
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Adjectives

> We classify the adjectives in English into two types.

» An adjective is autological if it applies to itself. Otherwise it is
heterological.

» For instance, 'SHORT' is a short word. So it is auto-logical,
whereas, 'LONG' is not a long word, so it is heterological.

> More auto-logical words: ENGLISH, NOUN,
UNHYPHENATED, AUTOLOGICAL, ...

» More hetero-logical words: JAPANESE, HYPHENATED,
MONOSYLLABIC, ...

» What about the adjective ‘HETEROLOGICAL? We again face
a problem.
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Our city has many libraries. Every library has a catalogue
listing all the books the library has.

Now the catalogue itself is a book. So some librarians may
include it as a book the library has. Some other librarians may
disagree and may not include the catalogue as a book of the
library.

There is a master librarian of the city, who maintains two
catalogues of catalogues.

First Catalogue containing names of all catalogues which list
themselves and the Second Catalogue containing names of all
catalogues which do not list themselves.

The First Catalogue can contain itself in its list or you may
drop it. Either way it is fine.

There is a problem with the Second Catalogue. Should it list
itself or not?



Russell’s paradox in set theory

» Let L be the set of all sets in the world.



Russell’s paradox in set theory

> Let L be the set of all sets in the world.
» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.



Russell’s paradox in set theory

> Let L be the set of all sets in the world.

» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

» But L is a bit extraordinary as L itself is a member of itself.



Russell’s paradox in set theory

> Let L be the set of all sets in the world.

» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

» But L is a bit extraordinary as L itself is a member of itself.

» So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as

members. Extraordinary sets are those which contain
themselves as members.



Russell’s paradox in set theory

> Let L be the set of all sets in the world.

» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

» But L is a bit extraordinary as L itself is a member of itself.

» So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as

members. Extraordinary sets are those which contain
themselves as members.

» Let M be the set of all sets having two or more elements.
Then M is an extraordinary set.



Russell’s paradox in set theory

> Let L be the set of all sets in the world.

» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

» But L is a bit extraordinary as L itself is a member of itself.

» So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as
members. Extraordinary sets are those which contain
themselves as members.

» Let M be the set of all sets having two or more elements.
Then M is an extraordinary set.

> Let A be the set of all ordinary sets and let B be the set of all
extraordinary sets.



Russell’s paradox in set theory

» Let L be the set of all sets in the world.

» Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

» But L is a bit extraordinary as L itself is a member of itself.

» So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as
members. Extraordinary sets are those which contain
themselves as members.

» Let M be the set of all sets having two or more elements.
Then M is an extraordinary set.

> Let A be the set of all ordinary sets and let B be the set of all
extraordinary sets.

» Is A ordinary or extraordinary? Either way we have a problem!
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Lecture 3: Sets and functions

» Informal Definition: A set is a collection of well-defined
objects.

» We continue with this definition though ideally speaking we
should be following ZFC axioms.

> We assume familiarity with
N = {1,2,...} the set of natural numbers.
» Z={...,—2,-1,0,1,2,...}-the set of integers.

v



Functions

» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.



Functions

» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.

» This is denoted by f : A — B.



Functions

» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.

» This is denoted by f : A — B.

» You may also think of a function f as a subset of the
Cartesian product A x B ={(a,b): a € A, b € B} having
certain properties.



Functions

» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.

» This is denoted by f : A — B.

» You may also think of a function f as a subset of the
Cartesian product A x B ={(a,b): a € A, b € B} having
certain properties.

» More precisely, G(f) = {(x, f(x)) : x € A} is a subset of
A x B, where every element x € A appears with exactly one
element f(x) € B.



Functions

» Given two non-empty sets A and B, a function f from A to B
is an association of some element f(x) in B, for every x in A.

» This is denoted by f : A — B.

» You may also think of a function f as a subset of the
Cartesian product A x B ={(a,b): a € A, b € B} having
certain properties.

» More precisely, G(f) = {(x, f(x)) : x € A} is a subset of
A x B, where every element x € A appears with exactly one
element f(x) € B.

» G(f) is known as the graph of f.
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Vertical line test

» Clearly not all subsets G of A x B appear as graphs of f.

» Every element x € A should appear. More over for every
element x there should be unique x’ in B such that
(x,x") € G.

» In other words, there should not be x’, x” in B with x" # x”,
such that both (x.x") and (x,x”) are in G.

» In the usual picture of graphs of functions on real line this is
known as vertical line test. A graph of a function can not be
touching a vertical line at more than one point.
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function as a machine

» You may think of a function f : A — B as a machine.

> It takes any x € A as input and spews out some element f(x)
in B as out put.

» Any element of A can be input.

» With one input there is only one output.

» Different inputs may give same output.

» Some elements of B may not be an output value for f.
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B is known as the co-domain of f.

The set {f(x) : x € A} is known as the range of f.
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Domain, Co-domain and Range
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Terminology: Suppose f : A — B is a function.

Then A is known as the domain of f.

B is known as the co-domain of f.

The set {f(x) : x € A} is known as the range of f.
Note that the range of f is a subset of the co-domain.

Sometimes people call B, the co-domain as range of f. It is
better to avoid that kind of terminology as it can lead to
confusion.
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Students and Hostel rooms

» Think of A as students and B as the set of hostel rooms.

» Then think of a function f : A — B as allotment of rooms. In
other words, student x gets room f(x).

» Note that to have a genuine function f it is necessary that all
students are allotted rooms. Nobody is left out.

» Same student can't be allotted multiple rooms. In other words
if y =f(x) and z = f(x), then y = z.

> |t is fine, if some rooms are vacant. In other words, there
could be y € B such that y # f(x) for any x € A.

» It is also fine if students are asked to share rooms. In other
words it is possible to have x, x” in A, such that f(x) = f(x').
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Injectivity

» Let A, B be non-empty sets and let f : A — B be a function.

» Definition: Then f is said to be injective or one to one if
a1, ap are in A and a; # ap then f(a1) # f(a2). In other
words, distinct elements are mapped to distinct elements.

» Equivalently, f is injective if f(a1) = f(a2) implies a1 = a».

» In the language of machines this corresponds to outputs being
different for different inputs.

» While allotting rooms to students, injectivity or one-to-one
means there is no sharing of rooms.
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Surjectivity

» Let A, B be non-empty sets and let f : A — B be a function.

» Definition: Then f is said to be surjective or onto if the range
of f is same as the co-domain.

» Equivalently, f is surjective if for every b € B there exists
a € A such that f(a) = b.

» Thinking of machines, f is surjective if every element of B can
be produced using f.

» In the problem of allotting rooms to students it means that
the hostel is full. That is all the rooms have got allotted.
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Bijections

» Give examples to show that an injective function need not be
surjective and a surjective function need not be injective.

» Definition: Let A, B be non-empty sets and let f : A — B be
a function. Then f is said to be bijective if f is both injective
and surjective. In other words, it is both one to one and onto.

» Define i :Z — Zby fi(n)=n+1, VYnée€Z. Thenfiisa
bijection.

» Define f, : Z — Z by f(n) = —n, Vn € Z. Then fyis a
bijection.

» Define f3 : Z — Z by f3(n) = n?. Then f; is neither injective
nor surjective.
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Compositions of functions

> Let A, B, C be non-empty sets. Let f: A— Bandg: B — C
be functions. Then a new function go f : A— C is got by
taking

gof(a)=g(f(a)), VaceA.
> gof is known as composition of g and f.
» The out put of machine f is taken as input for g.
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Inverse map

> Let A, B be non-empty sets and let f : A — B be a bijection.
Then we see that for every b € B there exists unique a € A
such that f(a) = b. Then we call a as f~1(b).

» In other words, if f : A — B is a bijection then there exists a
unique function f~1 : B — A such that

fof Y(b)=b, Ybe B
and
flof(a)=a, VacA.

» So fof~1is the identity map on B and f~1 o f is the identity
map on A.

» The identity map is a completely lazy machine where the
output is same as the input.
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One sided inverses

Example: Suppose A= {x,y} and B = {4,5,6}.
Define f : A— B by f(x) =4 and f(y) = 6.

Define g : B — A by g(4) = g(5) = x and g(6) = y.
Then gof(x)=xand gof(y)=y.

vVvyYyyvyy

So g o f is the identity map on A. However, f o g is not the
identity map on B.
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Properties inferred from compositions

> Let A, B, C be non-empty sets and let f : A — B and
g : B — C be functions.

» Theorem 3.1: Suppose gof is one to one then f is one to one.

» Proof: Take h =g o f. Suppose f(ai) = f(az) for some aj, a,
in A. Then by the definition of a function,
g(f(a1)) = g(f(a2)). In other words, h(a;) = h(az). But h is
assumed to be one to one. Hence a; = a>. This shows that f
is one to one.

» Theorem 3.2: Suppose g o f is onto then g is onto.

» Proof: Exercise!
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> Let A be a non-empty set and let f : A — A be a function.
» Then f2: A — Ais defined as f2(a) = f o f(a) = f(f(a)).
> Similarly £3(a) = (f o f o f)(a) = F(f(f(a))).

» More generally, we can define f” for any natural number n.
>

Note that in general you can not define f2 when f is a
function from one set to a different set.
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Conway's problem

» Consider h: Z — 7 defined by
3k if n=2k, keZ

h(n)=< 3k+1 if n=4k+1 keZ
3k—1 if n=4k—-1 keZ

» Here on the repeated action of h,

7—>5—4—-56—>9—T7.

» So we end up with a loop or a ‘cycle’.

» Show that h is a bijection.

» Challenge Problem 2: What happens if we start with 87 Do
we ever come back to 8, that is, is there a cycle starting at 87

» END OF LECTURE 3.
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We have assumed familiarity with
N ={1,2,...}, the set of natural numbers.

If we are to construct it abstractly from set theory, we may
take 1 as the set {()}, 2 as the set {0, 1} = {0, {0}}, 3 as the
set {0,1,2} = {0,{0},{0,{0}}, so on.

We order the natural numbers in the usual way:
1<2<3<4<---.

Let us look at a few basic properties of the set of natural
numbers and its subsets.
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Well-ordering principle

» Well-ordering principle: The set of natural numbers satisfies
well-ordering principle, that is, every non-empty subset of
natural numbers has a smallest element.

» In other words, if R is a non-empty subset of N then there
exists an element m € R such that m < k for all k € R.

» Note that clearly the minimal element of R is unique, for if
both k,/ are minimal then we have kK <[/ and | < k, and this
means k = /.

» We also note that if n € R, then the minimal element of R is

contained in {1,2,...,n} [ R. So the existence of minimum
here is essentially a statement about finite sets.
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> (a)1leT.
> (b) If {1,2,...,k} C T then {1,2,....k+1} C T
» Then T =N.
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Theorem 4.1: The following properties of N are equivalent:
(1) N satisfies well-ordering principle;
(2) N satisfies the mathematical induction principle;

(3) N satisfies the strong mathematical induction principle.
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Proof: (1) = (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

» By well ordering principle, R has a minimal element, say
me R.

» Now m#1as1leS. Therefore, m—1 & N. As m is the
minimal element of R, m—1 € S. By property (ii), this yields,
m=(m—1)+1&S. This is a contradiction as m € R and
RNS = 0.

> Hence S =N.
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Proof continued

(2) = (3). Assume induction principle.
Now suppose T C N satisfies (a), (b).
We want to show that 7T = N.

Take S={meN:{1,2,...,m} C T}.
In view of (a), 1 € T and hence 1 € S.

In view of (b), if m € S then m+1 € S. Then by the principle
of induction S = N. This clearly implies T = N.

vVvyvyVvVvYyypy
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Proof Continued

(iii) = (). Assume strong mathematical induction.
Suppose R is a non-empty subset of N.

We want to show that R has a minimal element.
Suppose not. Take T = N\R.

We may take 1 € T, otherwise, 1 € R, and 1 becomes the
minimal element of R.

If formeN, {1,2,...,m} C T,then m+1€ T, as
otherwise, m + 1 is the minimal element of R.

Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

This proves that R has a minimal element.

Note. Here after we take it for granted that N has all these
three properties.
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Suppose we have a property P defined for natural numbers,
where (i) 1 satisfies property P; (ii) If m € N satisfies property
P then (m+ 1) satisfies property P. Then property P is
satisfied by all natural numbers.

This is clear from the principle of mathematical induction as
we can take R = {m € N: m satisfies property P}.
Example: Show that for all natural numbers n,
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Applications of Mathematical induction

» Suppose we have a property P defined for natural numbers,
where (i) 1 satisfies property P; (ii) If m € N satisfies property
P then (m+ 1) satisfies property P. Then property P is
satisfied by all natural numbers.

» This is clear from the principle of mathematical induction as
we can take R = {m € N: m satisfies property P}.

» Example: Show that for all natural numbers n,

1424 +n= ”(”;1) (P).

» Proof: Let S be the set of all natural numbers satisfying P.

> Clearly 1€S. If me S, then 142 4 --- 4 m = 7L,

» Now using induction hypothesis

m(m + 1) (m+1)(m+2).

142+ - -+m+(m+1) = +(m+1) =

2 2
» Hence m+ 1 € S. Then by the principle of mathematical
induction S = N. In other words every natural number

satisfies P.
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A fake theorem

> " Theorem”: If you take bag full of balls all of them would
have same color.

"Proof":" We will prove this by induction.

Let n be the number of balls in the bag.

If n =1, the claim is obvious. There is nothing to prove.
Now assume the result for n = m and we will prove it for
n=m-+1.

Suppose the bag has m + 1 balls. Remove one ball.

Now there are m balls in the bag, and all of them have the
same color, say black, by the induction hypothesis.
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"Theorem”: If you take bag full of balls all of them would
have same color.

"Proof":" We will prove this by induction.

Let n be the number of balls in the bag.

If n =1, the claim is obvious. There is nothing to prove.
Now assume the result for n = m and we will prove it for
n=m-+1.

Suppose the bag has m + 1 balls. Remove one ball.

Now there are m balls in the bag, and all of them have the
same color, say black, by the induction hypothesis.

Now put the ball you have in hand in bag and remove some
other. Clearly the ball you have removed must be black color.
Consider the balls in the bag. Now there are only m of them,
also have to be of same color, same as the one ball we
removed.
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theorem

"Theorem”: If you take bag full of balls all of them would
have same color.

"Proof":" We will prove this by induction.

Let n be the number of balls in the bag.

If n =1, the claim is obvious. There is nothing to prove.
Now assume the result for n = m and we will prove it for
n=m-+1.

Suppose the bag has m + 1 balls. Remove one ball.

Now there are m balls in the bag, and all of them have the
same color, say black, by the induction hypothesis.

Now put the ball you have in hand in bag and remove some
other. Clearly the ball you have removed must be black color.
Consider the balls in the bag. Now there are only m of them,
also have to be of same color, same as the one ball we
removed.

So all the m + 1 balls are black. Quite Easily Done!
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» Pigeonhole principle: Let m, n be natural numbers and m < n.
Let
f:{1,2,....n} - {1,2,...,m}
be a function. Then f can not be injective.

» You may think of n as the number of pigeons and m as the
number of holes. When we put n pigeons in to m holes with
m < n, at least one hole would have more than one pigeon.

» In other words, if m hostel rooms are assigned to n students
with m < n, then some students have to share rooms.

P The pigeonhole principle can be proved using mathematical
induction.
» You may see the Appendix of the book of Bartle and Sherbert.
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» Definition 5.1 Let A, B be two non-empty sets. Then B is said
to be equipotent with A, if there exists a bijection f : A — B.
Empty set is equipotent to only itself.

» Some say B has same cardinality as A if B is equipotent with
A.

» This means that B and A have ‘same number of elements’.
But currently we are not going to define ‘cardinality’ or
number of elements for infinite sets. For this reason we prefer
the terminology ‘equipotent’.

> We write A ~ B if B is equipotent with A.
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Equivalence relation

> Theorem 5.2: Equipotency is an equivalence relation.

Proof: Claim 1: For any set A, A ~ A (Reflexivity).
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> Theorem 5.2: Equipotency is an equivalence relation.
Proof: Claim 1: For any set A, A ~ A (Reflexivity).
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> If Ais non-empty, we just take the identity function
i:A— A, defined by i(a) =a, Vac A. If Ais empty, A~ A
by definition. This proves the claim.

» Claim 2: If A~ B then B ~ A (Symmetry).

» If f: A— B is a bijection, then f~1: B — A is a bijection.

» Indeed if f~1(x) = f~1(y), then applying f, x = y. This
shows that f~1 is injective.

» If a € A, then a= f~1(b), where b = f(a). Hence f~1is
surjective. Combining the two statements, ! is bijective.

> If A, B are empty then there is nothing to show.
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v

Claim 3: Suppose A~ B and B ~ C, then A~ C
(Transitivity).

Suppose f : A — B is a bijection and g : B — C is a bijection.
Then h:=gof isa map from A to C.

It is easy to see that h is a bijection.

If A, B, C are empty, there is nothing to show.

vVvyYyyvyy

This completes the proof that equipotency (~) is an
equivalence relation.
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Finite and infinite sets

» Definition 5.3: A set A is said to be finite if it is equipotent
with {1,2,...,n} for some n € N or it is empty. A set A is
said to be infinite if it is not finite.

» From the pigeonhole principle, if A is equipotent with
{1,2,...,m} and with {1,2,...,n} then m = n.

» This allows us to define the number of elements of a finite set
A as n, if Ais equipotent with {1,2,...n}. If Ais empty then
the number of elements A is defined to be zero.

» Example 5.4: A={a,b,c} and B = {x,y,z} have same
number of elements, namely 3, as both of them are
equipotent with {1,2,3}.

» Even for infinite sets A, B we may informally say that A and B
have same number of elements to mean that A and B are
equipotent, even though we have not defined number of
elements for infinite sets.
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Countable sets

» Theorem 5.5: The set of natural numbers N is infinite:

» Proof: Suppose g : N — {1,2,...n} is a bijection for some
n € N. In particular g is injective.

» Taking any m > n and restricting g to {1,2,..., m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

» Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.
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A story

Hilbert's Hotel: Hilbert built a large hotel, which has a room
with room number n for every natural number n.

Here are some great features of this hotel.

Flexibility: Suppose one day the hotel is houseful and a new
guest arrives.

The hotel manager need not send away the new guest.

The manager instructs the guest who is in room number 1 to
move to room number 2, and the one in room number 2 to
move to 3 and so on.

This way no old guest has been asked to vacate, still room
number 1 is free.

The manager can ask the new guest to take room number 1.
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More guests

> What if there are two new guests?

> Well, either we can go through the previous procedure of
accommodating one new person twice, or we can simply ask
the present guest at room number n to go to room number
n 4+ 2 so that two rooms are freed up.

» What if there are infinitely many new guests? Say present
guests are g1, &2, ... and new guests are hy, ho, .. ...

> We can ask present guest g, in room number n to go to room
number 2n, so that all odd numbered rooms are freed up.

» Then new guest h, can go to room number number (2n — 1)
and we are done.
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Countably infinite sets

» Example 5.7: The set N, = {0,1,2,...} is countable.
» Indeed the function g : Ny — N defined by

g(n)=n+1, Vne Ny

is easily seen to be a bijection.
» Example 5.8: The set Z of integers is countable:
» Define h:Z — N by

2n if n>1
h(”)_{ —2n4+1 if n<0

» You may verify that h is a bijection.
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More or less

vvyyypy
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There are more even numbers or more natural numbers?
E=1{2,4,6,8,...}

N={1,2,3,...}.

On first look, it seems there are more natural numbers than
even numbers.

However, g : N — E defined by g(n) = 2n is a bijection. So
there are as many even numbers as there are natural numbers.
Not less! Note more!

Moral of the story: For infinite sets, a subset may have as
many elements as the full set.
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Disjoint union

» Consider the set of odd natural numbers H = {1,3,5,...}
and the set of even natural numbers E = {2,4,6,...}.

» Now H, E have same number of elements and their union N
also has same number of elements!

» In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.
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» Proof: Here is Cantor's argument.
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Cartesian product

» Theorem 5.9: N x N is countable.

» Proof: Here is Cantor's argument.

» Look at N x N.

>
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)

» Zig-zag counting.
» We count the elements here as

(1,1),(2,1),(1,2),(1,3),(2,2),(3,1),(4,1),(3,2),(2,3),(1,4), ...

» This way we are able to exhaust all the elements of N x N,
without repeating any element twice.

» In other words we have a bijection between N and N x N. In
particular, N x N is countable.
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Explicit bijections

» Exercise 5.10.1: Define g : N x N — N by
g(m,n)=2""12n-1), (mn)eNxN.

> Show that g is a bijection.
» Exercise 5.10.2: Define h: N x N — N by

(m+n—=1)(m+n-2)

h(m,n) = m+ | >

], (mn)eNxN.

» Show that h is a bijection.

» Challenge Problem 3: Obtain another ‘explicit’ bijection
between N x N and N different from g, h, g, h, where
g(m,n) = g(n,m), and h(m,n) = h(n,m), ¥Ym,ne€ N x N.

» This problem is not very clearly stated. But we leave it at
that.
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Schroder-Bernstein theorem

» The pigeon hole principle suggests that if we have an injective
function f : A — B, then B should be having ‘more’ elements
than A.

» What if there is an injective function from A to B and another
injective function from B to A?

» Theorem 5.11 (Schroder-Bernstein theorem): Let A, B be
non-empty sets. Suppose there exist injective functions
f:A— Band g: B— A. Then there exists a bijective
function h: A — B. Consequently A and B are equipotent.

» Exercise 5.12: Prove Schroder-Bernstein theorem. If you are
unable to prove it yourself, discuss with your friends. Still if
you can't do it, get a proof from the internet and understand
it!
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Lecture 6: Uncountable sets

» To begin with we recall a few definitions from last lecture.

» Definition 5.1: Let A, B be two non-empty sets. Then B is
said to be equipotent with A, if there exists a bijection
f : A— B. Empty set is equipotent to only itself.

» Definition 5.3: A set A is said to be finite if it is equipotent
with {1,2,...,n} for some n € N or it is empty. A set A is
said to be infinite if it is not finite.

» Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

> We saw that N, Z,N x N are all countable.

> Now it is time to see some uncountable sets.
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Binary sequences

> let B = {(Wl, Wo, W3, .. ) /S {0, 1}}
» Each wj; is either 0 or 1. We call (wy, wo,...) as a binary
sequence.

» B is the set of all possible binary sequences. (Warning: This
notation is not standard.)

» Theorem 6.1: B is uncountable.

» The proof is by contradiction and the argument is known as
Cantor’s diagonal argument.

» Proof: Suppose that there exists a bijection f : N — B. In
particular f is a surjection.

» Then for every i € N, f(i) is a binary sequence.
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> Suppose f(l) = (W,'l7 Wio, Wi3, .. )
» Each wj; is either 0 or 1.

» Look at the infinite matrix;

w11 Wwi2 Wiz Wig
W21 W22 W23 W24
W31 W32 W33 W34
W41 Wa2 W43 Wi4

» formed by writing down f(1),7(2),... as rows.

» Form a binary sequence using the diagonal entries:
(W11, W22, W33, . . )

» We flip the entries to get a new binary sequence,
v = (vi,v2,v3,...) where vj = 1 — wj; for every j € N. Now
we claim that v is not in the range of f.
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Proof Continued

> v 75 f(].) as v = (Vl, Vo, .. .)7 f(l) = (W11, W12, .. ) and
vi =1 — wyg # wip. So the first entry does not match.
> v#f(2) asv=_(v1,w,...), f(2) = (w1, wa,...) and
vo = 1 — woo # wao. So the second entry does not match.
» In fact, for every i € N, f(i) # v as v; # w;;. Here it" entry
does not match.
» Therefore v is not in the range of f.

» Actually, we have shown that no function f : N — B can be
surjective.

P In particular B is not countable.
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» Definition 6.2: Let A be any set. Then the power set of A is
defined as
P(A) ={B: B C A}.

» In other words, the power set of A is the set of all subsets of
A.

> If A= 10, then P(A) = {0}.

> If A= {1}, then P(A) = {0,{1}}.

> If A= {1,2}, then P(A) = {0, {1},{2},{1,2}}.
>

If A={1,2,3}, then
P(A) = {0,{1}. {2}, {3},{1,2},{1,3},{2,3},{1,2,3}}.
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Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) ={B: B C A}.
In other words, the power set of A is the set of all subsets of
A.
If A=, then P(A) = {0}.
If A= {1}, then P(A) ={0,{1}}.
If A= {1,2}, then P(A) = {0,{1},{2},{1,2}}.
If A={1,2,3}, then
P(A) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Exercise: If Ais a finite set with n elements, show that P(A)
has 2" elements.
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Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) ={B: B C A}.
In other words, the power set of A is the set of all subsets of
A.
If A=, then P(A) = {0}.
If A= {1}, then P(A) ={0,{1}}.
If A= {1,2}, then P(A) = {0,{1},{2},{1,2}}.
If A={1,2,3}, then
P(A) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Exercise: If Ais a finite set with n elements, show that P(A)
has 2" elements.

We guess that P(A) should be having ‘more’ elements than A.
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Note that for every a € A, f(a) is a subset of A.
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Define a set D by
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Theorem 6.3: Let A be a non-empty set. Let f : A — P(A)
be a function. Then f is not surjective.

This is really a way of saying " P(A) has ‘more’ elements than
A"

Proof: Given that f : A — P(A) is a function.
Note that for every a € A, f(a) is a subset of A.

It is possible that a is an element of f(a) and it is also
possible that a is not an element of f(a).

Define a set D by
D={acA:aé¢f(a)}

Clearly D is a subset of A, and hence it is an element of P(A).

We claim that D is not in the range of f. That would show
that f is not surjective.
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Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

vVvyyYyyvyy



Proof continued

Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

» But f(ap) = D. Hence ag ¢ D. This contradicts ag € D.
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Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

But f(ag) = D. Hence ap ¢ D. This contradicts ag € D.

On the other hand, if ag is not in D, as D = f(ap), ap is not
in f(ap). Then by the definition of D, ag is in D. Once again
we have a contradiction.
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Recal: D={ac A:a¢f(a)}.
Assume that D is in the range of f.
So D = f(ap) for some ag € A.

Now either ag € D or ag ¢ D.

If ag € D, then by the definition of D,

a0 ¢ f(ao).

But f(ag) = D. Hence ap ¢ D. This contradicts ag € D.

On the other hand, if ag is not in D, as D = f(ap), ap is not
in f(ap). Then by the definition of D, ag is in D. Once again
we have a contradiction.

Therefore our assumption that D is in the range of f must be
wrong. Consequently f is not surjective.
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Remarks

» The proof of the previous theorem is reminiscent of Russel's
paradox. However, here there is no paradox. The conclusion
that D is not in the range of f resolves everything.

» Consider the case A = N.

» Show that the power set of N is equipotent with the set B of
binary sequences.

> If C is a subset of N, map it to the binary sequence
c=(c1,0,...), where¢g=1if je Cand ¢c;=01if j ¢ C.

» In other words, c(j) := ¢;, is just the ‘indicator function’ of
the set C.

» Now go back and see that the proof of last theorem and that
of uncountability of B use the same idea!



Bigger and bigger infinities

» We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]



Bigger and bigger infinities

» We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

» Now by the previous theorem P(P(N)) is even bigger than
P(N).



Bigger and bigger infinities

» We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

» Now by the previous theorem P(P(N)) is even bigger than
P(N).

> We can go on.



Bigger and bigger infinities

» We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

» Now by the previous theorem P(P(N)) is even bigger than
P(N).

> We can go on.

» So there are bigger and bigger infinities.
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Spaces of functions

» Let A, B be non-empty sets. Let BA denote the set of all
functions from A to B.

» Forne N, if A={1,2,...,n} and B = {0,1}, then observe
that B” has 2" elements.

> More generally, if A, B are non-empty finite sets, A has n
elements and B has m elements, then BA has m" elements.

» Observe that for any non-empty set A, if B = {0,1} then BA
is equipotent with the power set of A.

» Observe that BY is same as the space of sequences with
elements from B. In particular, if B = {0,1}, then B is
same as the space of binary sequences.
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https : //youtu.be/Uj3 Kk gkl9Zo

» END OF LECTURE 6
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Lecture 7: Real Numbers

>

>

God created the integers, all else is the work of man.
-Kronecker.

You must be familiar with real numbers, which include natural
numbers, integers, rational numbers and also irrational
numbers such as v/2, 7, and e.

Here we are going to assume that there exists a set called real
numbers, denoted by R, having a list of properties to be
specified.

One may construct real numbers out of natural numbers, step
by step by constructing integers, rational numbers and so on.
For instance, we construct positive rational numbers out of

N x N, by identifying (a, b) with (&', b') if ab’ = a’'b. (Think
of (a,b) as 2.) However, we will not take such an approach.
If you wish, you may see the construction of real numbers in
due course once you are fully familiar with various properties
of real numbers.
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Algebraic axioms for real numbers

» The set R of real numbers has two binary operations, ‘+’
(addition) and *." (multiplication), with following properties:

» (You may recall that a binary operation on a non-empty set A
is a function from A x A to A.)

> Al.
at+b=b+a, VabeR.

-Commutativity of addition.

> A2.
a+(b+c)=(a+b)+c, VabceR.

-Associativity of addition.
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such that
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Addition Axioms continued

> A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that
a+0=0+a=a, VaeR.

-Existence of zero.

> A4. For every a € R, there exists an element ‘—a’ in R such
that
a+(—a)=(—-a)+a=0.

-Existence of additive inverse. —a is known as additive inverse
of a.
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Axioms for multiplication

> M.
a.b=b.a, Va,beR.
-Commutativity of multiplication.
> M2.
a.(b.c) = (a.b).c, Va,b,c €eR.
-Associativity of multiplication.

> M3. There exists an element called ‘one’, denoted by ‘1’
different from 0 in R such that

al=1la=a VaeR.

-Existence of one.
> M4. For every a € R, with a # 0, there exists an element
‘a~!" in R such that

-Existence of multiplicative inverse. a~! is known as
multiplicative inverse of a.
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Distributivity

» D. For a,b,cin R,
ab+c)=ab+ac

(a+b).c=a.c+ b.c

» This axiom binds addition and multiplication.
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a,b,c € Rwith a#0, if a.b = a.c then b= c.

» The proof is similar to the proof of Theorem 7.2. This time
multiply by a=! from the left.
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» Now suppose a # 0, then a~" exists and we get

at(ab)=at0=0.

Hence by associativity of multiplication, (a=*.a).b =0, or
1.b =0, which implies b = 0. So either a=0or b = 0.
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Notation: Here after for real numbers a, b write ab to mean

a.b. We write a+ (—b) as a— b and if b # 0, we write ab™1

a . . _1 1
as 7. In particular, we may write b™* as ¢.

We take N as a subset of R, where,

we identify 1 € N with 1 of R,

2e¢ Nwith1+4+1inR,

Note that 1 # 2, as otherwise, we get 0+ 1 =1+ 1, and that
would mean 0 = 1, by cancellation property.

We identify 3 € N with 2+ 1 (or equivalently with 1 + 2 or
1+1+1)of R

More generally, n € N is identified with

1+1+---41(n times).

You may verify that all natural numbers are distinct.
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Integers, rational numbers and irrational numbers

>

>

Z is also thought of as a subset of R: 0 € Z is identified with
0 of R and —n for n € N is just the additive inverse of n.

Definition 7.7: A real number a is said to be a rational
number if it is of the form 7 for some integers a, b with b # 0.
A real number which is not rational is said to be irrational.

To show existence of irrational numbers we would need more
axioms.

END OF LECTURE 7.



Lecture 8: Real Numbers : Order axioms

» We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.
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at+b=b+a, Va,beR.

-Commutativity of addition.
> A2,
a+(b+c)=(a+b)+c, Vab,ceR.

-Associativity of addition.

> A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that
a+0=0+a=a, VacR

-Existence of zero.
> A4. For every a € R, there exists an element ‘—a’ in R such
that
a+(—a)=(—a)+a=0.
-Existence of additive inverse. —a is known as additive inverse
of a.
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Axioms for multiplication

> MI1.
a.b=b.a, Va,beR.

-Commutativity of multiplication.
> M2.
a.(b.c) =(a.b).c, Va,b,c eR.

-Associativity of multiplication.
> M3. There exists an element called ‘one’, denoted by ‘1’
different from 0 in R such that

al=1la=a VaeR.

-Existence of one.
> M4. For every a € R, with a = 0, there exists an element
‘a1 in R such that

-Existence of multiplicative inverse. a—! is known as
multiplicative inverse of a.
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Distributivity

» D. For a,b,cin R,
a.b+c)=ab+ac

(a+ b).c=a.c+b.c

-Distributivity.
P> These axioms are known as algebraic axioms. They determine
the ‘algebraic structure' of real numbers.
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[This is known as trichotomy property for real numbers.]
» Any element of P is said to be positive.
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Here we have a bunch of three axioms as described below.
The set R has a subset P called the set of positive real
numbers satisfying following axioms:

Ol. If a,b € P then a+ b € P. [ The set of positive real
numbers is closed under addition.]

02. If a,b € P then a.b € P. [ The set of positive real
numbers is closed under multiplication.]

O3. If a € R, then exactly one of the following three
properties is true:

(i) a € P

(i) —aeP;

(iii) a = 0.

[This is known as trichotomy property for real numbers.]
Any element of P is said to be positive.

Warning: The notation P for positive real numbers is not
standard. You may see RT, (0,00) as some of the alternative
notations for the set of positive real numbers.
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Natural numbers are positive

» Theorem 8.1: If n € N then n € P.

» Proof: First we show that 1 € P. We have 1 # 0 by axiom
M3. Now if (—1) € P, then by axiom 02, (—1).(—1) € P.

» But (—1).(—1) = 1 (Exercise: Show this!).

» This shows that both 1 € P and also (—1) € PP and that

violates trichotomy property O3. Therefore (—1) € P is not
possible. The only other possibility is 1 € P.

» Then by property O1,2=1+1isin P.

» Consider the set S of all natural numbers which are positive.
Thenle Sandifne S, thenn+1¢€ S.

> Now a simple application of mathematical induction shows
that n € IP for every n € N.
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Inequalities

» Notation: For real numbers, a, b, we write a< bor b > a if
b—acP. Wewritea<borb>aif b—acPJ{0}.
» In particular, a > 0 iff a € P. Similarly a > 0 iff a € P{J{0}.
» Now order axioms under this notation, becomes:
(1) O1. : If a>0and b >0 then a+ b > 0.
(2) 02.:If a>0and b> 0 then ab > 0.
(3) 03.: If a € R then exactly one of the following holds: (i)
a>0; (i) a<0; (iii) a=0.
» Here after we may not use the notation P at all!

> We may call a real number a as negative if —a is positive.
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» Theorem 8.2: Suppose a, b, ¢, d are real numbers. Then
(i) If a< b, thena+c< b+c.
(i) Ifa< b, then a+c<b+ec.
(i) Ifa< band c < d, thena+c< b+d.
(iv) If a < b and ¢ > 0, then ac < bc.
(v) If a< band c <0, then a > b.
(vi) If a< b and ¢ =0, then ac = bc = 0.
(vii) If a< 0 and b > 0, then ab < 0.
(viii) If a < 0 and b < 0, then ab > 0.

» Proof. Exercise.

» Often we show two real numbers a, b are equal by showing
a < b and b < a. The equality follows by trichotomy property.
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More inequalities

» Inequalities play a crucial role in whole of Analysis.

» Notation. For any real number a, a° is defined a.a. More
generally, for any a € R and n € N, 3" is defined as
a.a.a....a (n times).

» Theorem 8.3: If a, b are positive real numbers, then a® < b? if
and only if a < b.

» Proof. Suppose a < b. Now b? — a2 = (b + a)(b — a). As,
both (b + a) and (b — a) are positive, b> — a? is positive. In
other words, a® < b2.

» Conversely, suppose a*> < b?. Hence
(b?> — a%) = (b+ a)(b — a) is positive. As a, b are assumed to
be positive, (b + a) is positive. Now from Theorem 8.1 it is
clear that for the product (b + a)(b — a) to be positive, we
also need (b — a) positive.
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» For any real number a, the modulus of a, denoted by |al, is

defined by
la] = a if a>0;
| —a if a<O.

» Note that |a] > 0 for every real number a and |a] = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a,b € R.
» Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then
la+ b| < |a| + |b].
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Modulus
» For any real number a, the modulus of a, denoted by |al, is

defined by
la] = a if a>0;
| —a if a<O.

» Note that |a] > 0 for every real number a and |a] = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a,b € R.

» Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then

la+ b| < |a| + |b].

» Proof: If aor bis zero, it is easily seen that |a+ b| = |a| + |b|.

» If both a, b are positive, then a + b is also positive, and we
get |a+ b| =a+ b=|a| +|b|.

» Now if a is positive and b is negative, say b = —|b|, with
0 < |b| < a, we get
la+ bl =]a—|b]|=a—|b| <a=|a| <|a|+|b|

» Similarly if a is positive and b is negative with 0 < a < |b|, we
get |a+ b| = |a— |b|| = |b| — a < |b|] <]a|+ |b|. Other-cases



Why is this triangle inequality?

» Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b — a.



Why is this triangle inequality?

» Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b — a.

» The triangle inequality tells us that for any three points a, b, ¢
in R,
dist(a, b) < dist(a, ¢) + dist(c, b).



Why is this triangle inequality?

» Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b — a.

» The triangle inequality tells us that for any three points a, b, ¢
in R,
dist(a, b) < dist(a, ¢) + dist(c, b).

» Now it should be clear as to why this is called triangle
inequality.



Why is this triangle inequality?

» Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b — a.

» The triangle inequality tells us that for any three points a, b, ¢
in R,
dist(a, b) < dist(a, ¢) + dist(c, b).
» Now it should be clear as to why this is called triangle
inequality.

» You will see that this notion of distance has far reaching
applications in Analysis.
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the smallest positive element.



No smallest or largest positive elements

» Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number «, such that a < a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number 3, such
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No smallest or largest positive elements

» Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number «, such that a < a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number 3, such
that a < 3 for every positive real number a.

» Proof: Suppose « is a positive real number. Then we claim
0<s<a

> It is easy to see that 271 = % is positive (Otherwise 1 = 2.271
would be negative). Hence § = a.% is positive.

» So a— 5 = 7 is also positive.

» This means that 0 < § < a. Hence no real number a can be
the smallest positive element.

» (ii) If 5 is any positive element, then 8 < 8 + 1. This proves
the second statement.

» END OF LECTURE 8.



Lecture 9: Real Numbers : Completeness Axiom

» We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

> Al.
at+b=b+a, Va,beR.

-Commutativity of addition.



Axioms for addition

> Al.
at+b=b+a, Va,beR.

-Commutativity of addition.
> A2,
a+(b+c)=(a+b)+c, Vab,ceR.

-Associativity of addition.



Axioms for addition

> Al.
at+b=b+a VabeR.
-Commutativity of addition.
> A2,
a+(b+c)=(a+b)+c, Vab,ceR.
-Associativity of addition.

> A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that
a+0=0+a=a, VacR

-Existence of zero.



Axioms for addition

> Al.
at+b=b+a, Va,beR.

-Commutativity of addition.
> A2,
a+(b+c)=(a+b)+c, Vab,ceR.

-Associativity of addition.

> A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that
a+0=0+a=a, VacR

-Existence of zero.
> A4. For every a € R, there exists an element ‘—a’ in R such
that
a+(—a)=(—a)+a=0.
-Existence of additive inverse. —a is known as additive inverse
of a.
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Axioms for multiplication

> MI1.
a.b=b.a, Va,beR.

-Commutativity of multiplication.
> M2.
a.(b.c) =(a.b).c, Va,b,c eR.

-Associativity of multiplication.
> M3. There exists an element called ‘one’, denoted by ‘1’
different from 0 in R such that

al=1la=a VaeR.

-Existence of one.
> M4. For every a € R, with a = 0, there exists an element
‘a1 in R such that

-Existence of multiplicative inverse. a—! is known as
multiplicative inverse of a.
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» D. For a,b,cin R,
a(b+c)=ab+ac

(a+ b).c=a.c+b.c
-Distributivity.



Distributivity

» D. For a,b,cin R,
a.b+c)=ab+ac

(a+ b).c=a.c+b.c

-Distributivity.
P> These axioms are known as algebraic axioms. They determine
the ‘algebraic structure' of real numbers.
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Order axioms: Positive elements

» Here we have a bunch of three axioms as described below.

» The set R has a subset P called the set of positive real
numbers satisfying following axioms:

» O1. If a,b € P then a+ b € P. [ The set of positive real
numbers is closed under addition.]

» 02. If a,b € P then a.b € P. [ The set of positive real
numbers is closed under multiplication.]

» O3. If a € R, then exactly one of the following three
properties is true:
(i)aeP;
(i) —a e P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

» Any element of P is said to be positive.

» Notation: For real numbers, a, b, we write a < bor b > a if
b—aecP. Wewritea<borb>aif b—aecP|J{0}.

» In particular, a > 0 iff a € P. Similarly a > 0 iff a € P{J{0}.
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» Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists v € R such that

x<u, VYxeSs.

In such a case, v is said to be an upper bound of S.
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Boundedness

» Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists v € R such that

x<u, VYxeSs.

In such a case, v is said to be an upper bound of S.

» Definition 9.2: A non-empty subset S of R is said to be
bounded below if there exists v € R such that

v<x, VYxeS.

In such a case, v is said to be a lower bound of S.

» Definition 9.3: A non-empty subset S of R is said to be
bounded if it is both bounded above and bounded below.
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upper bound for S. 5 is also an upper bound for S. —1 is a
lower bound for S. % is also a lower bound for S. Since S
admits both lower and upper bounds, it is a bounded subset
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» Example 9.4: Consider the set S = {1,2,3}. Then 4 is an
upper bound for S. 5 is also an upper bound for S. —1 is a
lower bound for S. % is also a lower bound for S. Since S
admits both lower and upper bounds, it is a bounded subset
of R.

» Example 9.5: The set IP of positive real numbers is bounded
below with 0 as a lower bound, as 0 < x for every x € P.

» Suppose u € R is an upper bound for P. Then
x<u

for every real number x € P. In particular 1 < u. Hence
u—1e€PJ{0}. As1le P, weseethat u=(u—1)+1isalso
positive. Hence u is a positive element such that x < u for
every x € P. Clearly this is not possible as u 4+ 1 is also
positive, and we get u+ 1 < u, implying 1 < 0. In other
words, P is bounded below, but not bounded above.



Examples

» Example 9.4: Consider the set S = {1,2,3}. Then 4 is an
upper bound for S. 5 is also an upper bound for S. —1 is a
lower bound for S. % is also a lower bound for S. Since S
admits both lower and upper bounds, it is a bounded subset
of R.

» Example 9.5: The set IP of positive real numbers is bounded
below with 0 as a lower bound, as 0 < x for every x € P.

» Suppose u € R is an upper bound for P. Then

x<u

for every real number x € P. In particular 1 < u. Hence
u—1e€PJ{0}. As1le P, weseethat u=(u—1)+1isalso
positive. Hence u is a positive element such that x < u for
every x € P. Clearly this is not possible as u 4+ 1 is also
positive, and we get u+ 1 < u, implying 1 < 0. In other
words, P is bounded below, but not bounded above.

> Example 9.6: It is easily seen that R is neither bounded below

nor bhorinded abhove



Upper bound vs lower bound

» Remark: Note that if v is an upper bound of S, then u+ v is
an upper bound of S, for every v € P.
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Upper bound vs lower bound

» Remark: Note that if v is an upper bound of S, then u+ v is
an upper bound of S, for every v € P.

» Proposition 9.7: A non-empty subset S of R is bounded above
by u if and only if

-S:={—x:x€eS}

is bounded below by —u.

» Proof: Exercise.
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bounded above. Then uy € R is said to be a least upper
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> Remark: Least upper bound, when it exists is unique, for if ug,
uy are two least upper bounds, then by (i), (/i) applied to
both wup, u1, we get up < up and u; < ug, and hence uy = us.



Least upper bound

» Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then uy € R is said to be a least upper
bound (or supremum) of S if

» (i) up is an upper bound of S;
» (ii) If uis an upper bound of S, then up < u.

> Remark: Least upper bound, when it exists is unique, for if ug,
uy are two least upper bounds, then by (i), (ii) applied to
both wup, u1, we get up < up and u; < ug, and hence uy = us.

» Example 9.9: Suppose
Si={xeR:x<1}

SS={xeR:x<1}.

It is clear that 1 is the least upper bound for both S; and S,.
In particular, if ug is a least upper bound for S, then ug may
or may not be in S.
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» Definition 9.10: Let S be a non-empty subset of R, which is
bounded below. Then vy € R is said to be a greatest lower
bound (or infimum) of S if

» (i) vo is a lower bound of S;

» (ii) If v is a lower bound of S, then v < v.

» Remark: Greatest lower bound, when it exists is unique, for if
Vo, vi are two least upper bounds, then by (i), (if) applied to
both vp, v1, we get vp < v; and vi < vy, and hence vy = v1.



Greatest lower bound

>

vy

Definition 9.10: Let S be a non-empty subset of R, which is
bounded below. Then vy € R is said to be a greatest lower
bound (or infimum) of S if

(i) vo is a lower bound of S;
(i) If v is a lower bound of S, then v < v.

Remark: Greatest lower bound, when it exists is unique, for if
Vo, vi are two least upper bounds, then by (i), (if) applied to
both vp, v1, we get vp < v; and vi < vy, and hence vy = v1.

Example 9.11: Suppose
Tih={xeR:x>1}

To={xeR:x>1}.

It is clear that 1 is the greatest lower bound for both T; and
T5. In particular, if vy is a greatest lower bound for S, then vy
may or may not be in S.



Equivalence

» Proposition 9.12: Let S be a non-empty subset of R. Then

the following are equivalent:
(a) S is bounded above and up € R is the least upper bound

of S.
(b) —S is bounded below and —up € R is the greatest lower

bound of —S.
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» C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

> We have already noted that least upper bound when it exists
is unique.

» Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

» Proof: Suppose T C R is non-empty and is bounded below.
Then by consider — T which is bounded above and appeal to
the completeness axiom. If ug is the least upper bound of
— T, we know that —ug is the greatest lower bound of T.
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Notation

» Notation: If S is a non-empty subset of R, we write

sup(S) = Least upper bound of S  if S is bounded above;
UPL>) = 00 otherwise.

Greatest lower bound of S if S is bounded below;
—00 otherwise.

inf(S) = {

> Note that notationally:
sup(S) = —inf(=S), inf(S) = —sup(-9)

» However, keep in mind that —oo, 0o are not real numbers.
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A Characterization

» Theorem 9.14: Let S be a non-empty subset of R and let
up € R. Then ug = sup(S) if and only if
(i) up is an upper bound of S;
(ii) For every € > 0, there exists x. € S such that up — € < x.

» Proof: Suppose up = sup(S). Consider any € > 0. Now if
every x € 5 satisfies x < ug — €, then ug — € is an upper bound
for S. This contradicts the fact that ug is the least upper
bound. Hence there exists some x. in S, such that ug —e < x..

» Conversely suppose ug satisfies (i) and (ii). Now if ug is not
the least upper bound of S, then there exists an upper bound
u of S such that u < ug. Take € = ug — u.

» As u is an upper bound of S, every x € S satisfies
x < u = up — €. This violates (ii). So up must be the least
upper bound of S.
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Consequences of of completeness property

» Theorem 9.15: N is not bounded above.

» Note that we know that N has no largest element. But this
does not leave out the possibility of existence of a real number
u, such that n < u for all n € N.

» Proof: Suppose N is bounded above.

» Then by the least upper bound property, N has a least upper
bound, say up.
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Take € = %
Then by Theorem 9.14, there exists a natural number x such
that up — 3 < x.

Adding 1, we get up + 3 < x + 1.
» In particular, ug < x + 1.

v

v

» As x is a natural number x 4+ 1 is also a natural number.
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Then by Theorem 9.14, there exists a natural number x such
that up — 3 < x.

Adding 1, we get up + 3 < x + L.
In particular, ug < x + 1.
As x is a natural number x + 1 is also a natural number.

Then ug < x + 1 is a contradiction, as ug is an upper bound
for the set of natural numbers.
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Takee—i.

Then by Theorem 9.14, there exists a natural number x such
that up — 3 < x.

Adding 1, we get up + 3 < x + L.
In particular, ug < x + 1.
As x is a natural number x + 1 is also a natural number.

Then ug < x + 1 is a contradiction, as ug is an upper bound
for the set of natural numbers.

Hence N can't be bounded above.
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A corollary

» Corollary 9.16: Suppose x is a natural number. Then there
exists a natural number n such that x < n.

> Proof: Let x € R. If n < x for every natural number n, then
N is bounded above by x. Since N is not bounded above,
there exists a natural number n such that x < n.
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» By the previous Corollary, there exists a natural number n
such that x < n.



Archimedean property

» Theorem 9.17 (Archimedean property): Suppose € € R and
€ > 0. Then given any y € R there exists n € N such that

y < n.e.

» Proof: Take x = {

» By the previous Corollary, there exists a natural number n
such that x < n.

.Y
> Thatis, Z < nory < ne.
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» Recall: Archimedean property: Suppose € € R and € > 0.
Then given any x € R there exists n € N such that

X < n.e.

» We say even ocean is made up of small drops of water.

> However big the x is, we can exceed that by taking a large
multiple of € is the statement in Archimedean property.

> Even a long journey we can finish by taking small steps.

» Long proofs of theorems are also made up of small,
understandable steps!

» END OF LECTURE 9.
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Recall
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: Completeness axiom

Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists v € R such that

x<u, VxeSs.

In such a case, u is said to be an upper bound of S.

Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then up € R is said to be a least upper
bound (or supremum) of S if

(i) up is an upper bound of S;

(i) If u is an upper bound of S, then ug < u.

C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

If S is non-empty and bounded above, its least upper bound is
unique and is denoted by sup(S).
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A Lemma

» Lemma 10.1: Let € be a positive real number. Then there
exists a natural number n such that

1
0<-<e
n
» Proof: This inequality is equivalent to

0<1<ne

» Now the result is a special case of Archimedean property with
x=1.
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Squares of integers

> An integer n € Z is said to be an even number if it is a
multiple of 2, that is, it is of the form 2k for some integer k.

» The set of even integersis: {...,—4,—2,0,2,4,6,...}.

» An integer n € Z is said to be an odd number if it is not an
even number. Odd integers are all of the form 2k 4 1 for
some integer k, and conversely all integers of the form 2k + 1
with k € Z are all odd.

» The set of odd integersis: {...,—5,—3,-1,1,3,5,...}.

» Proposition 10.1: Square of an even integer is even and
square of an odd integer is odd.

» Proof. Exercise.



Square root of 2

» Theorem 10.2: There is no rational number x such that
2
X< = 2.



Square root of 2

» Theorem 10.2: There is no rational number x such that
2
X< = 2.

» Proof: The proof is by contradiction.



Square root of 2

» Theorem 10.2: There is no rational number x such that
x2 =2,
» Proof: The proof is by contradiction.

» Suppose x is a rational number such that x> = 2.



Square root of 2

» Theorem 10.2: There is no rational number x such that
2
X< = 2.

» Proof: The proof is by contradiction.

v

Suppose x is a rational number such that x* = 2.

» As x is a rational number, x = g, for some integers, p, g with
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Square root of 2

» Theorem 10.2: There is no rational number x such that
x? =2.

» Proof: The proof is by contradiction.

» Suppose x is a rational number such that x> = 2.

» As x is a rational number, x = g, for some integers, p, g with
qg#0.

> Without loss of generality, we may assume that p, g are
relatively prime (they have no common factor bigger than 1).
This is possible, because, if p = rp; and g = rq1, with r > 1,

we can write x = %.
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We have x = g, where p, g € Z and are relatively prime.
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In particular, p? is even.

vVvyyVvyy

Since squares of odd numbers are odd, p also must be even.
Say, p = 2k, with k € Z.

Then we get 4k?> = 2g® or 2k? = g°.

In particular, g? is even and hence q is also even.
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» Consequently, both p and g are even. This is a contradiction,
as we have taken p, g to be relatively prime.
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We have x = g, where p, g € Z and are relatively prime.
As x> =2, we get 5—2:2orp2:2q2.

In particular, p? is even.

vVvyyVvyy

Since squares of odd numbers are odd, p also must be even.
Say, p = 2k, with k € Z.

Then we get 4k?> = 2g® or 2k? = g°.

In particular, g? is even and hence q is also even.

vy

» Consequently, both p and g are even. This is a contradiction,
as we have taken p, g to be relatively prime.

» This completes the proof.
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Square root of 2 as a real number

» Theorem 10.3: There exists unique positive real number s
such that s? = 2.

» Proof: Consider the set S defined by
S={xcR:x>0, x> <2}.

Then S is non-empty as 1 € S.

We have seen earlier that for positive real numbers a, b:

a < b if and only if a® < b?.

If x € S, then x2 <2 < 4 =22,

As x? < 22, we get x < 2. Therefore S is bounded above by 2.

vVvYyyvyy
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completeness of axiom of real numbers, S has a least upper
bound.

Let s be the least upper bound of S.
Claim: s? = 2.
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We want to choose a natural number n such that
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Now, as S is non-empty and bounded above, by the
completeness of axiom of real numbers, S has a least upper
bound.

Let s be the least upper bound of S.

Claim: s? = 2.

Suppose s < 2.

We want to choose a natural number n such that
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» We want n, such that
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<2,

» or
1<2—§
n  2s+1
» Since gs_ji > 0, by a direct application of Lemma 10.1, there
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<2,

1<2—§
n 2s+1

» Since gs_ji > 0, by a direct application of Lemma 10.1, there

exists n € N such that

n 2s+1°
» Choosing such an n, clearly we have

1o
) < 2.
(5+n)

> Hence, s+ % € S. This is clearly a contradiction as s is an
upper bound for S.
» Therefore, s2 < 2 is not true.
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> We want to get a natural number m, such that

IRV
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> We have, (s — 1)2 =522 4 1 1L > s — 2
> Using Lemma 10.1, choose a natural number m, such that
52-2
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> We have, (s — 1)2 =522 4 1 1L > s — 2
> Using Lemma 10.1, choose a natural number m, such that
L2
2s

> or2—nf<52—2.
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> We want to get a natural number m, such that
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> We have, (s — 1)2 =522 4 1 1L > s — 2
> Using Lemma 10.1, choose a natural number m, such that
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» Suppose s? > 2.

> We want to get a natural number m, such that

I
s——) > 2
()
> We have, (s — 1)2 =522 4 1 1L > s — 2
> Using Lemma 10.1, choose a natural number m, such that
52-2
< e
> or 2—; <s? -2
1)2 2_ 2 2 2 2
» Then, (s— )" =s —5+m2>s 2> —(s7—2)=2.
» Hence, s — % > x for every x € S.
» This contradicts the fact that s is the least upper bound for S.
» Therefore, s2 > 2 is not possible.
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» Since both s> < 2 and s > 2 are not possible, the only
possibility is s> = 2, by the trichotomy property.

» So we have shown the existence of a positive real number s
such that s = 2.

> If0<t<s wehave 0 < t?<s?2=2 andifs<t, we get
2 = s? < t2. Hence s is the unique positive real number such
that s2 = 2.

» We denote s, by v/2.

> It is easily seen that —+/2 is the only other real number whose
square 2.
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Other roots

» Exercise: Show that there is unique positive real number t,
such that t2 = 3.

» Exercise: Show that there is unique real number x such that
3
x° = 2.
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» Fix a real number x. Take
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Given any positive real number x, we know that there exists a
natural number n, such that x < n.

Now it is easy to see that given any real number x, there exist
integers, m, n such that m < x < n.

Fix a real number x. Take
T={m:meZ,m<x}.

Then T is non-empty and is bounded above by x.
Take [x] = sup(T).

Then [x] is known as the integer part of x.

[x] is the unique integer satisfying [x] < x < [x] + 1.
x — [x] is known as the fractional part of x. Note that

0<x—[x]<1, VxeR
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Intervals

» Notation: For any two real numbers a, b with a < b, we write
(a,b) :={xe€R:a< x < b}.
[a,b) :={x € R:a<x< b}
(a,b] :={x eR:a<x < b}
[a,b] . ={x € R:a<x<b}.
(a,00) :={xeR:a<x}.
[a,00) == {x € R:a<x}.
(—00,a) :={xeR:x < a}.
(—o0,a] :={xeR:x < a}.

» We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.
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The density of rational and irrational numbers

» Lemma 10.8: For any rational number x # 0, xv/2 is an
irrational number.

» Proof: It is easily seen that if x1/2 is rational, then so is v/2.
But we have already proved that v/2 is not rational.

» Theorem 10.9: Suppose a, b are real numbers such that a < b.
(i) Then there exists a rational number r such that a < r < b.
(ii) There exists an irrational number s such that a < s < b.

» Proof: (i) Case I: a = 0: We know that there exists n € N

such that 0 < % < b. Since % is rational, we are done.
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» Case Il: a> 0. Now as (b—a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.

» Take m = [na] + 1. So m € N.

» Then m — 1 < na < m. Which implies, on dividing by n,
a< .

» And also, %—%ga

>or T <at+i<cat(b—a)=0b
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Case Il: a > 0. Now as (b —a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.
Take m = [na] + 1. So m € N.

Then m —1 < na < m. Which implies, on dividing by n,
a< .

And also, 7 — % <a

orP<a+lcat(b—a)=0b.

So we have a < 71 < b.
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Case Il: a > 0. Now as (b —a) > 0, we can find n € N such
that 0 < 1 < (b—a), or 1 < nb— na, that is, na+ 1 < nb.
Take m = [na] + 1. So m € N.

Then m —1 < na < m. Which implies, on dividing by n,
a< .

And also, 7 — % <a

orP<a+lcat(b—a)=0b.

So we have a < 71 < b.

Case lll: a < 0. The result for this case can be derived from
Case | and Case Il (Exercise).
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a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that

<
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a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that
a_m_ b
V2 2
» This implies,
a< ﬂ.\@ < b.
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a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that

a < m < b
V2 n V2
» This implies,
a< ﬂ.\@ < b.
n

> As %\@ is irrational we are done.
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a b
We have a < b. Hence 7 < N

From (i), we have rational number ', (with m # 0) such that

v

a < m < b
V2 n V2
» This implies,
a< ﬂ.\@ < b.
n

v

As ™ \/2 is irrational we are done.
n

v

This completes the proof.



Continuation

a b
» We have a < b. Hence 7 < N

» From (i), we have rational number 7, (with m # 0) such that
a_m_ b
V2 2
» This implies,
a< ﬂ.\fZ < b.
n

v

As %\@ is irrational we are done.
» This completes the proof.
» END OF LECTURE 10.
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Lecture 11: Real Numbers: Nested intervals property and
Uncountability

Consider R the set of real numbers.

We draw the set as ‘Real line':

This is only a visual aid for us. We are not connecting axioms
of geometry with axioms of real line.
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Nested Intervals

> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2hk2
> Example 11.1: Take /, = (=21, 1), then

(~L1)3(~5)2(-5.3)

> Claim: pen(—7, 7) = {0}

» Proof: CIearIy 0e (- l l) for every n € N, and hence
0e mn 1( E? %)

> Now |f x € R and x > 0, there exists m € N, such that
0< 4 <x

> Hence x¢ (-1, 1)

» Consequently x ﬂneN(_l 1)

n’>n/*



Nested Intervals

> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2hk2
> Example 11.1: Take /, = (=21, 1), then

(~L1)3(~5)2(-5.3)

> Claim: en(~1.2) = {0},

» Proof: CIearIy 0e (- l l) for every n € N, and hence
0e mn 1( E? %)

> Now |f x € R and x > 0, there exists m € N, such that
0< 4 <x

> Hence x¢ (-1, 1)

> Consequently x ¢ (,en(—2%,1).

> Similarly, if x € R and x < 0, then x ¢ (,cn(—1, 1).
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Nested Intervals

> A sequence of intervals I, b, I3, ... is said to be nested if
Iy O Ipyq for every n € N| that is,

h2h2>hk2
> Example 11.1: Take /, = (=21, 1), then
11 11
~1.1 S R

> Claim: (\,en(— E:%) {0}.
» Proof: Clearly 0 € (— l l) for every n € N, and hence

0e mn 1( E’%)‘

> Now |f x € R and x > 0, there exists m € N, such that
0< 4 <x

> Hence x¢ (-1, 1)

> Consequently x ¢ (,en(—2%,1).

> Similarly, if x € R and x < 0, then x ¢ (,cn(—1, 1).

» This completes the proof.
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Another Example

> Example 11.2: Take J, = (0, 1) for n € N.
» Then J, is a nested family of intervals:

J13J23J3D"'.

» Clearly

ﬂJn:(z).

neN

» So intersection of a nested family of intervals can be empty.
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One more example

» For n € N take K, = [n,00) = {x e R: n < x}.
» Then K, is a nested family of intervals:

K13K23K3D"'.

> mnEN K” =0.
» Considering previous examples, the following theorem can be
a bit of a surprise.
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Nested intervals property

» Theorem 11.3 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

» Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

» Proof: Suppose h, b, ... is a nested sequence of intervals,
where I, = [ap, by, for some a,, b, € R, with a, < b, for
every n.

> We want to show that (), In = [penlan, bn] # 0.
» As I, O 41, we have [an, by| D [an+1, bnt1] for every n.
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Theorem 11.3 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

Proof: Suppose I1, I, ... is a nested sequence of intervals,
where I, = [ap, by, for some a,, b, € R, with a, < b, for
every n.

We want to show that (,cy In = Npenlans bn] # 0.
As I O Iny1, we have [ap, by 2 [an+1, bny1] for every n.

This means that a, < ap11 < bpy1 < b, for every n.
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» Since for every n, Iy D I,,, we get a1 < a, < b, < by.

In particular A := {a, : n € N} is bounded by b;.

> By completeness axiom, A has a least upper bound. Take
u = sup(A).

» We claim that u €

» Fix ne N.
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Since for every n, h D I,, we get a1 < a, < b, < by.

In particular A := {a, : n € N} is bounded by b;.

By completeness axiom, A has a least upper bound. Take
u = sup(A).

We claim that u € N
Fix n € N.

Since u is an upper bound for A, and a, € A,
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» Since for every n, Iy D I,,, we get a1 < a, < b, < by.

» In particular A := {a, : n € N} is bounded by b;.

> By completeness axiom, A has a least upper bound. Take
u = sup(A).

> We claim that u € [),c /n-

> Fix ne N.

» Since u is an upper bound for A, and a, € A,
an < u, (1)
> We have
aa<a<---<a,< by

Hence a,, < b, for 1 < m < n.

» Form>n, I, C I, and hence a, < ay, < by < b,. |n
particular, a,, < b,.

» Combining the last two conclusions, we have

am < bp, Vm  (ii)
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» From (ii), b, is an upper bound for A. Since u is the least
upper bound, we get

u<b, (i)

» From (i) and (iii), a, < u < by. In other words, u € I,. Since
this is true for every n, u € [ oy /n-

» In particular, I, is non-empty.

neN



The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.



The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.
» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),



The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.
» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),

> v e (Npen ln



The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.
» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),

> v e (Npen ln
» We have a,, < b, for all m, n.



The intersection is an interval

» Consider the intervals I, = [a,, b,] of previous theorem.
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We have a,, < b, for all m, n.

» This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.
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» Consider the intervals I, = [a,, b,] of previous theorem.

» Similar arguments show that B = {b, : n € N} is bounded
below and taking v = inf(B),

> v e (Npen ln

» We have a,, < b, for all m, n.

» This implies u < b, for all n, as b, is an upper bound for A
and u is the least upper bound.

» This in turn implies v is a lower bound for B and since v is
the greatest lower bound we get

u<v.

» In fact, as a, < u < v < b, for every n, we can see that
[u,v] C ﬂ In.
neN

» Here if u = v, then [u, v] is to be understood as the singleton

{u}.
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» Theorem 11.4: Let I, 5, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose

inf{b, —a,:n €N} =0. Then (. /n is a singleton set.
Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.

Suppose not. Since a, < u < v < b, for every n.
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» Theorem 11.4: Let I, 5, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose
inf{b, —a,:n €N} =0. Then (. /n is a singleton set.

Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.
Suppose not. Since a, < u < v < b, for every n.

Hence b, — a, > (v — u) for every n.
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In particular v — u is a lower bound for {b, — a, : n € N}
Therefore (v — u) < 0.



The Singleton
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Theorem 11.4: Let 1, I, ... be a nested sequence of intervals,
with I, = [an, by], for some a,, b, € R. Suppose
inf{b, —a,:n €N} =0. Then (. /n is a singleton set.

Proof: Suppose u = sup{a, : n € N} and v = inf{b, : n € N}.
We want to show u = v.

Suppose not. Since a, < u < v < b, for every n.

Hence b, — a, > (v — u) for every n.

In particular v — u is a lower bound for {b, — a, : n € N}
Therefore (v — u) < 0.

Since we already have u < v, we get v — u =0, thatis, u = v.
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Uncountability of R
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Theorem 11.5: The set R is uncountable.
Proof: Fix a, b € R with a < b.
We will show that [a, b] is uncountable.

This would complete the proof as subsets of countable sets
are countable, R can not be countable.

Suppose [a, b] is countable.

Let {x1,x2,...} be an enumeration of [a, b]. (This just means
that n+— x, is a bijective function from N to [a, b].)
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Now x; € [a, b]. Clearly we can choose a closed sub-interval

h = [a1, b1] of [a, b] such that x; ¢ /.

Next, in a similar fashion, we can choose a sub-interval

I = [ag, by] of I, such that xo & k. (If x2 ¢ I, we can simply
choose b = I;.

Then we can choose a sub-interval I3 = [a3, b3] of | such that
x3 & b.

Continuing this way, we have a nested sequence of closed and
bounded intervals:

[avb]2I12/22"'a

with x, ¢ I, for every n € R.

By nested intervals property of R,
L
neN

is non-empty. Take u € [,y /n-
Then clearly u € [a, b].
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» Also for every n, u € I, and x, ¢ I,, and hence u # x,.

» This holds for every n. This means that n — x, from N to
[a, b] is not surjective as we have got u € [a, b] such that
u # xp for every n.

» This is a contradiction and hence [a, b] is not countable.
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» Also for every n, u € I, and x, ¢ I,, and hence u # x,.

» This holds for every n. This means that n — x, from N to
[a, b] is not surjective as we have got u € [a, b] such that
u # xp for every n.

» This is a contradiction and hence [a, b] is not countable.

» END OF LECTURE 11.
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» Consider R, the set of real numbers.

» We want to look at the familiar binary and decimal systems of
writing real numbers.

» Binary expansion for integers: We know that any natural
number can be written uniquely as
€n2" 4+ 1.2 4o 4+ 1.2 + ¢, for some n € N with each
¢j €4{0,1} (cn #0).

» As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

» Qn: What is the difference between 1 and 0.9999999 - - -7

> Ans: 1=0.999999--- . In other words, they are equal.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

» Proof: This we prove by induction on n.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.
» Proof: This we prove by induction on n.
» For n =1, clearly the equality holds.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

» Proof: This we prove by induction on n.
» For n =1, clearly the equality holds.
» Assume the result for n = m, so we have (1 + x)™ > 1+ mx.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.
» Proof: This we prove by induction on n.
» For n =1, clearly the equality holds.

» Assume the result for n = m, so we have (1 + x)™ > 1+ mx.
» Note that as x > —1, 1 +x > 0.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

Proof: This we prove by induction on n.

For n =1, clearly the equality holds.

Assume the result for n = m, so we have (1 + x)™ > 1+ mx.
Note that as x > —1, 1 +x > 0.

Now using the induction hypothesis,

(1 + x)m+1 (1+x)™.(1+ x)
(1+ mx)(1+x)
1+ x + mx + mx?
1+ (m+1)x

vVvVvyyvyy

AV B AVART

as mx2 > 0.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

Proof: This we prove by induction on n.

For n =1, clearly the equality holds.

Assume the result for n = m, so we have (1 + x)™ > 1+ mx.
Note that as x > —1, 1 +x > 0.

Now using the induction hypothesis,

(1 + x)m+1 (1+x)™.(1+ x)
(1+ mx)(1+x)
1+ x + mx + mx?
1+ (m+1)x

vVvVvyyvyy

AV B AVART

as mx2 > 0.
» Hence the inequality is true for n = m+ 1.



Bernoulli's inequality

» Theorem 12.1 (Bernoulli's inequality): If x € R with x > —1,
then
(1+x)">1+nx, VneN.

Proof: This we prove by induction on n.

For n =1, clearly the equality holds.

Assume the result for n = m, so we have (1 + x)™ > 1+ mx.
Note that as x > —1, 1 +x > 0.

Now using the induction hypothesis,

(1 + x)m+1 (1+x)™.(1+ x)
(1+ mx)(1+x)
1+ x + mx + mx?
1+ (m+1)x

vVvVvyyvyy

AV B AVART

as mx2 > 0.
» Hence the inequality is true for n = m+ 1.
» This completes the proof by Mathematical Induction.
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Binary system

>

We divide the interval [0,1) into two parts, [0,1/2) and [3,1),
and then sub-divide them into two more equal pieces and so
on.

We have [0,1) = [0, ) U[%. 1)

If x € [0, ), the first binary digit by of x is 0. If x € [3,1),
the first binary digit by of x is 1.

Here we have made a choice to put the mid-point with the
right interval. We can opt to the mid-point with the left
interval. This option we will explore later on.

Consider the case where by = 0. Now x € [0, 3). To
determine the second digit, divide [0, 3) into two parts.

If x € [0, 1), the second binary digit b, of x is 0. If x € [3, 3)
the second binary digit by of x is 1.

On the other hand if by =1, that is, x € [%, 1), the second
binary digit by is 0 if x € [2, Z) and b =1if x € [%, 1).
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By Bernoulli's inequality (taking x =1) 2" = (1+1)" > 1+n.
In particular, for € > 0, there exists n € N, such that
0< 57 <737 <€

Consequently, inf{(b";[l) — 5. neN}=inf{% :neN}=0.

Then by Theorem 11.5,

Hence (,en In = {x}.
This shows that the binary digits of x, determines x.

nen In s singleton.

In other words, two different real numbers x, y would have
different binary expansions.
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» Now we explore the Second Option.
> We divide the interval (0,1] as (0, 3] (3, 1].
» Then (0, %] as (0, 22]U(227 2] and (2,1] as (2, 22]U(;’z,l].
> This way we get a possibly new binary expansion, say the
digits are ¢, ¢, . . ., satisfying
1 8} Cn c1 (o)) cr+1

» The two expansions are different only if x is one of the end
points in these divisions, that is, if x = 2ﬂk for some natural
numbers m, k. Here without loss of generality we may take m
to be odd.

» In other words in (0, 1), only numbers of the form
natural numbers m, k have two binary expansions.

2%, with

» For instance, % is expressed as 0.10000000. .. using the first
option and as 0.0111111111... through the second option.
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Suppose x € (0,1) is expressed using binary expansion, under

either option, and by, by, ..., b, are the first n binary digits.
Then
by | b b by | b b, +1
B LU VD QI Ea A T
2+22+ +2n_x_2+22+ + n

From the proof of the nested intervals property, we see that

by b bn
X:SUP{E—F?‘F‘F?FIEN}
Note that
I = sup{3+0+---+0(n—1 times):neN}

= sup{0+ 5+ 5+ +3:neN}

Similarly 1 =sup{3 + % +--- 5= : n € N}.
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Similar to binary expansion we can have expansion with ‘base’
M, for any M € {2,3,4,...}, where we use only the digits
{0,1,2,...,(M—1)}.
Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.
If x =0.d1d> - is the decimal expansion of x, then, each
d; €{0,1,2,...,9} and
d | dn
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Here x € (0, 1) has two decimal expansions if and only if
x = 1g% for some natural numbers m, k.
Alternatively x has two decimal expansions if and only if its
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» Similar to binary expansion we can have expansion with ‘base’
M, for any M € {2,3,4,...}, where we use only the digits
{0,1,2,...,(M—1)}.

» Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.

» If x =0.d1d>--- is the decimal expansion of x, then, each
d; €{0,1,2,...,9} and

d | dn
x—sup{ﬁ—kl—oz-#--”—k 07

» Here x € (0, 1) has two decimal expansions if and only if
x = 1g% for some natural numbers m, k.

P Alternatively x has two decimal expansions if and only if its
decimal expansion is of the form 0.d1d> ... d,000000... or it
is of the form 0.d1d> ... d,999999. .. for some d’s.

» In such cases, we say that x has a terminating decimal
expansion. (It ends either with a sequence of 0's or with a
ceqauence of 0'c )

:n e N}
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» We summarize our observations as follows.

» Theorem 12.2: Fix M € N with M > 2. Then any real number
x € [0,1) can be expressed as:

d d
x:sup{M—FWﬂL'-—FV"n :neN,d;€{0,1,..., M—1}}
The sequence di, d, ... is uniquely determined unless x = %

for some natural numbers m, k. Further, if x = {7 then x has
two possible expressions, one terminating with 0's and another
terminating with (M — 1)'s.

> If di,d>, ... are as in this theorem, we say
x = 0.d1dhrds ...

in base M.
» END OF LECTURE 12



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € S.



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € 8S.

» Now consider S\{x1}. If S\{x1} is empty, then S = {x;} and
this would mean that S is finite. Therefore S\{x;} is
non-empty. Choose any x; € S\{x1}.



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € S.

» Now consider S\{x1}. If S\{x1} is empty, then S = {x;} and
this would mean that S is finite. Therefore S\{x;} is
non-empty. Choose any x; € S\{x1}.

» Now we can see that S\{x1,x2} is non-empty.



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € S.

» Now consider S\{x1}. If S\{x1} is empty, then S = {x;} and
this would mean that S is finite. Therefore S\{x;} is
non-empty. Choose any x; € S\{x1}.

» Now we can see that S\{x1,x2} is non-empty.

» For every n, after choosing distinct elements x1, x2, ..., X, in
S, we can choose x,4+1 € S\{x1,x2,...,%,} Iin S.



Lecture 13. Countable sets in infinite sets

» Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S,
such that T is equipotent to N.

» Proof: As S is infinite, it is non-empty. So there exists some
x1 € S.

» Now consider S\{x1}. If S\{x1} is empty, then S = {x;} and
this would mean that S is finite. Therefore S\{x;} is
non-empty. Choose any x; € S\{x1}.

» Now we can see that S\{x1,x2} is non-empty.

» For every n, after choosing distinct elements x1, x2, ..., X, in
S, we can choose x,4+1 € S\{x1,x2,...,%,} Iin S.

» Then by mathematical induction we have a sequence
{x1,x2,...} of distinct elements in S. Clearly
T = {x, : n € N} is equipotent with N.
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Unions of finite and infinite sets

» Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S|JF is equipotent with S.

» Proof: This is an exercise. Here are the suggested steps:

» Step 1: SUF =SU(F\(SNF)). Since F is finite,
F\(SF) is also finite. Note that S and F\(S()F) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(SNF).

» Step 2: Using the previous theorem, choose a subset T of S,
which is equipotent with N.

» Step 3: Show that T |J F is equipotent with N, and hence it
is equipotent with T.

» Conclude that S|JF is equipotent with S.
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Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S| J C is equipotent with S.

Proof: Like before, it suffices to prove the result when C is
disjoint from S.

By Theorem 13.1, there exists a countably infinite subset T of
S.

Clearly T | C is equipotent with T.
If f: T — TUJCis a bijection, f : S — S|J C defined by
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is seen to be a bijection from S to S|J C and this completes
the proof.
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Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S| J C is equipotent with S.

Proof: Like before, it suffices to prove the result when C is
disjoint from S.

By Theorem 13.1, there exists a countably infinite subset T of
S.

Clearly T | C is equipotent with T.
If f: T — TUJCis a bijection, f : S — S|J C defined by

o-{ 1 e,

is seen to be a bijection from S to S|J C and this completes
the proof.

Corollary 13.4: If S is an uncountable set and T C S is
countable then S is equipotent with S\ T.
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Theorem 13.5: The set of real numbers in [0,1) is in bijection
with binary sequences.
Proof: Let B be the set of binary sequences:

B = {(wi,ws,...,):w; €{0,1},j € N}.

Let By be the set of binary sequences which terminate with
sequence of just 1's.

Clearly By is an infinite set. Since By is countable union of
finite sets (Why?) it is countably infinite. Take A = B\ Bp.
Consider the map f : [0,1) — A defined by

f(X) = (bl, bg, b37 .. .),

where 0.b1bobs ... is the binary expansion of x, using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

Now B = A By. A is uncountable and By is countable.
Hence B is equipotent with A.

Consequently [0,1) and B are equipotent.
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Then g is a bijection.
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Theorem 13.6: Any two sub-intervals of R are equipotent.
Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0}
is countable and (0,1) is uncountable.

(ii) (0,1) is equipotent with [0, 1]. This is clear, as {0,1} is
countable and (0, 1) is uncountable.

(iii) [0, 1] is equipotent with [a, b] for any a, b in R with

a < b: Consider the map g : [0,1] — [a, b] defined by

g(x)=a+x(b—a), xel0,1]

Then g is a bijection.

(iv) (0,1) is equipotent with (1, 00):

Consider the map h: (0,1) — (1,00) defined by

h(x) =1, x€(0,1). Then it is easily seen that h is a
bijection.

(v) It is an exercise to cover all the remaining cases.
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» Show that R x R is equipotent with R. More generally, show
that R" is equipotent with R for any n € N.

» Show that [0, 1] x [0, 1] is equipotent with R.

» Show that the space of real valued functions on N :
F={f|f :N— R}

is equipotent with R.
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Lecture 14. Direct and inverse images of functions

> Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. The for A C X, f(A) is defined as:



Lecture 14. Direct and inverse images of functions

> Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. The for A C X, f(A) is defined as:
>
f(A) :={f(x): x € A}.
» Example 14.1: Suppose X = {1,2,3} and Y = {u,v,w} and
f: X — Y is defined by f(1) =f(2) = v and f(3) = v.



Lecture 14. Direct and inverse images of functions

> Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. The for A C X, f(A) is defined as:

>
f(A) :={f(x): x € A}.
» Example 14.1: Suppose X = {1,2,3} and Y = {u,v,w} and
f: X — Y is defined by f(1) =f(2) = v and f(3) = v.
» Then f({1,2}) = {u} and f({3}) = {v}.



Lecture 14. Direct and inverse images of functions

> Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. The for A C X, f(A) is defined as:

>

f(A) :={f(x): x € A}.

» Example 14.1: Suppose X = {1,2,3} and Y = {u,v,w} and
f: X — Y is defined by f(1) =f(2) = v and f(3) = v.

» Then f({1,2}) = {u} and f({3}) = {v}.

» Here we have slight abuse of notation as we are defining 7(A)
for subsets of X and not elements of X, where as, normally

when we write f(x), x is an element of X. However, this
notation is standard.



Lecture 14. Direct and inverse images of functions

| 2

| 2

Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. The for A C X, f(A) is defined as:

f(A) :={f(x): x € A}.

Example 14.1: Suppose X ={1,2,3} and Y = {u,v,w} and
f: X — Y is defined by f(1) =f(2) = v and f(3) = v.

Then f({1,2}) = {u} and f({3}) = {v}.

Here we have slight abuse of notation as we are defining 7(A)
for subsets of X and not elements of X, where as, normally
when we write f(x), x is an element of X. However, this
notation is standard.

Note that for any element x of X, f({x}) = {f(x)}, which is
the singleton set containing f(x) and is different from the
element f(x). This distinction between elements and singleton
sets should always be maintained to avoid confusion.
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» Proposition 14.2: Let f : X — Y be a function. Then,
> (i) F(0) = 0.
» (ii) In general, f(X) # Y.
» (iii) In general, for A, B C X,
F(A(B) # F(A)[ ) f(B).

» (iv) For any two subsets A, B of X,
f(ALB) = (A (B).
» More generally, for arbitrary family {A; : i € I} of subsets of
X,
F(JA) = fAa).

iel i€l
» (v) In general, for AC X

F(AS) # (F(A))°
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Example 14.3: Suppose f : R — R is defined by
f(x) =x?, Vx€cR.

Take A= (—00,0] and B = [0,00). Then

AN B ={0}.

f(A)Nf(B) =[0,00) ([0, 00) = [0, 00), where as,
f(ANB) = F({0}) = {0}.
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Example 14.3: Suppose f : R — R is defined by
f(x) =x?, Vx€cR.

Take A= (—00,0] and B = [0,00). Then

AN B ={0}.

f(A)Nf(B) =[0,00) ([0, 00) = [0, 00), where as,
F(ANB) = F({0}) = {0}.

Hence f(AN B) # f(A)( f(B).

vVvYyyvy
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Continuation

» The prof of Proposition 14.2 is an exercise.

» For instance, if y € f(AJ B), then y = f(x) for some
x € AlJB. Here either x € A or x € B (or both). If x € A,
we get y € f(A). If x € B, we get y € f(B). Consequently,
we get y € f(A)|Jf(B). This shows that
f(AUB) C f(A)UF(B).

» Similarly, you can show f(A)|Jf(B) C f(AlUB) and
conclude that f(AlJB) = f(A)J f(B).
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Characterizations

» Theorem 14.4: Let X, Y be non-empty sets and let
f: X — Y be a function.

(a) f(X) =Y if and only if f is surjective.

(b) f(AN B) = f(A)( f(B) for all subsets A, B of X if and
only if f is injective.

» (c) f(A) = (f(A))c for all subsets A of X if and only if f is a
bijection.

vy

» Proof: (a) follows from the definition of surjectivity. (b) and
(c) are interesting exercises.
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Inverse images

» Notation: Let X, Y be non-empty sets and let f : X — Y be
a function. Then for any subset V of Y,

fYV):={xeX:f(x)e V}.

» For instance, for f : {1,2,3} — {u, v, w} defined by
f(1)=1f(2) =uand f(3) = v,

F{u}) = {12}, F({w})=0.

» Here also there is some abuse of notation as we writing f 1
even when f is not invertible. But we are defining f~! for
subsets of Y and not for elements of Y.

» For the example, g : R — R, defined by g(x) = x2, ¥x €R,
we see that g71({0}) = {0} and g~%([0,)) = R.
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Basic properties of inverse images

> Theorem 14.5: Let X, Y be non-empty sets and let
f : X = Y be a function. Then following properties hold.

> () F1(0) = 0,
> (i) FY(Y)=X;
> (i) FY(VAW) = Y (V)N F (W) for subsets V, W of

Y. More generally, for any arbitrary collection {V; : i € I} of
subsets of Y,
O V) =1 V).
iel icl
> (iv) FY(VUW) = FfYV)JFYW) for subsets V, W of
Y. More generally, for any arbitrary collection {V; : i € I} of
subsets of Y,
U v = U v
iel icl
> (v) F (V) = (F1(V))C for every subset V of Y.
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» It is indeed amazing that the inverse image f~! respects all
set theoretic operations with no conditions imposed on f.
This is a very useful fact to remember.

» The proof of Theorem 14.5 is also as an exercise.

> Theorem 14.6: Let X, Y be non-empty sets and let
f: X — Y be a function.
» (a) For any subset A of X,

fL(f(A) DA

and the equality may not hold.
» (b) For any subset V of Y,

f(FY(v)cv

and the equality may not hold.
» Proof: Exercise.
» END OF LECTURE 14.
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Lecture 15. Sequences and limits

> Now that we have the real number system in place we can
build the edifice of real analysis.

» This includes notions such as sequences and their limits,
continuity, differentiability, integration and so on.
» Three basic results we keep using repeatedly:
> (i)
inffix e R: x>0} =0.

v

(ii) For any € > 0, there exists a natural number n € N such
that 0 < 1 <.

» (iii) Triangle inequality: For x,y,z € R,
x =yl <|x—z[+]z -yl

> We have already proved these results.
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Definition and Examples

» Definition 15.1 : A sequence of real numbers

d1,d2,as,...

or written equivalently as {a,}en is a function a: N — R
with a, = a(n).
» Example 15.2: Consider the function a : N — N defined by
a(n) = n?, this gives us the sequence,
1,4,9.16,...,

also written as {n?} cn.

» Example 15.3 (Fibonacci sequence): This is the sequence:
1,1,2,3,5,8,...,

defined ‘recursively’, by a3y = 1,a =1 and a, = a,—» + ap—1
for n > 3.
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Limit of a sequence

» Definition 15.2: A sequence of real numbers {a,} e is said
to be convergent if there exists a real number x, where for
every € > 0, there exists a natural number K (depending upon
€) such that

lan — x| <€, Vn>K.

In such a case, {an}nen is said to converge to x, and x is said
to be the limit of {a,}pen.
> A sequence which is not convergent is said to be divergent.

» We may write, |a, — x| < €, equivalently as
Xx—€e<ap<x-+eorasa,€ (x—ex+e).
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» Example 15.3 (Constant sequence): Choose and fix a real
number c. Let {a,}nen be the sequence defined by
a,=c¢, VnéeN. So it is the sequence:

C,C,C,Cy. ..

Then {a,}nen is convergent and it converges to c.
» Proof: For any € > 0, we may take K = 1.
» Then,
lap—c|=]c—c|=0<e€ Vn>K.

» Hence {a,}nen converges to c.



The uniqueness of limit

» Theorem 15.3 (The uniqueness of limit): Let {a,}qen be a
convergent sequence. Then its limit is unique.



The uniqueness of limit

» Theorem 15.3 (The uniqueness of limit): Let {a,}qen be a
convergent sequence. Then its limit is unique.

» Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.



The uniqueness of limit

>

>

Theorem 15.3 (The uniqueness of limit): Let {a,}nen be a
convergent sequence. Then its limit is unique.

Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.

Now for any € > 0, since {a,},en converges to x, there exists
some Kj € N such that

lan — x| <€, Vn>Kj.



The uniqueness of limit

| 2

>

Theorem 15.3 (The uniqueness of limit): Let {a,}nen be a
convergent sequence. Then its limit is unique.

Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.

Now for any € > 0, since {a,},en converges to x, there exists
some Kj € N such that

lan — x| <€, Vn>Kj.

Similarly, since {a,}nen converges to y, there exists some
K> € N such that

lan —y| <€, VYn> K.



The uniqueness of limit

| 2

>

Theorem 15.3 (The uniqueness of limit): Let {a,}nen be a
convergent sequence. Then its limit is unique.

Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.

Now for any € > 0, since {a,},en converges to x, there exists
some Kj € N such that

lan — x| <€, Vn>Kj.

Similarly, since {a,}nen converges to y, there exists some
K> € N such that

lan —y| <€, VYn> K.

Choose any n > max{Ki, K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

Ix —y| <|x—ap|+|an —y| < e+e



The uniqueness of limit

| 2

>

Theorem 15.3 (The uniqueness of limit): Let {a,}nen be a
convergent sequence. Then its limit is unique.

Proof: Suppose {a,}nen converges to x,y in R. We want to
show x = y.

Now for any € > 0, since {a,},en converges to x, there exists
some Kj € N such that

lan — x| <€, Vn>Kj.

Similarly, since {a,}nen converges to y, there exists some
K> € N such that

lan —y| <€, VYn> K.

Choose any n > max{Ki, K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

Ix —y| <|x—ap|+|an —y| < e+e

Hence
0<|x—y| < 2e



Continuation

» Consequently,
1
0< §|x —y| <e

for all € > 0.



Continuation

» Consequently,
1
0< §|x —yl<e

for all € > 0.
> Since inf{e:e>0} =0, we get 0 < 3[x—y[ <0,



Continuation

» Consequently,
1
0< §|x —yl<e
for all € > 0.
> Since inf{e:e>0} =0, we get 0 < 3[x—y[ <0,

> Hence 3|x — y| =0 or |x — y| = 0, which is same as saying
x=y.
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Notation

» Suppose {ap}nen is a sequence converging to x. Then we
write:

lim a, = x.
n—oo

» We say that " The limit of a, as n tends to infinity exists and
is equal to x".

» Note that here n is a dummy variable, that is, if

lim a, = x
n—o00
then we also have,
lim a, = x.
m—0o0

» So the convergence or non-convergence is a property of the
whole sequence.
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» Example 15.5: Consider the sequence {b,},cn where b, = 1
for every n € N.
» Claim:

lim b, =0.

n—oo

» This means that {b,}ncn is convergent and it converges to
zero.

» The proof is easy. For any € > 0, choose K € N such that

0< < €.
» Then for any n > K, we have

1
< % < €. Hence,

o 3= X| =

1
‘bn—o‘:’E’§R<€, anK

» Consequently, by the definition of convergence, {b,} is
convergent, and lim,_, b, = 0.
> We may also write this as: lim,_

=0
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Definition 15.7: A sequence {ap}nen of real numbers is said to
be bounded if there exists a positive real number M such that

lan| < M, ¥neN.

Then M is said to be a bound for {a,}sen.

A sequence which is not bounded is said to be unbounded.
Example 15.8: Clearly every constant sequence c,c, ... is
bounded by M = |c|.

Example 15.7: The sequence {n},cn is unbounded.
Theorem 15.8: Every convergent sequence of real numbers is
bounded. The converse is not true.

Proof: Suppose {an}nen converges to x.

Take e = 1. Then there exists K € N, such that

lap — x| <1, ¥Vn>K.
Note that for n > K, by triangle inequality,
lan| = lan — 0] < |ap — x| +|x = 0] <1+ |x|.
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Continuation

» Now take,
M = max{|a1|, |az|, .- -, |ak—1|,|x| + 1}

» Then we have, |a,| < M for all n € N. Hence {a,}pen is
bounded by M.
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» The claim " The converse is not true”, is shown by exhibiting
a bounded sequence which is not convergent.

» Define {cp}nen by

| 0 if n isodd;
=Y 1 if n s even.
» So this is the sequence:
0,1,0,1,0,1,....

» Suppose {cp}nen is convergent and it converges to some x.
» Then for € > 0, there exists K € N such that

lcn — x| <€, Vn> K.

v

Choosing an odd number n > K, we get |0 — x| < e.

» Similarly choosing an even number n > K, we get |1 — x| < e.



Continuation

» Then by triangle inequality,

0—1<[0—x|+|x—1] <e+e€=2e.



Continuation

» Then by triangle inequality,
0—1<[0—x|+|x—1] <e+e€=2e.

» Hence 0 < % < € for every € > 0. This means % =0, which is
clearly a contradiction.



Continuation

» Then by triangle inequality,
0—1<[0—x|+|x—1] <e+e€=2e.

> Hence 0 < 1 < ¢ for every € > 0. This means 1 =0, which is
clearly a contradiction.

» This proves that {c,}nen is not convergent.



Continuation

» Then by triangle inequality,
0—1<[0—x|+|x—1] <e+e€=2e.

» Hence 0 < % < € for every € > 0. This means % =0, which is
clearly a contradiction.

» This proves that {c,}nen is not convergent.
» END OF LECTURE 15
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» Recall the definition of convergence:

» Definition 15.2: A sequence of real numbers {ap}nen is said
to be convergent if there exists a real number x, where for
every € > 0, there exists a natural number K (depending upon
€) such that

lan — x| <€, Vn>K.
In such a case, {an}nen is said to converge to x, and x is said
to be the limit of {a,}pen.

» Notation: If {a,},en converges to x, we write

lim a, = x.
n—oo

» A sequence {ap}nen is said to be bounded if there exists
positive real number M such that
lan] < M, ¥neN.

P> We have seen that every convergent sequence is bounded but
the converse is not true.
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Product with a bounded sequence

» Theorem 16.1: Suppose {a,}nen is @ sequence converging to
0 and {bp}nen is a bounded sequence then {anbp}nen
converges to 0.

» Proof: As {bp}nen is bounded, there exists M > 0 such that

|bp| <M, VneN.
» For e >0, take € = .
» As ¢ >0, and {a,},en converges to 0, there exists a natural
number K such that
la, — 0| <€, Vn>K.
» Now for n > K,
|anbn — 0| = |anbn| = |an||bn] < |an|M < €.M =e.

» Hence {apbp}nen converges to 0.
» Taking a, = % and b, = n, we see that the result may not be
true when {b,}nen is not bounded.
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Sums and products of sequences

» Theorem 16.2: Suppose {a,}nen and {bp}nen are sequences
converging to x, y respectively.

(a) For c € R, {cap}nen converges to cx.
(b) {an + bn}nen converges to x + y.

(c) For c,d € R, {cap + db,}nen converges to cx + dy.
(

(

vVvYvyyvyy

d) {anbn}nen converges to xy.
e

) If by # 0 for every n € N and y # 0 then {22 }nen
converges to §
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Proof of (b) and (c)

» For € > 0, we have 5 > 0. Choose Ki such that
€
‘a,-, —X‘ < 5, Vn > Kl.
» Choose K> such that

by — y| < % Vn > Ko.

» Take K = max{Ki, Kz }.
» Then for n > K,
€ €
an - bo) — (x+ Y| < lan x| b —y] < S+ 5 =
» Hence {a, + bn}nen converges to x + y.
» Clearly (c) follows from (a) and (b).



Proof of (d)

» Now we need to estimate |a,b, — xy/.



Proof of (d)

» Now we need to estimate |a,b, — xy/.

» By triangle inequality,
|anbn — xy|

<
<
<

|anbn — xbp + xby, — xy|
[(an — x) by + [x(by — y)
|an — x|[|ba| + [x][bn — yI.



Proof of (d)

» Now we need to estimate |a,b, — xy/.
» By triangle inequality,
lanbn — xy| < |apbp — xb, + xbp, — xy|
< [(an — x)bn| + [x(bn — y)
< lan = x]|bn| + [x[[bn — y|.

» As {bp}nen is convergent it is a bounded sequence. Hence
there exists M > 0 such that |b,| < M for all n.



Proof of (d)

» Now we need to estimate |a,b, — xy/.

» By triangle inequality,

< |apbny — xb, + xbp, — xy|
< [(an — x)bn| + [x(bn — y)
< lan = x]|bn| + [x[[bn — y|.

|anbn — xy|

» As {bp}nen is convergent it is a bounded sequence. Hence
there exists M > 0 such that |b,| < M for all n.
» For € > 0, choose K; € N such that

L VnZ K1.

- <
[an = x| <50



Proof of (d)

» Now we need to estimate |a,b, — xy/.
» By triangle inequality,

< |apbny — xb, + xbp, — xy|
< [(an = x)bn| + [x(bn — y)
< lap = x|[bn| + |x[|by — y/.

|anbn — xy|

» As {bp}nen is convergent it is a bounded sequence. Hence
there exists M > 0 such that |b,| < M for all n.
» For € > 0, choose K; € N such that

L VnZ K1.

- <
[an = x| <50

» Choose K> € N such that

€
|Xan —y’ < E, Vn > Kz.



Proof of (d)

» Now we need to estimate |a,b, — xy/.
» By triangle inequality,

< |apbny — xb, + xbp, — xy|
< [(an = x)bn| + [x(bn — y)
< lap = x|[bn| + |x[|by — y/.

|anbn — xy|

» As {bp}nen is convergent it is a bounded sequence. Hence
there exists M > 0 such that |b,| < M for all n.
» For € > 0, choose K; € N such that

L VHZ K1.

- <
[an = x| <50

» Choose K> € N such that
€
Ix||bn — y| < > Vn > Ka.
» If x # 0, this can be done by taking ¢ = ﬁ and using

convergence of {b,}. If x =0, the inequality is trivially true
and we can simply take K, = 1.
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» Now for n > max{Ki, K>}

’anbn_xy’ S ’an_XHb ‘—i_‘Xan_y‘
< — M+ =
2I\/I +

= €.

» Hence {a,bp}nen converges to xy.
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Proof of (e)

» Clearly (e) follows from (d) if we show that bin converges to

1 (Note that here we are assuming that b, # 0 for every n

and y #0.)
» Now we need to estimate,

ny |bn)/|
» Claim: There exists M > 0 such that < M for all n € N.

\b\
» Once we prove this claim, for € > 0, take ¢ M , and choose
K € N such that
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» Then for n > K,
_ !
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> This implies that |b,| > I for n > K. (Why?)
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Proof of claim: Recall that lim,_,., b, =y and y # 0.

Take € = % > 0.

Now there exists natural number K such that
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Boundedness

Claim: There exists M > 0 such that ‘b | < M for all n € N.
Proof of claim: Recall that lim,_,., b, =y and y # 0.
Take € = % > 0.

Now there exists natural number K such that
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by y<|£|, Vn > K.

v

This implies that |b,| > & for n > K. (Why?)
Therefore o] ‘ < |2| for n > K.
> Take

v

1 1 1 2
M = max , , -
Yo Bl ol 1

» Note that M is well-defined as b, # 0 for every n.

Now we have \bflnl < M for every n € N.
» END OF LECTURE 16.
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Lecture 17. Sequences and order

» Recall the definition of convergence:

» Definition 15.2: A sequence of real numbers {a,}en is said
to be convergent if there exists a real number x, where for
every € > 0, there exists a natural number K (depending upon
€) such that

lan — x| <€, Vn>K.
In such a case, {ap}nen is said to converge to x, and x is said
to be the limit of {a,}nen.

» |a, — x| < eis equivalent to x —e < a, < x+ € or
an € (x —e,x+e).

» A sequence {ap}nen is said to be bounded if there exists
positive real number M such that

lan| < M, ¥neN.

> We have seen that every convergent sequence is bounded but
the converse is not true.
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Recall: Sums and products

» Theorem 16.2: Suppose {a,}nen and {bp}nen are sequences
converging to x, y respectively.

(a) For c € R, {cap}nen converges to cx.

(b) {an + bn}nen converges to x + y.

(c) For c,d € R, {cap + db,}nen converges to cx + dy.
(

(
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d) {anbn}nen converges to xy.
e

) If by # 0 for every n € N and y # 0 then {22 }nen
converges to §
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Theorem 17.1: Suppose {an}nen is a sequence converging to
x and a, > 0 for every n € N. Then x > 0.

Proof: Suppose x < 0.
Take € = %

As {an}nen is convergent to x, there exists K, such that
lan — x| <€, Vn> K.

That is,
an € (x—ex+e€), Vn>K.

Clearly this is not possible, as a, > 0 and
(X - €’X+€) - (_0070)

So we have a contradiction. Hence x < 0 is not possible.
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» Theorem 17.2: Suppose {a,}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

» Proof: Take ¢, = b, —a,, neN.
We know that {c,}nen converges to y — x.
» Also ¢, > 0,Vn.
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Theorem 17.2: Suppose {ap}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

Proof: Take ¢, = b, — a,, n€N.
We know that {c,}nen converges to y — x.
Also ¢, > 0,Vn.

Hence by previous theorem y — x > 0, or equivalently x < y.
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Theorem 17.2: Suppose {ap}nen and {bp}nen are sequences
converging to x, y respectively. Suppose a, < b, for every n.
Then x < y.

Proof: Take ¢, = b, — a,, n€N.

We know that {c,}nen converges to y — x.

Also ¢, > 0,Vn.

Hence by previous theorem y — x > 0, or equivalently x < y.

Warning: In this Theorem, a, < b, for all n does not imply
x < y. For example, take a, =0 and b, = % for all n. Then
x =y =0 and we don't have x < y.



Squeeze theorem

» Theorem 17.3 (Squeeze theorem): Suppose {an}nen, {bn}nen
and {c,}nen are three sequences satisfying
a, <b,<c, VneN.



Squeeze theorem

» Theorem 17.3 (Squeeze theorem): Suppose {an}nen, {bn}nen
and {c,}nen are three sequences satisfying
a, <b,<c, VneN.

» Suppose {ap}nen and {cn}nen converge to a real number x.



Squeeze theorem

| 2

Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen
and {c,}nen are three sequences satisfying

a, <b,<c, VneN.

Suppose {an}nen and {cp}nen converge to a real number x.
Then {b,}nen is also convergent and it converges to x.



Squeeze theorem

» Theorem 17.3 (Squeeze theorem): Suppose {an}nen, {bn}nen
and {c,}nen are three sequences satisfying
a, <b,<c, VneN.
» Suppose {ap}nen and {cn}nen converge to a real number x.
Then {b,}nen is also convergent and it converges to x.
» Proof: For € > 0, choose a natural number Kj such that

v

an € (x—e,x+¢€), Vn> Ki.



Squeeze theorem

| 2

v

Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen
and {c,}nen are three sequences satisfying

a, <b,<c, VneN.

Suppose {an}nen and {cp}nen converge to a real number x.
Then {b,}nen is also convergent and it converges to x.
Proof: For € > 0, choose a natural number Kj such that

an € (x—e,x+¢€), Vn> Ki.
Similarly choose a natural number K> such that

ch€(x—e,x+¢€), Vn> K.



Squeeze theorem

| 2

v

Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen
and {c,}nen are three sequences satisfying
a, <b,<c, VneN.
Suppose {an}nen and {cp}nen converge to a real number x.
Then {b,}nen is also convergent and it converges to x.
Proof: For € > 0, choose a natural number Kj such that
an € (x—e,x+¢€), Vn> Ki.
Similarly choose a natural number K> such that
ch€(x—e,x+¢€), Vn> K.

Take K = max{Ki, Kz2}.



Squeeze theorem

| 2

v

Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen
and {c,}nen are three sequences satisfying
a, <b,<c, VneN.
Suppose {an}nen and {cp}nen converge to a real number x.
Then {b,}nen is also convergent and it converges to x.
Proof: For € > 0, choose a natural number Kj such that
an € (x—e,x+¢€), Vn> Ki.
Similarly choose a natural number K> such that
h€(x—€,x+¢€), ¥n> K.
Take K = max{Ki, Kz2}.
Now for n > K, as a, < b, < ¢p, we get

x—e<a,<b,<ch<x+e.



Squeeze theorem

| 2

v

Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen

and {c,}nen are three sequences satisfying

a, <b,<c, VneN.

Suppose {an}nen and {cp}nen converge to a real number x.

Then {b,}nen is also convergent and it converges to x.

Proof: For € > 0, choose a natural number Kj such that
an € (x—e,x+¢€), Vn> Ki.
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Take K = max{Ki, Kz2}.
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Theorem 17.3 (Squeeze theorem): Suppose {ap}nen, {bn}nen

and {c,}nen are three sequences satisfying

a, <b,<c, VneN.

Suppose {an}nen and {cp}nen converge to a real number x.

Then {b,}nen is also convergent and it converges to x.

Proof: For € > 0, choose a natural number Kj such that
an € (x—e,x+¢€), Vn> Ki.

Similarly choose a natural number K> such that
ch€(x—e,x+¢€), Vn> K.

Take K = max{Ki, Kz2}.

Now for n > K, as a, < b, < ¢p, we get
x—e<a,<b,<ch<x+e.

In particular, b, € (x —e,x+¢€), Vn> K or

|by — x| <€, Vn>K.

Hence {b,}nen converges to x.
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Monotonicity

» Definition 17.4: A sequence {ap}nen of real numbers is said
to be increasing (or non-decreasing) if

an <apt1, VneN.

> A sequence {an}nen of real numbers is said to be decreasing
(or non-increasing) if

an > any1, VvVneN.

> A sequence {an}nen of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

» Example 17.5: The sequence {%}neN is a decreasing
sequence. The sequence {n}en is an increasing sequence.

» Note that an increasing sequence is always bounded below by
the first term, that is, a; < a,, Vn € N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

» Theorem 17.6: (i) An increasing sequence {an}nen is
convergent if and only if it is bounded above. In such a case,

lim a, =sup{a,: ne N}
n—oo

» (ii) A decreasing sequence {ap}nen is convergent if and only if
it is bounded below. In such a case,

nI|_>nC1>O ap = inf{a, : n € N}.

» (iii) A monotonic sequence is convergent if and only if it is
bounded.

» Proof: Clearly (iii) follows from (i) and (ii).

» Also (ii) follows from (i), by considering {—ap}nen. So it
suffices to prove (i).
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» Proof of (i): Let {a,}nen be a bounded increasing sequence.
> Take x =sup{a,: n € N}.
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> Take any € > 0. Then x — e < x.
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Bounded increasing sequences

Proof of (i): Let {a,}nen be a bounded increasing sequence.
Take x = sup{a, : n € N}.

We want to show that {a,}hen converges to x.

Take any € > 0. Then x — € < x.

As x — € is not an upper bound for {a, : n € N}, there exists
some K € N such that
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X —€e<ak < Xx.

» Then by monotonicity of {a,}nen and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K
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Proof of (i): Let {a,}nen be a bounded increasing sequence.
Take x = sup{a, : n € N}.

We want to show that {a,}hen converges to x.

Take any € > 0. Then x — € < x.

As x — € is not an upper bound for {a, : n € N}, there exists
some K € N such that
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X —€e<ak < Xx.

» Then by monotonicity of {a,}nen and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K

» In particular,

an € (x—€e,x+e€), Yn>K.



Bounded increasing sequences
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Proof of (i): Let {a,}nen be a bounded increasing sequence.
Take x = sup{a, : n € N}.

We want to show that {a,}hen converges to x.

Take any € > 0. Then x — € < x.

As x — € is not an upper bound for {a, : n € N}, there exists
some K € N such that

X —€e<ak < Xx.

Then by monotonicity of {a,},en and as x is an upper-bound,
we get
x—e<ak<a,<x, Vn>K

In particular,
an € (x—€e,x+e€), Yn>K.

This shows that {a,},en converges to x.
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Binary, decimal expansions

» Theorem 17.7: Fix a natural number d € N with d > 2.
» For a real number y € [0,1), let

y = 0.b1b2b3 ..
be the expansion of y in base d.
» Then b by b
— lim(2 L2 5
y—nll_@O(d Tt +dn).
» Proof: For n € N, take
b b by
an = + 72 + -t pr
» Clearly {a,}nen is an increasing sequence, which is bounded
above by 1.

» By the definition of base-d expansion
y =sup{a,: ne N}

» Now the result y = lim,_,o0 an, is clear from the previous
theorem.
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Arithmetic-Geometric Mean

> Example 17.8: Let a, b be real numbers with 0 < a < b.
» Define two sequences {ap}nen and {b,}nen recursively by:
ay =a,b; = band

a+b
dn+l1 = Van bp, bn+1 n2 n>1.

» Note that for any positive t, v/t is the unique positive real
number x such that x2 = t. The existence of 1/t can be
proved just as we proved the existence of v/2.

» Making use of AM-GM inequality, it is easy to see

a<+Vva <7<b

» In other words,
ar < ax < by < by.

» Inductively, one can show that

a=ar<a<--ra,<b,<---<bh<b =b
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Continuation

» It follows that lim,_, a, and lim,_,;, exist.
» Exercise: Show that

lim a, = lim b,.
n—oo n—o0

» This value is known as arithmetic-geometric mean of a and b.
7.
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1 1 1 1 1 1 1 1

T4+ >l +F-=14+2+=.
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Harmonic sums

> Example 17.9: For n € N, take

1 1 1
hn:1+*+7++g

2 3
» Then {hp}nen is unbounded.
» Observe:
T S DU S S D
2 3 4 2 4 4 2 2
>

1 1 1 1 1 1
Lo+ tg>l+o+o+o++o=1+3

8 2 2 5 8

)



Harmonic sums

> Example 17.9: For n € N, take

1 1 1
hn:1+*+7++g

2 3
» Then {hp}nen is unbounded.
» Observe:
T S DU S S D
2 3 4 2 4 4 2 2
>

1 1 1 1 1 1 1
1+ 24 ik o> 14+ 4242 =143(2).
Fotetg > lE S F ottt g =143(3)

» Continue this way, and complete the proof.
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> Example 17.9: For n € N, take

1 1 1
hn:1+*+7++g

2 3
» Then {hp}nen is unbounded.
» Observe:
T S DU S S D
2 3 4 2 4 4 2 2
>

1 1 1 1 1 1 1
1+ 24 ik o> 14+ 4242 =143(2).
Fotetg > lE S F ottt g =143(3)

v

Continue this way, and complete the proof.
» END OF LECTURE 17.
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Lecture 18. Bolzano-Weierstrass theorem

> We recall a few notions from the previous lecture.

» Definition 17.4: A sequence {ap}nen of real numbers is said
to be increasing (or non-decreasing) if

an <apt1, VneN.

» A sequence {an}nen of real numbers is said to be decreasing
(or non-increasing) if

an > ant1, VneN.

» A sequence {an}nen of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

» Example 17.5: The sequence {%}nGN is a decreasing
sequence. The sequence {n},en is an increasing sequence.

» Note that an increasing sequence is always bounded below by
the first term, that is, a; < a,, Vn € N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

» Theorem 17.6: (i) An increasing sequence {a,}nen is
convergent if and only if it is bounded above. In such a case,

lim a, =sup{a,: neN}.
n—oo

» (ii) A decreasing sequence {a,}nen is convergent if and only if
it is bounded below. In such a case,

lim a, =inf{a,: ne N}

n—o0

» (iii) A monotonic sequence is convergent if and only if it is
bounded.
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Subsequences

» Definition 18.1: Let {a,}nen be a sequence of real numbers.
Let
n<n<n<:--
be a strictly increasing sequence of natural numbers. Then
{an, } ken or equivalently,
Anys Any,s Angs - - -
is called a sub-sequence of {a,}nen-
» It is a sampling of terms from the given sequence.
» Example 18.2: Let {a,}nen be the sequence defined by
an = % Taking nx = k?, we get get the subsequence
1 1 1
p’ ?7 372’ e e
> |t is the sequence {%}keN. Taking my = 2k, we get a new
subsequence {am, }ken, Which is,

11 1
3”)72,’)737....
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» Example 18.3: Let {ap}nen be a sequence.
» Then for any K € N,

aK; dK+15 dK+25 - - -

is a subsequence of {a,}pen. Here mm =K, m=K+1,....
» Such subsequences are known as tails of the given sequence.
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Subsequences of convergent sequences

» Theorem 18.4: Let {a,}qen be a sequence of real numbers
converging to some x € R. Then every subsequence of
{an}nen converges to x. In particular, every tail of this
sequence converges to x.

» Proof: Suppose {ap, }ken is a subsequence of {a,}pen.
» For € > 0, there exists K € N such that
lan — x| <€, Vn> K.
» Note that, as
1< m<m<ny<---,
> n, > k for every k.

» In particular, nx > K and consequently n, > K for all
m > K. So we have

lan, — x| <€, Vm>K.

» Hence {ap, }ken converges to x.
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Limit points

» Definition 18.5: Let {a,}nen be a sequence of real numbers.
Then y € R is said to be limit point of {ap}pen, if it has a
subsequence {aj, }ken converging to y.

» Note that the previous Theorem tells us that if {a,}ncn is a
sequence converging to x, then its set of limit points is the
singleton {x}.

> It is easy to see that the sequence {n} has no limit points. In
other words its set of limit points is empty.

» Example 18.6: Define a sequence {c,}nen by

| 2 ifnisodd
=93 if? nis even

Then clearly 2,3 are limit points of this sequence. It is an
exercise to show that there are no other limit points.

» Can a sequence have infinitely many limit points?
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Examples

» Example 18.7: Consider the enumeration of N x N as
(1,1),(1,2), (2,1), (3,1),(2,2), (1,3), (1,4). (2,3), (3.2), (4, 1), (5.1
» The sum of two co-ordinates, are
2,3,3,4,4,4,....

» Now consider the function (m, n) — % + % Applying this
function on the enumeration above we get a sequence of real

numbers as:
1+1 1+1 1+1 1+1 1+1
11 2 1 2 311 4



Examples

» Example 18.7: Consider the enumeration of N x N as
(1,1),(1,2), (2,1), (3,1). (2,2), (1,3), (1,4), (2,3). (3,2). (4,1), (5. 1
» The sum of two co-ordinates, are
2,3,3,4,4,4,....

» Now consider the function (m, n) — % + % Applying this
function on the enumeration above we get a sequence of real
numbers as:

11 1 1 1 1 1 1 1 1
it 2t 2t st oty

» It is an exercise to show that the set of limit points of this
sequence is given by

{% :ne N} J{o}.
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Examples Continued

» Can the set of limit points of a sequence be uncountable?

» Example 18.8: Let {r, : n € N} be an enumeration of the
rational numbers in [0, 1], that is n — r, is a bijective function
from N to the set of rational numbers in [0, 1].

P It is an exercise to show that the set of limit points of this
sequence is the whole interval [0, 1].
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Monotone subsequence theorem

> Theorem 18.9: Every sequence of real numbers has a
monotone subsequence.

» Proof: Let {a,}nen be a sequence of real numbers.

» Call a natural number m as a peak for {an}pen if am > aj for
all n > m. In other words m is a peak if a, is an upper bound
for {am, am+1, am+2,---}-

» Let P C N be the set of peaks of {a,}pen-

> It is possible that P is the empty set.
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> Now either P is infinite or it is finite.
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Continuation

> Now either P is infinite or it is finite.
» Suppose P is infinite and n; < ny < n3 < --- are elements of
P. Then we have

3n123n223n32"'

» In other words, {an, }ken is a decreasing subsequence of
{an}nGN-

» On the other hand suppose P is a finite set. Let M be the
maximal element of P. (If P is empty, take M = 0.).

» Now none of the n > (M + 1) is a peak for {a,}nen.

» Take ny = M+ 1. As (M + 1) is not a peak, there exists a
natural number ny > n; such that a,, > ap41.

> As ny is not a peak, there exists n3 > n» such that a,, > ap,.

» Continuing this way, after choosing ny, we can choose nj1,
where niy1 > ng and ap,,, > ap,.

» In other words, we have an increasing subsequence in:

an < ap, < ap, <
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Bolzano Weirstrass theorem

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}nEN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

» As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Sequential Compactness

» Theorem 18.11: Suppose [a, b] is an interval and {cp}nen is a
sequence of real numbers with ¢, € [a, b]. Then {c,}nen has
a convergent subsequence and any such subsequence
converges to a point in [a, b].

» This is clear from the Bolzano-Weirstrass theorem and is
known as sequential compactness of [a, b].

» Note that the same property does not hold for intervals like
(a, b) as the limit may not be an element of the interval.
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Alternative Proof

» Alternative proof of Bolzano-Weierstrass theorem:

» Let {a,}nen be a sequence of real numbers with a, € [a, b]
for every n.

» Take /1 = [a, b]. We divide the interval into two parts,
[a, a;b] and [252 b]. At least one of these intervals will have
infinitely many terms of the sequence. Pick that interval as /.

» Now divide / into two equal parts. At least one of them will
have infinitely many terms.

» Continue this way, to get a nested sequence of intervals:

/13/23/33"'
with length of [, = (é’,,__al). Appeal to nested intervals property.

» We know that [,y /n is a singleton, say {x}. We can choose
a subsequence of {a,}nen such that a,, € I for every k.

» Then we can conclude that limy_, an, = x. (Fill in the
details.)

» END OF LECTURE 18.
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» We recall the following important theorem:

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}neN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

P> As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Cauchy sequences

» Can we know whether a sequence is convergent without
knowing the limit?

» Definition 19.1: A sequence {ap}nen is said to be Cauchy if
for every € > 0, there exists K € N such that

lam — anl <€, Vm,n> K.

» We may write |a, — a,| < € equivalently as
am € (an—€,an+¢€) or as (am — an) € (—¢, +¢).
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Convergent sequences are Cauchy

» Proposition 19.2: Convergent sequences of real numbers is
Cauchy.

» Proof: Let {a,}nen be a sequence of real numbers converging
to a real number x.

» For ¢ > 0, take K € N, such that
lan — x| < g, Vn> K.
» Now for m, n > K, by triangle inequality,
€ €
lam — an| < lam — x| + |x — an| <§+§:e.

» Hence {ap}qen is Cauchy.
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» Proposition 19.3: Cauchy sequences of real numbers are
bounded.

» Proof: Let {a,}qen be a Cauchy sequence.
» Take ¢ = 1. Using Cauchy property, choose K € N such that

lam —an| <1, Vm,n> K.
> Taking n = K, in the inequality above, we get

lam —ak| <1, Vm> K.

v

In particular, |am| < |ak|+ 1, Vm > K.
Take
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Proposition 19.3: Cauchy sequences of real numbers are
bounded.

Proof: Let {a,},en be a Cauchy sequence.
Take € = 1. Using Cauchy property, choose K € N such that

lam —an| <1, Vm,n> K.
Taking n = K, in the inequality above, we get
lam —ak| <1, Vm> K.

In particular, |am| < |ak|+ 1, Vm > K.
Take
M = max{|a1], a2, .- -, |ak-1], |ak| + 1}.

Then we have |a,| < M, for all m.
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Proposition 19.3: Cauchy sequences of real numbers are
bounded.

Proof: Let {a,},en be a Cauchy sequence.
Take € = 1. Using Cauchy property, choose K € N such that

lam —an| <1, Vm,n> K.
Taking n = K, in the inequality above, we get
lam —ak| <1, Vm> K.

In particular, |am| < |ak| +1, Ym> K.
Take

M = max{|a1], a2, .- -, |ak-1], |ak| + 1}.
Then we have |a,| < M, for all m.

Hence {ap}nen is bounded.
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Real Cauchy sequences are convergent

» Theorem 19.4: A sequence of real numbers is convergent if
and only it is Cauchy.

» Proof: We have seen that every convergent is Cauchy. Now to
see the converse, let {a,}nen be a Cauchy sequence.

» By previous Proposition we know that {a,},cn is bounded.

» By Bolzano-Weierstrass theorem {ap}hen has a convergent
subsequence.

» Suppose {ap, }ken is a subsequence converging to some
x € R.

» Now using Cauchy property, for € > 0, choose K such that
lam — an| < g, VYm,n > Kj.
» Using convergence of {ay, }ken, choose K> such that

lan, — x| < g, Vk > Ka.
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» Take K = max{Ki, nk,}. Note that nx > K > Kj and
K > K>.

» Now for m > K, we have

€ €
]am—x\§]am—anK]+\anK—x]<§+§:e.

» Hence {ap}qen converges to x.
» This completes the proof.
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Here are some general comments for your information.
Later on you would see that the notion of distance:

d(a, b) = |a — b

on the real line can be generalized to more general spaces. It
is then called ‘metric’.

There is a large theory of metric spaces.

The idea of convergence of sequences as well as Cauchy
property makes sense for metric spaces.

A metric space is said to be complete if every Cauchy
sequence converges to a point in the space.

For instance, [0, 1] is complete, but (0,1),Q are not complete.
The set of real numbers is complete due to least upper bound
axiom, where as QQ is not complete. For this reason the least
upper bound axiom is also known as completeness axiom.
There is a way of completing every metric space and if we
complete Q by this procedure we get the set of real numbers

® Thic ic ane wav of conctriictinoe R
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We know that finite sums like Zf:l aj=aita+---+a,are

well-defined for real numbers due to associativity of addition.

It is a natural question as to when }772, a; or

agta+a+---
is meaningful.
Definition 19.5: Suppose a1, az, . .. are real numbers. Take
Sp = Zf:l aj. Here {s,}nen are known as partial sums of the

) ] k . oo L
series. If lim,_oo Sp exists then the series, ijl aj is said to
converge and
o
E aj = lim s,.
n—0o0
j=1

If lim,— oo S, does not exist, the series Zj'il a;j is said to
diverge.
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» Proof: Recall that for any real number r #1 and n € N,
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Geometric Series

> Example 19.6 (Geometric series): >.°°, & = 1.

» Proof: Recall that for any real numbjerlrz;é land neN,
1—|—r—|—r2—i—---—|—r”_1:1_7rn.
1—r
» This can be proved by induction.
> Now
1
Sp = o
j=1
1 1
Syt EtT Y,
1. 1 1. 1
= 5[1_|_§+...+(§)( )]
_ 11-()
o2 11
1
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Continuation

» Using Bernoulli's inequality, we have seen that % < ﬁ and
hence lim,_, 2%, = 0. Hence lim, s, = 1.
» Similarly, one can show that for any |r| < 1, lim, 0o r" 1 =0

and
1

1—r

T4r+rP4.. =
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Convergence

> Theorem 19.7: Suppose a series ) *; a; converges. Then

lim a, =0.
n—o0

However, the converse is not true.
. —_ n . 1 oo .
» Proof: Suppose s, = Zj:1 aj. Assuming that Zj:l aj
converges, lim,_, ., s, exists.

» By Cauchy property, for € > 0, there exists K € N such that
|Sm — sn| <€, Vm,n> K.

» By taking m = n+ 1, we get |ap11| = |Sp+1 — Sn| < € for
n> K.

» Equivalently, |a,| < € for n > K 4 1. Hence {ap}nen
converges to 0.

P> The converse is not true is seen by considering the ‘Harmonic
series’ :

> 3 1 diverges as the corresponding partial sums are

j=1j
unbounded.
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Alternating sum

> Theorem 19.8: A series > X, aj, where a; = (—1Y"1b;, with
a decreasing sequence {b;}jcy of positive real numbers is
convergent if and only if lim,_. b, = 0.

» Proof: Since |aj| = bj, the necessity of lim,_,oc a, = 0 for
convergence implies lim,_, b, = 0. Hence the necessity of
this condition for the convergence of Zj’il a;j is clear from the
previous theorem.

» Now suppose lim, o b, = 0.

» Consider the partial sums
n
Sn = Zaj = by —by+ b3 — by +---+(=1)""b,.
j=1

> First look at the even terms, s, 54, .. ..

» We have, spxi2 = Spk + boky1 — bokgo.
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» Since {bj}jcn is a decreasing sequence, boyxy1 — boky2 > 0.
Consequently, sox < Sppio

» Therefore {syk }ken is an increasing sequence.

» Similarly {spx—1}ken is a decreasing sequence. In particular
S1 > Soi_1 for every k € N.

» Also Sox12 = Sokt1 — bokt2 < Sokq1 < 51

v

Therefore {spx }ken is bounded above by s;.
» Similarly {spx—1}ken is bounded below by s, = b; — by.
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vvvyyypy

Since {bj}jcn is a decreasing sequence, boyy1 — boky2 > 0.
Consequently, sox < Sppio

Therefore {sy }ken is an increasing sequence.

Similarly {s>k—1}ken is a decreasing sequence. In particular
S1 > Soi_1 for every k € N.

Also s 42 = Sokt1 — bakt2 < o1 < 51

Therefore {spx }ken is bounded above by s;.

Similarly {s>k—1}ken is bounded below by s, = by — bs.
That is,

b —bh=5<5 < - <5 <5y 1<---53<s1=bh
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> So limg_so0 Sok and limy_,o Sok—1 exist.
P> It is an exercise to see that these limits are same.

» It follows that
>
JjEeN

converges to the same value.
» END OF LECTURE 19.
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» We recall the following important theorem:

» Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

» Proof. Let {a,}nen be a bounded sequence of real numbers.

» By previous theorem there exists a monotonic subsequence of
{an}neN-

» Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

P> As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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» We also recall the notion of limit points:

» Definition 18.5: Let {a,}nen be a sequence of real numbers.
Then y € R is said to be limit point of {a,}nen, if it has a
subsequence {aj, }ken converging to y.

> We would like to understand the structure of limit points
better. The following theorem is easy to prove.
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around a limit point

Theorem 20.1: Let {a,}nen be a sequence of real numbers.
Then y € R is a limit point of the sequence {ap}nen if and
only if the set

{m:ame(y—ey+e)}
is infinite for every € > 0.
In other words, there are infinitely many terms of the
sequence in (y — €,y + €) for every € > 0.
Proof: Suppose for k € N,

1 1
is infinite for every k. Then it is easy to choose a subsequence

{an, } ken such that

{m:ame(y—

1 1

By the squeeze theorem, limy_,c an, = y.
The converse is also easy to see.
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» Let {ap}nen be a bounded sequence of real numbers and
suppose |an| < M, for all n.

Take by = sup{am : m € N} =sup{a1,az,...};
by =sup{am: me N,m> 2} =sup{ap, as,...};
bs = sup{am: me N, m > 3} =sup{as, as,...};
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and for any n € N,
b, = sup{am : m € N,m > n} = sup{an, ant1,...}-

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
b1 > bo.

» In general, b, > b,41 for every n € N. We also have |b,| < M
for every n, as |am| < M for every m.

» In conclusion, {b,} is a bounded decreasing sequence. Hence
lim,— oo by exists.
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suppose |an| < M, for all n.
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» Let {ap}nen be a bounded sequence of real numbers and
suppose |an| < M, for all n.

Take ¢; = inf{ay, : m e N} =inf{a1,a,...};
o =inf{an :meN,m>2} =inf{ay,a3,...};
cz =inf{ap : me N, m>3} =inf{as,as,...};
and for any n € N,

vvyyypy

cn =inf{apm : me N, m> n} =inf{a,, ant1,...}.

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
1 < .

» In general, ¢, < cpq1 for every n € N. We also have |¢c,| < M
for every n, as |am| < M for every m.

» In conclusion, {cp} is a bounded increasing sequence. Hence
limp— oo €y EXists.
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» Definition 20.3: For any bounded sequence {a,}qen, the
lim,_ oo ¢, defined as above is known as the limit inferior or
liminf of the bounded sequence {a,}nen, and we write:

liminfa, = lim c,.
n—o0 n—o0

» |n other words, the 'liminf' is the limit of infimums of tails of
the sequence.

» Observe that for every n,
_MgcngangbnSM-
> Consequently,

—M < liminfa, < limsupa, < M.
n—oo

n—o0

» A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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Examples

» Example 20.4: Consider the sequence {a,} where,

5 if n=3k+1,k e N{0}
apn=<¢ 6 ifn=3k+2keNU{0}
7 ifn=3kkeN.

» Then b, =7 for every n and ¢, =5 for every n.
» Hence liminf, o, a, =5 and limsupa, = 7.

> It is to be noted that in general b,, ¢, may not be terms of
the sequence.

» Example 20.5: Consider the sequence {a,}, where
{ % if nis odd.
an = 1 . .
3—+ ifniseven.

» Then b, = 3 for every n and ¢, = 0 for every n.

» In particular, it is not immediate that limsup and liminf are
limit points of the sequence.
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» Conversely if v € R satisfies (x), (xx) for every € > 0, with z
replaced by v, then v = z.

» Proof: Suppose z = limsup,_, an.

» Fix € > 0. Take b, = sup{am : m > n}. By the definition of
limsup, z = lim,_o bp.

» Hence there exists K € N such that

bye(z—¢€,z+¢€), Vn>K.
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» In particular, bx < z+¢€, or sup{a,: m> K} < z+¢, and
consequently a,, < z+ € for m > K.

» This implies that 51 (z,¢) C {1,2,...,(K — 1)} and hence it
is a finite set.

» Now for r € N, by considering ¢, there exists K, € N such that

bne(z—f7z+f), Vn> K,.
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» In particular, z — £ < bi, = sup{am : m > K. }.
» This means that, there exists m > K,, such that z — % < bp.
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In particular, bx < z+¢€, or sup{am : m> K} < z+¢, and
consequently a,, < z+ € for m > K.
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In particular, bx < z+¢€, or sup{am : m> K} < z+¢, and
consequently a,, < z+ € for m > K.

This implies that Sy(z,¢) € {1,2,...,(K — 1)} and hence it
is a finite set.

Now for r € N, by considering ¢, there exists K, € N such that
€ €
by € (z — ;7z+;), Vn> K,.

In particular, z — £ < bk, = sup{am : m > K, }.

This means that, there exists m > K,, such that z — % < bp.
Inductively we can choose m; < mp < --- such that

z— ¢ < bp,.

Now it is clear that S_(z, €) is infinite.
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» Conversely, suppose v € R is such that (%) and (xx) are
satisfied for every € > 0 with z replaced by v.

» Now Si(v,e€) is finite, means that there exists, M, such that
for |ap| < v+ € for n > M..

» Therefore b, < v + ¢ for n > M,. Hence
Z = liMp—oo bn < v +e.

» As this is true for every ¢ > 0, we get z < v.

» Similarly, S_(v, €) is infinite, for every ¢ > 0, means that
S (v,Yy={m:v—1<ap} is infinite for every r.

» This allows us to choose a subsequence {ap, }ren, where
v — % < ap,. Then v — % < bp,, and hence on taking limit as
r— 00, v <limi o by, = z. That is, v < z. Combining the
two statements we have v = z.
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From previous lecture we recall notions of limit point, limit
superior and limit inferior.

Definition 18.5: Let {ap}nen be a sequence of real numbers.
Then y € R is said to be limit point of {a,}nen, if it has a
subsequence {aj, }ken converging to y.
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Lecture 21. Limit inferior and Properly divergent
sequences

>

>

From previous lecture we recall notions of limit point, limit
superior and limit inferior.

Definition 18.5: Let {ap}nen be a sequence of real numbers.
Then y € R is said to be limit point of {a,}nen, if it has a
subsequence {aj, }ken converging to y.

Theorem 20.1: Let {a,}nen be a sequence of real numbers.
Then y € R is a limit point of the sequence {ap}nen if and
only if the set

{m:ame(y—€ey+e)}

is infinite for every € > 0.

In other words, there are infinitely many terms of the
sequence in (y — €,y + €) for every € > 0.
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and for any n € N,
b, = sup{am : m € N,m > n} = sup{an, ant1,...}-

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
b1 > bo.

» In general, b, > b,41 for every n € N. We also have |b,| < M
for every n, as |am| < M for every m.
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suppose |an| < M, for all n.
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» Let {ap}nen be a bounded sequence of real numbers and
suppose |an| < M, for all n.

Take ¢; = inf{ay, : m e N} =inf{a1,a,...};
o =inf{an :meN,m>2} =inf{ay,a3,...};
cz =inf{ap : me N, m>3} =inf{as,as,...};
and for any n € N,

vvyyypy

cn =inf{apm : me N, m> n} =inf{a,, ant1,...}.

» Note that as {a,, : m € N} D {a, : m e N, m > 2}, we have
1 < .

» In general, ¢, < cpq1 for every n € N. We also have |¢c,| < M
for every n, as |am| < M for every m.

» In conclusion, {cp} is a bounded increasing sequence. Hence
limp— oo €y EXists.
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» Definition 20.3: For any bounded sequence {a,}qen, the
lim,_ oo ¢, defined as above is known as the limit inferior or
liminf of the bounded sequence {a,}nen, and we write:

liminfa, = lim c,.
n—o0 n—o0

» |n other words, the 'liminf' is the limit of infimums of tails of
the sequence.

» Observe that for every n,
_MgcngangbnSM-
> Consequently,

—M < liminfa, < limsupa, < M.
n—oo

n—o0

» A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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» Conversely if v € R satisfies (), () for every € > 0, with z
replaced by v, then v = z.
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Limit superior as a limit point

» Theorem 20.7: Suppose {a,}nen is a bounded sequence of
real numbers. Then limsup,_,, a, is a limit point of {a,}pen
and if y is any limit point of {a,}nen, then
y <limsup,_, . an.

» In other words, limsup is the largest limit point of a bounded
sequence.

» Proof: Take z = limsup,_, ., an.

» By the previous characterization,
{miz—e<am<z+e} =5 (z,)\(S+(z,e) U{z+¢€}) is
infinite.

» Hence z is a limit point of {ap}nen.

» The fact that z is the largest limit point is also clear from the
characterization for if z < v, then taking ¢ = ";z,
(v —€,v+€) C 5.(z,¢€) has finitely many terms of the

sequence.
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Limit inferior

» Results similar to that of limsup hold for liminf. These can be
proved by similar methods or by observing that

liminfa, = — limsup(—ap).
f1—+00 n—00

» Theorem 21.1: Let {a,},en be a bounded sequence of real
numbers and suppose w = liminf,_, a,. Then for every
€ > 0, the set

T_(w,e) ={n:a, <w—e¢} isfinite. (x)
and the set
Ti(w,e) ={n:a, < w+e} isinfinite. (xx)

» Conversely if v € R satisfies (), (xx) for every € > 0, with w
replaced by v, then v = w = liminf,_ . a,.

» Similarly liminf is the smallest limit point of a bounded
sequence.
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Limit points

» Consequently, the set of limit points of a bounded sequence
{an}nen is a subset of [w, z] where w = liminf,_, - a, and
z = limsup,_, an.

» Theorem 21.2: Let {a,}nen be a bounded sequence of real
numbers. Then it is convergent if and only if

liminf a, = limsup a.
n—0o0 n—00

> Proof. If the sequence is convergent then the set of limit
points is a singleton. Now as liminf and limsup are limit
points they have to be equal.

» If liminf and limsup are equal. Then as we have

ch<a,<b, VneN

the result follows by the squeeze theorem.

» This shows that when we do not know whether a sequence is
convergent or not, we may try to compute its liminf and
limsup and see whether they are equal or not.
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Properly divergent sequences

» Definition 21.3: Let {a,}nen be a sequence of real numbers.
Then it is said to properly diverge to +oo if for every M € R
there exists K € N such that

ap,> M, Vn> K.

This is written as:

lim a, = +o0.
n—o0

or as

lim a, = co.
n—oo

> A sequence {an}nen is said to properly diverge to —oo, if for
every M € R there exists K € N such that a, < M for all
n > K. This is expressed as: lim,,_, a, = —o0.

» A sequence is said to properly diverge if it properly diverges to
+00 or —o0.

» Here +00 and —oo are not real numbers. It is just convenient
notation.
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Continuation

> It is clear that a properly divergent sequence is unbounded.

> Some textbooks may write " {a,} ey converges to oo” to
mean that {a,},en properly diverges to +oo (Similarly, for
—00).

» However, it should be kept in mind that such sequences are
not convergent sequences in a proper sense as +co and —co
are not real numbers.

» Example 21.4: Define:

an = n27 Vn e N.
{ 5 if nis odd.
b, = e .
n if nis even.
o - 5 if nis odd.
"1 6 if nis even.

Here {an}nen is properly divergent to +00, {bp}nen is
unbounded and divergent but it is not properly divergent,
{¢n}nen is bounded and divergent but not properly divergent.
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Basic properties

» Theorem 21.5: Let {ap}neny and {bp}nen be sequences of real
numbers properly diverging to +oo.

» For c € R, {cap}nen properly diverges to +o00 if ¢ > 0,
properly diverges to —oco if ¢ < 0 and converges to 0 if ¢ = 0.

» {a, + bn}nen properly diverges to +oo.

» {a, — bn}neny may or maynot diverge.

v

{anbn}nen properly diverges to +oo.
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» Proof: Without loss of generality, take M > 0. There exists
K1 € N such that a, > M for n > Kj.

» There exists K> € N such that b, > 1 for for n > Kj.
» Take K = max{Ki, Ky}. For n > K,

an+b,>M+1>M.

» Hence {a, + b,} properly diverges to 4.

» Also for n > K, apb, > M.1 = M. Therefore, {a,b,} properly
diverges to +o0.

» Proofs of other claims are left out as exercises.
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Some more properties

» Theorem 21.6: Let {a,}nen be a sequences of real numbers
properly diverging to +oo and let {b,},en be a sequence
converging to some real number x.

v

(i) {an + bn}nen properly diverges to +oo.
» (ii) If x > 0, {anbn}nen properly diverges to +o0. If x <0,
{anbn}nen properly diverges to —oo.

> (iii) If x > 0 and b, # O for every n, then {3} properly
diverges to co. If x < 0 and b, # 0 for every n, then {2}
properly diverges to —oo.

» (iv) If a, # O for every n, then {S—:} converges to 0.
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» If {ap}nen and {bp}nen properly diverge to +o0,
{an — bn}n—oco mMay not converge. Similarly {Z—:}neN need not
converge.

» If {ap}nen properly diverges to oo and {bp}pen converges to
0, then {anbn}neny may not converge to 0 or to any other real
number.

» Give examples to illustrate such phenomenon.
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to f(c), whenever x is in A and is sufficiently close to c.
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» Definition 22.1: Let A C R and let ¢ € A. Then a function
f : A— R is said to be continuous at c, if for every € > 0
there exists § > 0 such that
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€ >0, take § = 5.
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Definition 22.1: Let A C R and let ¢ € A. Then a function
f : A— R is said to be continuous at c, if for every € > 0
there exists § > 0 such that

|f(x) — f(c)| <e, Vxe(c—é,c+5)ﬂA,

Informally, for continuity of f at ¢, we want f(x) to be close
to f(c), whenever x is in A and is sufficiently close to c.
Example 22.2: Let f : [0,1] — R be the function,

f(x) =x3 Vxelo0,1].

Fix ¢ € [0,1]. We want to show that f is continuous at c. For
€ >0, take § = 5.

Now for x € (¢ —d,c +0)([0,1], note that |[x — ¢c| < 6 = 5.
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Lecture 22. Continuous functions

» Definition 22.1: Let A C R and let ¢ € A. Then a function
f : A— R is said to be continuous at c, if for every € > 0
there exists § > 0 such that

|f(x) — f(c)| <e, Vxe(c—é,c+5)ﬂA,

» Informally, for continuity of f at ¢, we want f(x) to be close
to f(c), whenever x is in A and is sufficiently close to c.
> Example 22.2: Let f : [0,1] — R be the function,

f(x) =x3 Vxelo0,1].
» Fix ¢ € [0, 1]. We want to show that f is continuous at c. For
€ >0, take § = 5.

» Now for x € (¢ —d,c+0)([0,1], note that |[x — c| <6 = 5.
Hence

[F(x)=f(c)] < Ix*~c?| = [x—c|lx+c| < 5 (IX\HCI)

| |
"

r\.)\m

» Therefore f is continuous at c.
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Discontinuous functions

» Example 22.3: Define f : [0,1] — R by

0 ifo<xx«l
f(X)_{ 5 if x=1.

» Then f is not continuous at 1.
» For any € < 5, there is no § > 0 such that

f(x) = f(c)l <e, Vx€(c—6,c+8)[)0,1].
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f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

nhj;o f(xn) = f(c).
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» Theorem 22.4: Let AC R and let ¢ € A. Then a function
f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

nhj;o f(xn) = f(c).
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Let {xn}nen be a sequence in A, converging to c.
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Sequential form of continuity

» Theorem 22.4: Let AC R and let ¢ € A. Then a function
f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

nhj;o f(xn) = f(c).

» Proof: Suppose f is continuous at c.
Let {xn}nen be a sequence in A, converging to c.
» For € > 0, choose § > 0 such that

f(x) = f(c)l <&, Vx€(c—6,c+0)[)A

v

» As {xp} is converging to c, there exists K € N such that
|xn — c| <0, Vn>K.
» Hence for n > K, x, € (c —6,c+6)[)A. Hence
|f(xn) — f(c)| <€ Vn>K.

» This shows that {f(x,)}nen converges to f(c).
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> Now to prove the only if part, suppose that f is not
continuous at c.
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» Then for some ¢g > 0
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Continuation
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Now to prove the only if part, suppose that f is not
continuous at c.
Then for some ¢y > 0

f(x) = f(c)| <eo, Vxe(c—0b,c+6)[)A

is not true for any § > 0.
In particular, for all n € N,
1 1
fx) = f(e)l <o, Vxe(c——.c+)[A
is not true.
This means that for every n € N we can choose
Xn € (c — %, c+ 1) A such that

[f(xn) = ()| = e

Asc— L < x, < c+1 forevery n, limp oo xs = C.



Continuation

> Now to prove the only if part, suppose that f is not
continuous at c.
» Then for some ¢g > 0

f(x) = f(c)| <eo, Vxe(c—0b,c+6)[)A

is not true for any § > 0.
» In particular, for all n € N,
1 1
fx) = f(e)l <o, Vxe(c——.c+)[A
is not true.
» This means that for every n € N we can choose
Xn € (c — %, c+ 1) A such that

[f(xn) = ()| = e

> Asc— % <xp<c—+ % for every n, lim,_ x, = C.
» However, as |f(x,) — f(c)| > e, for every n, {f(x,)} does not
converge to f(c).



Continuation

> Now to prove the only if part, suppose that f is not
continuous at c.
» Then for some ¢g > 0

f(x) = f(c)| <eo, Vxe(c—0b,c+6)[)A

is not true for any § > 0.
» In particular, for all n € N,
1 1
f(x)—f(c)|<e, Vxe(c——,c+— A
[f(x) = f(c)] < e, Vxe( n+n)ﬂ
is not true.
» This means that for every n € N we can choose
Xn € (c — %, c+ 1) A such that
|f(xn) — f(c)| > €o.
> As c— % <Xp<cCc+ % for every n, lim,_,o X, = c.
» However, as |f(x,) — f(c)| > e, for every n, {f(x,)} does not

converge to f(c).

» Thic rcomnleteec +the nranf



More Examples

» Example 22.5: Suppose A= {1}J[2,3] and g: A—Ris
defined by
0 if x=1;
g(X):{ 7 if xe[2,3].



More Examples

» Example 22.5: Suppose A= {1}J[2,3] and g: A—Ris
defined by
0 if x=1;
g(X):{ 7 if xe[2,3].

» Is g continuous at 17



More Examples

» Example 22.5: Suppose A= {1}J[2,3] and g: A—Ris
defined by
0 if x=1;
g(X):{ 7 if xe[2,3].

» Is g continuous at 17
> Ans: Yes.



More Examples

» Example 22.5: Suppose A= {1}J[2,3] and g: A—Ris
defined by
(x) = 0 if x=1;
EXIZU 7 i xe 23]
» Is g continuous at 17
> Ans: Yes.
P This is because there are no ‘non-trivial’ sequences in A
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» Example 22.5: Suppose A= {1}J[2,3] and g: A—Ris
defined by
(x) = 0 if x=1;
EXIZU 7 i xe 23]
» Is g continuous at 17
Ans: Yes.
P This is because there are no ‘non-trivial’ sequences in A
converging to 1.

» Definition 22.6: Let A be a subset of R and suppose ¢ € A.
Then c is said to be isolated in A, if there exists 6 > 0 such
that
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More Examples

>

v

Example 22.5: Suppose A= {1}J[2,3]andg: A— R is
defined by
(x) = 0 if x=1;

EXIZU 7 i xe 23]
Is g continuous at 17
Ans: Yes.
This is because there are no ‘non-trivial’ sequences in A
converging to 1.

Definition 22.6: Let A be a subset of R and suppose ¢ € A.
Then c is said to be isolated in A, if there exists 6 > 0 such
that

(c—d,c+08)[A={c}

Remark 22.6: Suppose A C R and ¢ € A is isolated in A.
Then every function f : A — R is continuous at c.
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» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every c € A.

» Example 22.8: The function f(x) = x2, defined on [0, 1] is
continuous.

» Exmaple 22.9: Any function on N is continuous as every point
of N is isolated.
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is discontinuous at every point of [0, 1].



Continuous functions

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every c € A.

» Example 22.8: The function f(x) = x2, defined on [0, 1] is
continuous.

» Exmaple 22.9: Any function on N is continuous as every point
of N is isolated.

» Exercise 22.10: Give an example of a function on [0, 1] which
is discontinuous at every point of [0, 1].

» END OF LECTURE 22
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We recall:

» Definition 22.1: Let AC R and let ¢ € A. Then a function
f: A— Ris said to be continuous at c, if for every ¢ > 0
there exists § > 0 such that

[f(x) —f(c) <€, Vxe (c—6,c—|—6)ﬂA.

v

This is commonly known as € — § form of continuity.

» Theorem 22.4: Let AC R and let ¢ € A. Then a function

f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

lim f(xp) = f(c).

n—oo

v

This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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Linear combinations, products, ratios

» Theorem 23.1: Let ACR andlet c€ A. Let f : A— R and
g : A — R be functions continuous at c.

» (i) For a,b € R, af + bg defined by
(af + bg)(x) = af(x) + bg(x), Vx €A,

is continuous at c.
» (ii) fg defined by

fg(x) = f(x)g(x), ¥xe€A
is continuous at c.

> (iii) If g(x) # 0, Vx € A, then L defined by

f f
—(x) = Vx € A,
g g

is continuous at c.
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01 > 0, such that
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» Proof. (i) For e > 0, using continuity of f at ¢, choose
01 > 0, such that
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we get
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» Proof. (i) For e > 0, using continuity of f at ¢, choose
01 > 0, such that

If(x) — f(c)] < g Vx € (¢ = d1.c +81) [ ) A
» Similarly using continuity of g at ¢, choose d, > 0 such that

g0 —g(c)l < 5. x€(c—dc+a)[)A

» Now take 6 = min{d1,d2}. Then for x € (c — d,c + ) A,
we get
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First Proof

» Proof. (i) For e > 0, using continuity of f at ¢, choose
01 > 0, such that

If(x) — f(c)] < g Vx € (¢ = d1.c +81) [ ) A
» Similarly using continuity of g at ¢, choose d, > 0 such that

g0 —g(c)l < 5. x€(c—dc+a)[)A

» Now take 6 = min{d1,d2}. Then for x € (c — d,c + ) A,
we get

[f(x)+g(x)—f(c)—g(c)| < |F(x)—f(c)|+lg(x)—g(c)l < 3

» Therefore f + g is continuous at c.

6 €
= €.

2 2

> [t is easy to see that if f is continuous at ¢, af is continuous

at ¢. Similarly bg is continuous at c. Combining with the
previous result, af + bg is continuous at c.
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for every x, { o )} converges to f( 3




Alternative Proof

» Alternative Proof: Suppose {x,}nen is a sequence in A
converging to c.

> As f, g are continuous at ¢, {f(x,)},{g(xn)} converge to
f(c), g(c) respectively.

» Hence, {af(xn) + bg(xn)}nen converges to af (c) + bg(c).

» This proves that af + bg is continuous.

» Similarly, {f(xn)g(xn)} converges to f(c)g(c) and if g(x) # 0
for every x, { o )} converges to f( 3

» Hence fg and é are continuous. This completes the proof.
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Theorem 23.2: Let ACR. Letf: A—Rand g: A— R be
continuous functions.
(i) For a, b € R, af + bg defined by

(af + bg)(x) = af(x) + bg(x), Vx €A,

is continuous.
(ii) fg defined by

fg(x) = f(x)g(x), ¥xeR
is continuous.

(iii) If g(x) # 0, Vx € A, then L defined by

—(x) = WxeA

is continuous.
Proof: This is clear from the previous theorem and the
definition of continuous functions.
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» Theorem 23.3: Let A C R and let B be a subset of A and let
c € B. Suppose f : A — R is a function continuous at c.
Then g : B — R defined by

g(x) =17(x), Vxe€ B,

is continuous at c. If f is continuous, then g is continuous.

» Proof: This is obvious from the definition of continuity.



Restrictions of continuous functions

» Theorem 23.3: Let A C R and let B be a subset of A and let
c € B. Suppose f : A — R is a function continuous at c.
Then g : B — R defined by

g(x) =17(x), Vxe€ B,

is continuous at c. If f is continuous, then g is continuous.
» Proof: This is obvious from the definition of continuity.

» Notation: The function g of this theorem is called the
restriction of f to B and is denoted by f|g.
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Continuity of polynomials

> Theorem 23.4: Let p: R — R be a polynomial defined by
p(x) = a0 + aix + apx? + -+ apx", ¥x €R,

» where n € N{J{0} and ag, a1, ..., a, are real numbers. Then
p is continuous.

» Proof: It is easy to see that the constant function
po(x) =ap, xR
and the identity function,
pi(x) =x, x€R

are continuous. Now by (ii) of Theorem 23.2, and
mathematical induction, the polynomials

pr(x) =x*, ¥xeR

k € N, are continuous. The proof is complete by a simple
application of (i) of Theorem 23.2.
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Rational functions

» Corollary 23.5: For any non-empty subset B of R and any real
polynomial p, p|g, defined by

pl(x) = p(x), xe€B

is continuous.

» If g is another polynomial such that g(x) # 0 for x € B, then
Z}—g is a continuous function on B.
» Such functions are known as rational functions.

» Example 23.6: The function g : R\{0} — R defined by

g(x) =1, Vx e R\{0} is continuous.

x?
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f, g are real valued functions on A, B respectively and
f(A) C B. Suppose f is continuous at ¢ and g is continuous
at f(c). Then h= gof is continuous at c.
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» Theorem 23.7: Let A, B be subsets of R and ¢ € A. Suppose
f, g are real valued functions on A, B respectively and
f(A) C B. Suppose f is continuous at ¢ and g is continuous
at f(c). Then h= gof is continuous at c.

» Proof: Suppose {x,}nen in A converges to c. Then as f is
continuous, {f(x,)} converges to f(c).

» As f(A) C B, {f(x,)} is a sequence in B.

» Now as g is continuous at f(c), {g(f(x,)} converges to
g(f(c))-

» In other words {h(x,)} converges to h(c). This proves that h
is continuous at c.



Composition of continuous functions

» Theorem 23.7: Let A, B be subsets of R and ¢ € A. Suppose
f, g are real valued functions on A, B respectively and
f(A) C B. Suppose f is continuous at ¢ and g is continuous
at f(c). Then h= gof is continuous at c.

» Proof: Suppose {x,}nen in A converges to c. Then as f is
continuous, {f(x,)} converges to f(c).

» As f(A) C B, {f(x,)} is a sequence in B.

» Now as g is continuous at f(c), {g(f(x,)} converges to
g(f(c))-

» In other words {h(x,)} converges to h(c). This proves that h
is continuous at c.

P Exercise 23.8: Prove the previous theorem directly using the
definition of continuity.
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» Theorem 23.9: Let A, B be subsets of R. Suppose f, g are
continuous real valued functions on A, B respectively and
f(A) C B. Then h = gof is a continuous function.

» Proof: Clear from the previous theorem.

» Example 23.10 (Dirichlet function): Define d : R — R by

1 if x is rational;
d(x) = { 0 if x is irrational.

» Then d is discontinuous at every x € R.
» Example 23.11: Define g : [1,2] — R by

0 if x is irrational;

g(x) =

Q=

if x = g, p,qg €N
p,q relatively prime.

Then g is continuous at irrational points in [1,2], but is
discontinuous at rational points in [1,2].



Composition of continuous functions

» Theorem 23.9: Let A, B be subsets of R. Suppose f, g are
continuous real valued functions on A, B respectively and
f(A) C B. Then h = gof is a continuous function.

» Proof: Clear from the previous theorem.

» Example 23.10 (Dirichlet function): Define d : R — R by

1 if x is rational;
d(x) = { 0 if x is irrational.

» Then d is discontinuous at every x € R.
» Example 23.11: Define g : [1,2] — R by

0 if x is irrational;

g(x) =

Q=

if x = g, p,qg €N
p,q relatively prime.
Then g is continuous at irrational points in [1,2], but is

discontinuous at rational points in [1,2].
» END OF LECTURE 23.
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» We recall:

» Definition 22.1: Let AC R and let ¢ € A. Then a function
f: A— Ris said to be continuous at c, if for every ¢ > 0
there exists § > 0 such that

[f(x) —f(c) <€, Vxe (c—6,c—|—6)ﬂA.

» This is commonly known as € — ¢ form of continuity.

> Theorem 22.4: Let A C R and let ¢ € A. Then a function
f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

lim f(xp) = f(c).

n—oo

» This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Definition 24.1: Let A be a non-empty set and let f : A— R
be a function. Then f is said to be bounded if

If(x)| < M, ¥xeA.

In such a case M said to be a bound for f.
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Boundedness of functions

» Definition 24.1: Let A be a non-empty set and let f : A— R
be a function. Then f is said to be bounded if

If(x)| < M, ¥xeA.

In such a case M said to be a bound for f.
» If f: A— R is a bounded function,

sup(f) := sup{f(x) : x € A},

inf(f) = inf{f(x) : x € A}.
» sup(f) is said to be a maximum if there exists xop € A such
that f(xg) = sup(f).

» Similarly, inf(f) is said to be a minimum if there exists x; € A
such that f(x1) = inf(f).



Examples

» Example 24.2: Let f : [0,1) — R be the function
f(x) =x, Vxe€]0,1). Then f is bounded with bound 1.

sup(f) is not a maximum. However, inf is a minimum with
inf(f) = £(0).



Examples

» Example 24.2: Let f : [0,1) — R be the function
f(x) =x, Vx€][0,1). Then f is bounded with bound 1.
sup(f) is not a maximum. However, inf is a minimum with
inf(f) = £(0).

» Example 24.3: Let g : (0,1) — R be the function
g(x) =1, x€(0,1). Then f is continuous but not bounded.
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» In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

» Theorem 24.4: Let f : [a, b] — R be a continuous function.
Then it is bounded.

» Proof: Suppose f : [a, b] — R is not bounded. We want to
arrive at a contradiction.

> As f is not bounded, for every n € N there exists some x, in
[a, b] such that |[f(x,)| > n.

» Now {xp}nen is a sequence in [a, b].



Continuous functions on intervals
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Now we focus on the study of continuous functions on
intervals.

In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

Theorem 24.4: Let f : [a, b] — R be a continuous function.
Then it is bounded.

Proof: Suppose f : [a, b] — R is not bounded. We want to
arrive at a contradiction.

As f is not bounded, for every n € N there exists some x, in
[a, b] such that |[f(x,)| > n.

Now {xp}nen is a sequence in [a, b].
Then by Bolzano-Weierstrass theorem there exists a
convergent subsequence {x,, }ken-
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» Suppose {xp, }ken converges to ¢ € [a, b].
» Then by the continuity of f, {f(xn,)}ken converges to f(c).
» In particular, {f(xn, }ken is a bounded sequence.

» This contradicts with |f(x,, )| > nx > k, which makes
{f(Xn, }ken unbounded.



Continuation

Suppose {x,, }keny converges to ¢ € [a, b].
Then by the continuity of f, {f(xs, ) }ken converges to f(c).
In particular, {f(xs, }ken is a bounded sequence.

This contradicts with |f(xp, )| > nx > k, which makes
{f(Xn, }ken unbounded.

» This is a contradiction and this completes the proof.



Continuation

Suppose {x,, }keny converges to ¢ € [a, b].
Then by the continuity of f, {f(xs, ) }ken converges to f(c).
In particular, {f(xs, }ken is a bounded sequence.

This contradicts with |f(xp, )| > nx > k, which makes
{f(Xn, }ken unbounded.

vvyyy

v

This is a contradiction and this completes the proof.

v

We have already seen that continuous functions on open
intervals need not be bounded. Also examples, such as
f(x) = x, show that continuous functions on R need not be
bounded.
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» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that
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» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that

f(c) =sup{f(x) : x € [a, b]};
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Maximum and minimum

» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that

f(c) =sup{f(x): x € [a, b]};
f(d) = inf{f(x) : x € [a, b]}.

» Proof: Since {f(x): x € [a, b]} is a non-empty bounded set,
sup{f(x) : x € [a, b]} exists.

» Take M = sup{f(x) : x € [a, b]}.

» Now for ne€ N, as M — % is not an upper bound of this set,
there exists x, € [a, b] such that

1
M~ < f(m) < M.

P> By squeeze theorem,

lim £(x,) = M.

n—o0
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» As x, € [a, b] for every n, {xp}nen is a bounded sequence.

» By Bolzano-Weierstrass theorem, {x,} has a convergent
sequence, say {xp, }ken-

» Take ¢ = limy_,o0 Xp, -

» Now as lim,_,~ f(xn) = M, taking limit along the
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» Then by continuity of f at c,
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» Hence f(c) = sup{f(x): x € [a, b]}.

» Similar proof works to show the existence of a d such that
f(d) = inf{f(x) : x € [a, b]}, or one may use the continuity of
f and the fact

inf{f(x) : x € [a, b]} = —sup{—f(x): x € [a, b]}.



Continuation

» As x, € [a, b] for every n, {xp}nen is a bounded sequence.

» By Bolzano-Weierstrass theorem, {x,} has a convergent
sequence, say {xp, }ken-

» Take ¢ = limy_,o0 Xp, -

» Now as lim,_,~ f(xn) = M, taking limit along the
subsequence, limy_,o (X5, ) = M.

» Then by continuity of f at c,

f(c)= lim f(x, )= M.
k—o00
» Hence f(c) = sup{f(x): x € [a, b]}.
» Similar proof works to show the existence of a d such that

f(d) = inf{f(x) : x € [a, b]}, or one may use the continuity of
f and the fact

inf{f(x) : x € [a, b]} = —sup{—f(x): x € [a, b]}.
» END OF LECTURE 24.
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» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Now we focus on the study of continuous functions on
intervals.

» In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

» Theorem 24.4: Let f : [a, b] — R be a continuous function.
Then it is bounded.

» Theorem 24.5: Let f : [a, b] — R be a continuous function.
Then there exists ¢, d in [a, b] such that

f(c) =sup{f(x): x € [a, b]};

F(d) = inf{f(x) : x € [a, b]}.
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Theorem 25.1: Let f : [a, b] — R be a continuous function.
Suppose f(a) < 0 < f(b). Then there exists ¢ € (a, b) such
that f(c) = 0.

Proof: Take a3 = aand by = b and /1 = [a1, b1].

Consider the value of f at the mid-point 2521,

If f(%) =0, we can take ¢ = #, and we are done.

If f(al;—bl) > 0, take ay = a; and by, = %bl.

On the other hand, if f(2F2) < 0, take ap = 2+ and
by = by.
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In either case, we have f(a) < 0 < f(b2) and with

b =[az, ba], h D h.

Now consider the value of f at %b?.

If f(%) =0, we can take ¢ = % and we are done.
If £(232) > 0, take a3 = a, and b3 = 22,

On the other hand, if f(#) < 0, take a3 = 73242#’2 and
bs = by.
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In either case, we have f(a) < 0 < f(b2) and with

b =[az, ba], h D h.

Now consider the value of f at %b?.

If f(%) =0, we can take ¢ = % and we are done.
If £(232) > 0, take a3 = a, and b3 = 22,

On the other hand, if f(252) < 0, take a3 = 252 and
bs = bo.

In either case, we have f(a3) < 0 < f(b3) and with

I3 =la3,b3], h O b D k.
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» Continuing this way, after choosing I, = [an, by], either
f(%b") =0 or we have /11 = [aps+1, bat1], in such a way
that Ip O lpy1 With (bpy1 — any1) = 5(bp — an).

» Assuming that, this inductive process has not terminated after
finite number of steps, we have a nested sequence of intervals

ho>obhD>hLD---

» where for every n, I, = [an, bn], f(an) < 0 < f(bp).

» By nested intervals property [,y /n is non-empty. In fact, as
inf{by, — ap : n € N} =inf{2=3 : n € N} =0, this
intersection is a singleton.

> Suppose {c} = (,en In-

» We clearly have lim, ., a, = ¢ = lim,_ by.
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» Then by continuity of f, f(¢) = limp—o f(an). As f(a,) <0
for every n, we get f(c) <0.

» Similarly as f(b,) > 0 for every n, we get f(c) > 0.

» Combining the last two statements we have f(c) = 0 and this
completes the proof.

» Remark: Any point x such that f(x) = 0 is some times,
especially when f is a polynomial, is called a root of f or zero
of f.

» In this proof we have seen a way of locating the root by
successively bisecting the interval.
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Intermediate value theorem

» Theorem 25.2: Let f : [a,b] — R be a continuous function.
Suppose f(a) < z < f(b) or f(a) > z > f(b), then there
exists ¢ € (a, b) such that f(c) = z.

» Proof: Suppose f(a) < z < f(b). Define g : [a, b] — R by
g(x)="f(x)—z, xe€]lab.

» Then clearly g is continuous and g(a) < 0 < g(b).
» By the previous theorem, there exists ¢ € (a, b) such that

g(c)=0.
» Thatis, f(c)—z=0or f(c) = z.
» If f(a) > z > f(b), consider g defined by
g(x)=z—f(x), x€la, b

and similar proof works.
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Existence of n-th root

» The intermediate value theorem is a very important theorem
and has many applications. We see a few.

» Theorem 25.3 (Existence of nth roots): Let t be a positive
real number and suppose n € N. Then there exists unique
positive real number s such that s" = t.

th

» We call the s of previous theorem as n'" root of t and denote

it by th.
» Proof: Consider the function p : [0,00) — [0, c0) defined by

p(x) = x", ¥x € [0,00).

» Clearly, p is continuous and is unbounded.

» Therefore, we can get a b such that t < p(b). (Exercise: We
may take b=t +1.)
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» Let f: [0, b] — R be the function,
f(x)=x", ¥Vxe€|0,b].

» Clearly f is continuous. We have f(0) < t < f(b).

» Then by intermediate value theorem there exists s € (0, b)
such that f(s) =t, or s" = t.

» For0 < c<d,

dn— " = (d— C)(dn—l +Cdn_2 +C2dn—s+ "'+Cn_1)
n—1
= (d-o)O_dd" ') >0
Jj=0

» In other words if 0 < ¢ < d, we have ¢" < d” and so we can't
have ¢ = d".. This shows the uniqueness of positive nth voot
of t.
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Roots of polynomials

» Example 25.4: Consider the polynomial p(x) = x3 — 2x? — 1.
Show that there exists a real number A such that 0 < A < 3
and p(A) = 0.

» Proof: Any polynomial is a continuous function. Now
p(0) = -1 < 0and p(3) =27 — 18 — 1 =8 > 0. Hence the
result follows from the intermediate value theorem.

» Exercise 25.5: Suppose p is an odd degree real polynomial.
Show that there exists a real number A such that p(\) = 0.
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Continuous image of an interval

» Theorem 25.6: Let f : [a, b] — R be a continuous function.
Then

f(la, b]) = [s, 1]

where
s=inf{f(x):x €[a,b]}, t=sup{f(x):x¢€[a,b]

» Note: Here if s = t, then [s, t] is to be interpreted as {s}.

» Proof: From the definitions of s, t it is clear that for every

x € [a,b], s < f(x) < t.

Hence f([a, b]) C [s, t].

If s =t, f is a constant function and there is nothing to show.

vy

> If s <t,and s < z < t, we want to show that there exists
e € [a, b] such that f(e) = z.

» But this is clear from the inter mediate value theorem as there
exist ¢, d in [a, b] such that f(c) = s and f(d) = t.
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Continuous images of arbitrary intervals

» In the following consider singleton subsets of R also as
intervals.

» Theorem 25.7: Suppose | C R is an interval, and f : | — R is
a continuous function. Then f(/) is an interval.

» Recall that intervals are sets of the form
{a}v [37 b]v [aa b)v (aa b]? [av OO), (a’ OO), (_OO’ b]v (_007 b)a (—OO, OO),
with a,b € R, a < b.

» Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x,y € S with x < y implies [x,y] C S.

> Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.
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> Claim: At any time there are two antipodal points on the
equator with equal temperature.
» Sketch of proof:

» We model the equator by a circle, or by the interval [0, 1],
where we identify the points 0 and 1.
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Suppose f(t) denotes the temperature at point t in [0, 1].
Define g : [0, 3] = R, by g(t) = f(t) — f(t + 3).

Then g(3) = —g(0). In other words g(0) and g(3) have
opposite signs.

If g(0) =0, 0 and % are antipodal points with equal
temperature. So we may assume g(0) # 0.

Assume that g is continuous. Then by intermediate value
theorem there exists c € [0, 5] such that g(c) = 0.

This means that f(c) — f(c+ 3) =0 or

This proves the claim (Why?).
END OF LECTURE 25.
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there exists § > 0 such that
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» Theorem 22.4: Let AC R and let ¢ € A. Then a function

f : A— R is continuous at c, if and only if for every sequence
{Xn}nen in A, converging to c,

lim f(xp) = f(c).

n—oo

v

This is known as sequential form of continuity.

» Definition 22.7: Let A C R. Then a function f : A — R is said
to be continuous if f is continuous at every ¢ € A.
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» Suppose f : A — R is continuous at every y in A. Then we
have for every € > 0, there exists §, depending on y, such that

f(x) —f¥)l <

for all x in A with |x — y| < 4.

» Definition 26.1: Let A be a non-empty subset of R and let
f : A— R be a function.

» Then f is said to be uniformly continuous if for every ¢ > 0
there exists § > 0 such that

[f(x) —f(y)l <e

for all x,y € A with |x —y| <é.

» It is important here that the d here depends only on ¢ and not
on x or y.
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> Example 26.2: Let g : R — R, be the function
g(x) =4+5x, VxeR.

Then g is uniformly continuous.
> Fore>0,take(5:§.
» Then for [x — y| < 0, we have

€
8(x) —g(y)l = I5x —by| =5x —y[ <50 = 5. = .

» Clearly all uniformly continuous functions are continuous. The
converse is not true.

» Example 26.3: Let h: R — R be the function,
h(x) = x?, ¥x € R.

» Then h is not uniformly continuous.
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Continuation

» Proof: Take e = 1.

» Suppose h is uniformly continuous. Then there exists § > 0,
such that
x> —y?| <1, V|x—y| <.
> Takexzy—kg. We get
)
by +35) =y <1

for all y.

» That is |yd + %2| < 1 for all y. Clearly this is not true, for
instance, we can take y = %, and we get 2 < 1, which is a
contradiction. H

> Exercise 26.4: Show that f : (0,1) — (0, 1) defined by

1
Fx) = =, ¥xe(0.1),

is not uniformly continuous.
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Uniform continuity

» Theorem 26.5 (uniform continuity): Let f : [a,b] — R be a
continuous function, where a,b € R with a < b. Then f is
uniformly continuous.

» Proof: Suppose not.
> Then there exists ¢g > 0 such that for no 6 > 0,

[f(x) = f(¥)l <eo, x—yl<d, x,y€[a, b
holds.

» In particular, this inequality does not hold for § = % for every
neN.

» This means that there exist x,, y, in [a, b] such that
|Xn — yn| < % and

| (xn) = F(yn)| = €o.
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» By Bolzano-Weierstass theorem {x,},cn has a convergent
subsequence. Say {xp, }ken converges to some z in [a, b].

Now |Xp, — ¥n,| < nik < % as ni > k for every k.
Take zx = x,, and wy = y,,. Then we have

(i) {2k }ken converges to z.
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Continuation

» By Bolzano-Weierstass theorem {x,},cn has a convergent
subsequence. Say {xp, }ken converges to some z in [a, b].

Now |Xp, — ¥n,| < nik < % as ni > k for every k.
Take zx = x,, and wy = y,,. Then we have

(i) {2k }ken converges to z.

(ii) |2k — wi| < £ for every k € N.

(iii) |f(zx) — f(wk)| > €o for all k € N.

vVvYyyvy
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» From (i),

1
<wg <zg+-—-, VkeN.

x| =
x
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» From (ii),
— 1 < <z + 1 Vk € N
Zk P Wik = Zk PA .

> Then by (i), limk—oo(zk — 1) = z = limk_00(2k + 1), and by
squeeze theorem,

lim wy, = z.
k—o0

» Therefore both {zy}xen and {wy }ken converge to the same
real number z in [a, b].

» By continuity of f, {f(zx)}ken and {f(wx)}ken converge to
the same value f(z).

» This contradicts, (iii), as we can choose, K; such that

F(z) ~ F2)] < 5, Yk = K.
» Similarly there exists K> such that,
(F(we) = F(2)| < 3. Wk = K.
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» Take K = max{Ki, Kz}. Then by triangle inequality we have,

[ (zk)—F (wi)| < |F(zx)—F(2)|+]F(2)—F(wk)| < %%%0 — ¢

» Hence |f(zx) — f(wk)| < €o, contradicting (iii).
» Therefore f is uniformly continuous.
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» Definition 26.6: Let A be a non-empty subset of R and let
f: A— R be a function.

» Then (i) f is said to be increasing (or non-decreasing) if
f(x) < f(y) for all x,y € Awith x < y.

» (ii) f is said to be strictly increasing if f(x) < f(y) for all
X,y € Awith x < y.

» (iii) f is said to be decreasing (or non-increasing) if
f(x) > f(y) for all x,y € A with x < y.

» (iv) f is said to be strictly decreasing if f(x) > f(y) for all
X,y € Awith x < y.
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» Theorem 26.7: Let a, b, a’, b’ be real numbers with a < b and
a < b.Iff:lab] — [d,b]is a continuous bijection then
either f is strictly increasing with f(a) = & and f(b) = b’ or
f is strictly decreasing with f(a) = b’ and f(b) = &

» Proof: We know that any continuous function f on [a, b]
maps [a, b] onto [s, t] where

s =inf{f(x) : x € [a, b]}
and
t =sup{f(x) : x € [a, b]}.

» Hence we must have s = &’ and t = b'.

» Also as the infimum and supremum are attained there exist,
¢,d in [a, b] such that f(c) =s=2a"and f(d)=t=1"b".

» We claim that if ¢ < d, then f is strictly increasing. By
intermediate value theorem, f([c, d]) = [@’, b']. Now the

bijectivity of f forces ¢ = a and d = b, so that f(a) = &’ and
f(b) = b
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» If f is not strictly increasing, there exist x, y in [a, b] such that
x <y and f(x) > f(y) (Since f is injective f(x) = f(y) is
ruled out.)

» Since f(a) = a’ and f(x) > f(y), x = a is not possible.

» Sowe have a< x <y <band f(a) =4, and
f(x)>f(y)>4d

» On applying intermediate value theorem to f][, , there must
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» Therefore if ¢ < d, then f is strictly increasing and
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» Similarly if d < ¢, f is strictly decreasing and
f(a)=1b,f(b)=2.
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injectivity of f.

» Therefore if ¢ < d, then f is strictly increasing and
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» Finally ¢ = d is not possible as f can't be a constant function
due to injectivity of f. |
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x <y and f(x) > f(y) (Since f is injective f(x) = f(y) is
ruled out.)

» Since f(a) = a’ and f(x) > f(y), x = a is not possible.

» Sowe have a< x <y <band f(a) =4, and
f(x)>f(y)>4d

» On applying intermediate value theorem to f][, , there must
be some z € [a, x| such that f(z) = f(y). This contradicts
injectivity of f.

» Therefore if ¢ < d, then f is strictly increasing and
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» If f is not strictly increasing, there exist x, y in [a, b] such that
x <y and f(x) > f(y) (Since f is injective f(x) = f(y) is
ruled out.)

» Since f(a) = a’ and f(x) > f(y), x = a is not possible.

» Sowe have a< x <y <band f(a) =4, and
f(x)>f(y)>4d

» On applying intermediate value theorem to f][, , there must
be some z € [a, x| such that f(z) = f(y). This contradicts
injectivity of f.

» Therefore if ¢ < d, then f is strictly increasing and
f(a)=4,f(b)=".

» Similarly if d < ¢, f is strictly decreasing and
f(a)=1b,f(b)=2.

» Finally ¢ = d is not possible as f can't be a constant function
due to injectivity of f. |

» END OF LECTURE 26.
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Lecture 27. Limits to cluster points

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c = d,c+ ) A {c} #0.

» Note that here ¢ may or may not be an element of A.

» Example 27.2: The set of cluster points of [0, 1) is given by
[0, 1]. The set of cluster points of N is empty. The set of
cluster points of [0,1]J{2,3} is [0, 1].

» Proposition 27.3: Let ACR and let c € R. Then c is a
cluster point of A if and only if there exists a sequence
{Xn}nen in A\{c} converging to c.

> Note that we are excluding ¢ from these sequences.
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Limits of functions to cluster points

» Definition 27.4: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then f is said to have a limit at
c if there exists z € R such that for every € > 0, there exists
6 > 0 such that

f(x) =zl <€, VYx€(c—6c+0)[(Ac}).

» Note that in this definition it does not matter whether ¢ is in
A or not. Even if cisin A, f(c) has no role to play.

» Remark: It should be clear that if f has a limit at ¢, then it is
unique.
» Notation: If z is the limit of f at ¢, we write

lim f(x) = z.

X—C
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Let f: A— R be a function. Then z is limit of f at c if and
only if for every sequence {x,}nen in A\{c} converging to c,
{f(xn)} nen converges to z.
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Sequential version

» Proposition 27.5: Let ¢ be a cluster point of a subset A of R.
Let f: A— R be a function. Then z is limit of f at c if and
only if for every sequence {x,}nen in A\{c} converging to c,
{f(xn)} nen converges to z.

» Proof. Suppose f has limit z at c. Now for € > 0, there exists
a 0 > 0, such that

f(x) = z| <€, Vx€(c—6c+0)[|(Ac}).

» Suppose {xp}nen is a sequence in A\{c} converging to c.
Since § > 0, there exists K € N such that,

|xn —c| <6, Vn>K.

» Then for n > K, x, € (c —d,c +0)[)(A\{c}) and hence
|f(xn) —z| <€, Vn>K.
» Therefore {f(xn)}nen converges to f(c).
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€9 > 0 such that for no § > 0

f(x) = z| <eo, Vx€(c—06c+6)[\(A{c})

holds.
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> Now suppose z is not a limit of f at c. Then there exists
€9 > 0 such that for no § > 0

f(x) = z| <eo, Vx€(c—06c+6)[\(A{c})

holds.
» In particular for every n, the inequality does not hold for some
xn € (c — %, c+ %) N(A\{c}).
» That is,
|f(xn) — z| > €.
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> Now suppose z is not a limit of f at c. Then there exists
€9 > 0 such that for no § > 0

f(x) = z| <eo, Vx€(c—06c+6)[\(A{c})

holds.
» In particular for every n, the inequality does not hold for some
s € (c - L,c+ 1) N(A\fe}).
» That is,
|f(xn) — z| > €.

» Clearly then {x,},en converges to ¢, but {f(x,)} does not
converge to z. L



Example

» Example 27.6: Define h:[0,2)J(2,3] — R by

2x  if xe[0,2)
h(X) = (x3—2x2) .
T>—3 |f X € (2,3]

extends to a continuous function h on N[O, 3] by taking
h(x) = h(x) for x € [0,2)J(2,3] and h(2) = 4.



Example

» Example 27.6: Define h: [0,2)(J(2,3] — R by

2x  if xe[0,2)
h(X) = (x3—2x2) .
T>—3 |f X € (2,3]

extends to a continuous function h on [0, 3] by taking
h(x) = h(x) for x € [0,2)J(2,3] and h(2) = 4.
» Remark: Suppose c is a cluster point of a set A C R and

I:; A — R is a function. Suppose limy_,. f(x) = z, then
f: AlU{c} — R defined by

F(x) = { f(x) if xe A\{c}

z if x=c¢

is continuous at c.
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Similarly c is said to be a left cluster point of A if for every
0>0

(c—(S,c)ﬂA#@.
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» Definition 27.7: Let AC R and let ¢ € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0

(c—6,c)ﬂA7é®.
» Proposition 27.8: Let A C R and let ¢ € R. Then the
following are equivalent:

» (i) c is a right cluster point of A.
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Left and right hand cluster points

» Definition 27.7: Let ACR and let c € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0

(c—(S,c)ﬂA#@.
» Proposition 27.8: Let A C R and let ¢ € R. Then the
following are equivalent:
» (i) c is a right cluster point of A.
» (ii) There exists a sequence {x,} in A(")(c,o0) converging to
c.

» (iii) There exists a strictly decreasing sequence {x,} in A
converging to c.
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» Similarly, the following are equivalent:

» (i) cis a left cluster point of A.

» (ii) There exists a sequence {x,} in A("\(—oc, ¢) converging
to c.

» (iii) There exists a strictly increasing sequence {x,} in A
converging to c.



Continuation

v

Similarly, the following are equivalent:

v

(i) c is a left cluster point of A.

» (ii) There exists a sequence {x,} in A("\(—oc, ¢) converging
to c.
» (iii) There exists a strictly increasing sequence {x,} in A

converging to c.

» Proof. Exercise.



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) = z| <€, Vx€(c,c+0)[)A
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R. Let f : A— R be a function. Then f is said to have a
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€ > 0, there exists § > 0 such that
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¢, {f(xn)} converges to z.



Left and right hand limits

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) = z| <€, Vx€(c,c+0)[)A

» Clearly if such a limit exists, then it is unique and we write

XI_|)rrC1+ f(x) =z
» Observe that,
lim f(x)==z
X—Cc+

iff for every decreasing sequence {x,}nen in A converging to
¢, {f(xn)} converges to z.

> Some texts may have the notation: lim, | f(x) = z.
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» Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
hand limit at c if there exists z € R such that for every € > 0,
there exists § > 0 such that
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» Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
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there exists § > 0 such that
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lim f(x) =z

X—C—



Left hand limits

» Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
hand limit at c if there exists z € R such that for every € > 0,
there exists § > 0 such that

If(x) —z| <€ Vxe (c—é,c)ﬂA.

» Clearly if such a limit exists, then it is unique and we write

Jim f(x) =z
» Observe that,
lim f(x)=z
X—C—

iff for every increasing sequence {x,}nen in A converging to c,
{f(xn)} converges to z.



Left hand limits

>

Definition 27.10: Let ¢ be a left cluster point of a subset A of
R. Let f : A — R be a function. Then f is said to have a left
hand limit at c if there exists z € R such that for every € > 0,
there exists § > 0 such that

If(x) —z| <€ Vxe (c—é,c)ﬂA.

Clearly if such a limit exists, then it is unique and we write

XI_|)rrC1_ f(x) =z
Observe that,
lim f(x)=z
X—C—

iff for every increasing sequence {x,}nen in A converging to c,
{f(xn)} converges to z.

Some texts may have the notation: lim¢ f(x) = z.
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be a function. Suppose f is increasing then the following hold.



Monotonic functions

» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],
lim f(x) =sup{f(x):x¢€[ac)}.

X—C—



Monotonic functions

» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],

lim f(x) =sup{f(x):x € [a,c)}.

X—yC—
» (ii) For every c € [a, b),

lim f(x)=inf{f(x):x € (c,b]}.

X—c+



Monotonic functions

» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],

lim f(x) =sup{f(x):x € [a,c)}.

X—yC—
» (ii) For every c € [a, b),

lim f(x)=inf{f(x):x € (c,b]}.

X—C+
» (iii) For every c € (a, b)

lim f(x) < f(c) < lim f(x).

X—>C— X—rCc+

Therefore f is continuous at ¢ if and only if

lim f(x)= lim f(x).

X—>C— X—rCc+
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» Suppose f is decreasing. Then the following hold:
» (iv) For every c € (a, b],

lim f(x) =inf{f(x): x € [a,x)}.

X—C—
» (v) For every c € [a, b),

lim f(x)=sup{f(x):x € (c,b]}.

X—c+
» (vi) For every c € (a, b)

lim f(x) > f(c) > lim f(x).

X—C— X—rC+

Therefore f is continuous at c¢ if and only if

lim f(x)= lim f(x).

X—C— X—C+
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» Proof. (i) Suppose f is increasing and ¢ € (a, b].
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» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a, c)}.
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» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.

» Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that

z—e< f(d)<z
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» Proof. (i) Suppose f is increasing and ¢ € (a, b].
» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take
z =sup{f(x) : x € [a,¢)}.
» Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that

z—e<f(d)<z
» As f is increasing, z —e < f(d) < f(x) < zford < x < c.
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a, c)}.

» Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that

z—e<f(d)<z
» As f is increasing, z —e < f(d) < f(x) < zford < x < c.

» In other words, 0 < z — f(x) < € for x € (d, ¢).
Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
» Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.
» Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.
Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and
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Proof. (i) Suppose f is increasing and ¢ € (a, b].
Now {f(x): x € [a,c)} is non-empty and is bounded above
by f(c). Hence it has a supremum. Take

z =sup{f(x) : x € [a,¢)}.
Consider any € > 0. Since z — € is less than the supremum
there exists d € [a, ¢) such that
z—e<f(d)<z

As f is increasing, z — e < f(d) < f(x) < zford < x < c.
In other words, 0 < z — f(x) < € for x € (d, ¢).

Taking § = ¢ — d we have (d,c) = (¢ — 4, ¢) and

|z — f(x)| < eforall x € (c—4,c).

This proves that

z =sup{f(x) : x € [a,¢)}.
The proofs of other claims are similar.
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Lecture 28. Inverses of continuous bijections and
extensions of functions

» Definition 27.1: Let AC R and let ¢ € R. Then c is said to
be a cluster point (or accumulation point) of A if for every
0>0

(c—d,c+8)[VA{c} #0.
> Note that here ¢ may or may not be an element of A.

» Proposition 27.3: Let ACR and let c € R. Then c is a
cluster point of A if and only if there exists a sequence
{Xn}nen in A\{c} converging to c.

» Note that we are excluding ¢ from these sequences.
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» Definition 27.4: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then f is said to have a limit at
c if there exists z € R such that for every € > 0, there exists
0 > 0 such that

f(x) =zl <€, Vx€(c—6,c+0)[)(Ac}).

» Proposition 27.5: Let ¢ be a cluster point of a subset A of R.
Let f : A— R be a function. Then z is limit of f at c if and
only if for every sequence {x,}nen in A\{c} converging to c,
{f(xn)} nen converges to z.
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Left and right hand cluster points

» Definition 27.7: Let ACR and let c € R. Then c is said to
be a right cluster point of A if for every 6 > 0

(c,c+8)[A#0.

Similarly c is said to be a left cluster point of A if for every
0>0

(c—(S,c)ﬂA#@.
» Proposition 27.8: Let A C R and let ¢ € R. Then the
following are equivalent:
» (i) c is a right cluster point of A.
» (ii) There exists a sequence {x,} in A(")(c,o0) converging to
c.

» (iii) There exists a strictly decreasing sequence {x,} in A
converging to c.
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Monotonic functions

» Theorem 27.11: Let a,bc Rwith a<b. Let f:[a,b] > R
be a function. Suppose f is increasing then the following hold.
» (i) For every c € (a, b],

lim f(x) =sup{f(x):x € [a,c)}.

X—yC—
» (ii) For every c € [a, b),

lim f(x)=inf{f(x):x € (c,b]}.

X—C+
» (iii) For every c € (a, b)

lim f(x) < f(c) < lim f(x).

X—>C— X—rCc+

Therefore f is continuous at ¢ if and only if

lim f(x)= lim f(x).

X—>C— X—rCc+
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a < b. Letf:[a b] — [d,b] be a continuous bijection with
f(a) = a’ and f(b) = b'. Then f~1:[a',b'] = [a, b] is a
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Theorem 28.1: Let a, b, a’, b’ be real numbers with a < b and
a < b. Letf:[a b] — [d,b] be a continuous bijection with
f(a) = a’ and f(b) = b'. Then f~1:[a',b'] = [a, b] is a
continuous bijection.

Proof. Note that f~! is well-defined and is a bijection as f is
assumed to be a bijection.

Also f~1(a') = a and f1(b') = b.
Further, we know that f is strictly increasing.

This implies, that =1 is also strictly increasing as for y < y’
if F~1(y) > f~1(y’), on applying f we get y > y/,
contradicting y < y’.
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» Then for any ¢’ € (&', V']

x = lim fY(y)=sup{f(y):yeld, )}
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> Take c = f~1(c).
» Consider f restricted to [a, c]. As f is increasing,
f([a,c]) C [, c]. By intermediate value theorem, every
z € [a,c'] is in the range of fl, .
> Therefore f|[,  : [a,c] — [a', '] is a bijection.
» In particular, f~1([a', c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore
xi =sup{f~H(y) 1y €[4, )} = sup([a, c)) = c = FH(c).
> Hence, limy_,o_ f1(y) = f1(c).
» Similarly, for every ¢’ € [/, V), limy_cy F1(y) = F1(c).
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Then for any ¢’ € (d, ]

x = lim fY(y)=sup{f(y):yeld, )}

y—c'—

Take ¢ = F~1(c').

Consider f restricted to [a, c|. As f is increasing,

f([a,c]) C [, c]. By intermediate value theorem, every

z € [a,c'] is in the range of fl, .

Therefore f[[, ¢ : [a,c] — [, ¢] is a bijection.

In particular, f=1([a’, c']) = [a, c]. By injectivity of f it follows
that f~1([a, ¢’)) = [a, ¢). Therefore

xi =sup{f~H(y) 1y €[4, )} = sup([a, c)) = c = FH(c).
Hence, lim, o~ f71(y) = f1(c).

Similarly, for every ¢’ € [/, V), limy_cy F1(y) = F1(c).
Therefore f 1 is continuous.
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nth_root function

> Example 28.2: For any n € N, and any T > 0, the function
p: [0, T] — [0, T"] defined by p(x) = x" is a continuous
bijection.

» Hence g = p~1:[0, T"] — [0, T] defined by q(y) = y% is a
continuous bijection.

» It follows that g : [0, 00) — [0, 00) defined by g(x) = X is a
continuous bijection.
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Theorem 28.3: Let a,b € R with a < b. Let f : (a,b) — R be
a function. Then there exists unique continuous function

f :[a, b] — R such that f(x) = f(x), Vx € (a,b) if and only
if f is uniformly continuous.

We call f as the continuous extension of f.

Proof. If f exists as above, then fis uniformly continuous.
This clearly implies that f = F|(a7b) is uniformly continuous.

To prove the converse we need a lemma which is of
independent interest.
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Cauchy property

> Lemma 28.4: Let AC R and let f : A — R be uniformly
continuous. Suppose {x,}nen is a Cauchy sequence in A.
Then {f(xn)}nen is a Cauchy sequence.

» In other words, uniformly continuous functions map Cauchy
sequences to Cauchy sequences.

» Proof. Consider € > 0.

» Then as f is uniformly continuous, there exists § > 0 such that

If(x) —f(y)| <e, V¥x,y €A, with |[x—y|<é
» Now as {x,} is Cauchy, there exists K € N such that
|Xm — xn| < 6, Vm,n> K.
» Consequently
|f(xm) — f(xn)| < €,Ym,n > K.
» This proves that {f(x,)} is Cauchy.
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Continuation of proof

» Now suppose f : (a, b) — R is uniformly continuous. We want

to have an extension f : [a, b] — R which is continuous.
» This means that we need to determine 7(a) and 7(b).

» Suppose {xp}nen and {yn}nen are two sequences in (a, b)
converging to a.

» Since they are convergent, by the previous Lemma {f(x,)}
and {f(yn)} are Cauchy.

» Now since all Cauchy sequences in R are convergent these
sequences are convergent.

» Take ¢ = limp_00 f(Xn) and d = limp_00 F(¥n)-
» We claim ¢ = d.
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» Consider the sequence

{ Xn if nis odd;
Zn = . .
yn if nis even.

» As both {x,} and {y,} converge to the same value (namely
a), {z,} is also convergent and it converges to a (Show this).

» |t follows that {f(z,)} is also convergent.

» It has two subsequences {f(z2p—1)} and {f(z2,)} converging
to ¢, d respectively. Hence ¢ = d = lim,_ f(2p).

» We have shown that whenever a sequence {x,} converges to
a, {f(xn)} is convergent and the limit is independent of the
sequence chosen. Take this limit as the value of 7(a).

P> By the sequential criterion it is clear that f defined this way is
continuous at a. Similar proof works for the other cluster
point b.

» The uniqueness of extension is obvious.



Continuation

» Consider the sequence

{ Xn if nis odd;
Zn = . .
yn if nis even.

» As both {x,} and {y,} converge to the same value (namely
a), {z,} is also convergent and it converges to a (Show this).

» |t follows that {f(z,)} is also convergent.

» It has two subsequences {f(z2p—1)} and {f(z2,)} converging
to ¢, d respectively. Hence ¢ = d = lim,_ f(2p).

» We have shown that whenever a sequence {x,} converges to
a, {f(xn)} is convergent and the limit is independent of the
sequence chosen. Take this limit as the value of 7(a).

P> By the sequential criterion it is clear that f defined this way is
continuous at a. Similar proof works for the other cluster
point b.

» The uniqueness of extension is obvious.

» END OF LECTURE 28.
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Lecture 29. Differentiation

» Here is an infinite series formula for 7.

» This is known as Madhava Series.

> Madhava of Kerala school of Mathematics found this and
some other such formulae for trigonometric quantities several
centuries before Calculus was developed by Newton, Leibniz
and others in Europe.

» More information on Madhava series:
https://en.wikipedia.org/wiki/Madhava_series

» Here is link for more on ancient Indian mathematics:
https://core.ac.uk /download/pdf/326681788.pdf



Differentiation

> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
Let f : A— R be a function. Then define f. : A\{c} — R by

fe(x) = f(X)Z(C), x € A\{c}.

X —
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> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
Let f : A— R be a function. Then define f. : A\{c} — R by

f(x)—f
f(x) = ()= FO) - C(C), x € A\{c}.
» We would like to take:
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f'(c) = lim fc(x)
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Let f : A— R be a function. Then define f. : A\{c} — R by

f(x)—f
f(x) = ()= FO) - C(C), x € A\{c}.
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> Note that here f. is not defined at ¢ and we do not need it to
consider this limit.



Differentiation
> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
Let f : A— R be a function. Then define f. : A\{c} — R by
f(x) — f(c)
f(x) = A\{c}.
(=020 e Ay
> We would like to take:
/ o .
f'(c) = llnc fe(x)

> Note that here f. is not defined at ¢ and we do not need it to
consider this limit.

» More formally, we have the following definition.



Differentiation

> Let ACR. Fix ¢ € A. Assume that c is a cluster point of A.
Let f : A— R be a function. Then define f. : A\{c} — R by

o) = T

— f(c)
_ A .
o XE€ \{c}
» We would like to take:

, .
f'(c) = llnc fe(x)

> Note that here f. is not defined at ¢ and we do not need it to
consider this limit.

» More formally, we have the following definition.

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at c if

-0

X—C X —C
exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable’at c.
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» Example 29.2 Let f : [0,2] — R be the function
f(x)=x3 x€][o0,2].

Then f is differentiable at ¢ = 1 and /(1) = 3.
» Proof: We have,

f(x)—f(1 31
IimM = IimX
x—1 x—1 x—=1 x—1
_ im (x —1)(x*+x+1)
x—1 x—1
= lim(x*+x+1)
x—1

= 3



Example

» Example 29.2 Let f : [0,2] — R be the function
f(x)=x3 x€][o0,2].

Then f is differentiable at ¢ = 1 and /(1) = 3.
» Proof: We have,

_ 3 _
im ()=
x=1 x-1 x=1 x—1
_ im (x —1)(x*+x+1)
x—1 x—1
= lim(x*+x+1)
x—1
= 3.
f(x)—f(c)

> Remark: We may also write limy_¢ as

lim f(c+h)— f(c)'
h—0 h




Differentiability implies continuity

» In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as /.



Differentiability implies continuity

» In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as /.

» Theorem 29.3: Let f : I — R be a function where [ is an
interval. Fix ¢ € |. If f is differentiable at ¢ then f is
continuous at c. The converse is not true.



Differentiability implies continuity

» In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as /.

» Theorem 29.3: Let f : I — R be a function where [ is an
interval. Fix ¢ € |. If f is differentiable at ¢ then f is
continuous at c. The converse is not true.

» Proof: We have
f’(c) = lim 7'(()() — f(c).

xX—c X —C
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Differentiability implies continuity

» In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as /.

» Theorem 29.3: Let f : I — R be a function where [ is an
interval. Fix ¢ € |. If f is differentiable at ¢ then f is
continuous at c. The converse is not true.

» Proof: We have

f/(C) — )!@C f(X)z : Z(C)
» Hence
Jm )~ (e = Jimy "= ()

exists and equals '(¢).0 = 0.
» Hence f is continuous at c.

» The function g(x) = |x|,x € R is continuous at 0, but is not
differentiable at 0 (Why?). B
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f: 1 —Rand g: ! — R be functions differentiable at c.
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Algebra of differentiation

> Theorem 29.4: Let / be an interval and suppose ¢ € I. Let
f: 1 —Rand g: ! — R be functions differentiable at c.
Then the following hold:

» (i) For a,b € R, af + bg defined by (af + bg)(x) =
af(x) + bg(x), x € I is differentiable at ¢ and,
(af + bg)'(c) = af'(c) + bg'(c).
» (ii) The product fg defined by fg(x) = f(x)g(x), x€l,is
differentiable at ¢ and
(f8)'(c) = f(c)g'(c) + f'(c)g(c).
» (iii) If g(c) # 0, then é where é(x) % is defined for
some interval J C [ containing ¢ and
f f'(c)g(c) = f(c)g'(c)
(=)(c) = -

g g(c)?




Algebra of differentiation

>

Theorem 29.4: Let | be an interval and suppose c € /. Let
f: 1 —Rand g: ! — R be functions differentiable at c.
Then the following hold:

(i) For a, b € R, af + bg defined by (af + bg)(x) =

af(x) + bg(x), x € I is differentiable at ¢ and,

(af + bg)'(c) = af'(c) + bg'(c).
(ii) The product fg defined by fg(x) = f(x)g(x), x €1, is
differentiable at ¢ and

(f8)'(c) = f(c)g'(c) + f'(c)g(c).
(iii) If g(c) # 0, then é where é(x) % is defined for
some interval J C [ containing ¢ and

e Fe8(e) = F(0)g(e)
A glof

Proof. (i) The proof is clear.




Continuation

» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)

) E0) 8(0) | FO—Fe)

X—C X—=C
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» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)
0 BN @) F A

» Recall that differentiability of f at ¢ gives continuity of f at ¢
and hence limy_,. f(x) = f(c).
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» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)
0 BN @) F A

» Recall that differentiability of f at ¢ gives continuity of f at ¢
and hence limy_,. f(x) = f(c).

» Now taking limit as x tends to ¢ in the previous equation, we
see that (fg) is differentiable at ¢ and

(f8)'(c) = f(c)g'(c) + f'(c)g(c).



Continuation

» (ii) We have
f(x)g(x) — f(c)g(c) _  f(x)(g(x) —g(c)) + (f(x) — f(c))g(c)
0 BN @) F A

» Recall that differentiability of f at ¢ gives continuity of f at ¢
and hence limy_,. f(x) = f(c).

» Now taking limit as x tends to ¢ in the previous equation, we
see that (fg) is differentiable at ¢ and

(f8)'(c) = f(c)g'(c) + f'(c)g(c).

» (iii) As g is continuous at ¢ and g(c) # 0, g(x) # 0 for some
interval J containing c. Hence g is defined in this interval.



Continuation

» Now

flx) _ ()

g(x) gl _

X—=C

1

f(x)g(c) — f(c)e(x)

g(x)g(c)
1

X—=C

~ &(x)s(c)

HORG)

X —=C

g(c) —

fc)(g(x) — g(c))

X—=C

]



Continuation

» Now
0089 _ 1 f(x)ele)~ F()e(x)
X—cC g(x)g(c) X—cC
_ 1 f(x) — f(c) o f(c)(g(x) — g(c))
= el x—c 89 P

> Now taking limit as x tends to ¢, we get
' 1 y TR




Continuation

» Now
0089 _ 1 f(x)ele)~ F()e(x)
X—cC g(x)g(c) X—cC
_ 1 f(x) — f(c) o f(c)(g(x) — g(c))
= el x—c 89 P

> Now taking limit as x tends to ¢, we get

' 1 , ,

» That completes the proof.
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Polynomials

> Theorem 29.5: Let p: R — R be a real polynomial:
p(x) =ao+aix+---+ax",x eR

for some n € N, ap, a1,...,a, € R.
» Then at any ¢ € R p is differentiable at ¢ and

p'(c) = a1 + 2apc 4+ 3a3c® + - - - + nap,c" Y.

» Proof. This can be proved using (i) and (ii) of previous
theorem and induction. More directly:

p'(c)
_ o LAt ) = p(h)
h—0 h

1
= lim —[a;.h+ ax((h+c)®> = ?)) + as(h+ )} - &)
h—0 h

+ -4 ap((h+¢c)"—c")
= a1 +2ayc+3a3c2 + -+ na,c",
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Differentiable functions

» Definition 29.6: A function f : | — R is said to be
differentiable if it is differentiable at every ce [. If f : | - R
is differentiable then the function ' : I — R is called the first
derivative of f.

> If f/ is differentiable then f(2) := (") is called the second
derivative of f.

» Inductively if F(n=1) s differentiable, then f(”), the n-th
derivative of f is the derivative of £("—1).

» f is said to be infinitely differentiable if it has n-th derivative
for every n € N.

» We can see that polynomials are infinitely differentiable.
» END OF LECTURE 29.



Lecture 30. Chain Rule and Rolle's theorem

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at ¢ if

im f(x)—f(c)

X—C X—C

exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Chain rule

» Theorem 30.1 Let /, J be intervals and let f : | — R and
g : J — R be functions such that (/) C Jand h=gof.
Consider ¢ € I. Suppose f is differentiable at ¢ and g is
differentiable at f(c). Then h is differentiable at ¢ and

H(c) = (gof)(c) = g'(F(c))f (c)-
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differentiable at f(c). Then h is differentiable at ¢ and
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converges to f(c).



Chain rule

» Theorem 30.1 Let /, J be intervals and let f : | — R and
g : J — R be functions such that (/) C Jand h=gof.
Consider ¢ € I. Suppose f is differentiable at ¢ and g is
differentiable at f(c). Then h is differentiable at ¢ and

H(c) = (gof)(c)=2g'(f(c))f'(c).
» Rough computation:

gof(x)—gof(c) _gof(x)—goflc) f(x) - f(c)
X—c f(x)—f(c) =~ x-c

» Taking limit as x tends to ¢ we should get the answer as f(x)
converges to f(c).

» However, there is a problem here as we can't ensure that

F(x) — f(c) 0.
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and u is continuous at c. In such a case, u(c) = f'(c).
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Caratheodory’s theorem

P> Here is a characterization of differentiability.

» Theorem 30.2: Let f : /| — R be a function where [ is an
interval. Fix ¢ € I. Then f is differentiable at c if and only if
there exists a function v : I — R such that

f(x)—f(c)=(x—c)u(x), Vxel (%)
and u is continuous at c. In such a case, u(c) = f'(c).
» Proof: If f is differentiable at c, take

fx)=Ff(c) (C) ifx#c,xel
”(X){ Fie) ifx=c.

» Then it is easy to see that (x) is satisfied and v is continuous
at c.

» Conversely if u exists satisfying (%) and v is continuous at ¢

» From (%), u(x) = M for x # c. Taking limit as x tends
to ¢, using continuity of u at ¢, f is differentiable at ¢, and

u(c)=f'(c). A
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» Proof: Consider f, g as in the hypothesis of the theorem.

» As f is differentiable at ¢, there exists a function u on /,
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Proof of chain rule

» Proof: Consider f, g as in the hypothesis of the theorem.
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Proof of chain rule

» Proof: Consider f, g as in the hypothesis of the theorem.

» As f is differentiable at ¢, there exists a function u on /,
continuous at ¢ such that

f(x)—f(c) = (x—c)u(x), Vxel.

» As g is differentiable at f(c), there exists a function v on J,
continuous at f(c) such that

gly) —g(f(c)) = (y — f(c)vly), Vyel

» Since f(/) C J, this equation is also true at y = f(x) and so
we get

g(F(x)) — g(F(c)) = (F(x) — F(OVF(x)), Vxe .
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g(F(x)) — £(F()) = (x — uCV(F(x)), Vx € 1.
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» Now using the previous equation, we have
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Continuation

» Now using the previous equation, we have
g(f(x)) — g(f(c)) = (x = Ju(x)v(f(x)), Vxel.

» Note that as v is continuous at f(c) and f is continuous at c,
v o f is continuous at c. Consequently, x — u(x)v(f(x)) is
continuous at c.

» Hence by Caratheodory's theorem, g o f is differentiable at ¢
and

(g o) (c) = u(c)v(f(c)) = F'(c)g'(f(c)).



Continuation

» Now using the previous equation, we have

g(F(x)) — £(F()) = (x — uCV(F(x)), Vx € 1.

» Note that as v is continuous at f(c) and f is continuous at c,
v o f is continuous at c. Consequently, x — u(x)v(f(x)) is
continuous at c.

» Hence by Caratheodory's theorem, g o f is differentiable at ¢
and

(g o) (c) = u(c)v(f(c)) = F'(c)g'(f(c)).
» In other words H'(c) = g'(f(c))f'(c). A
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bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then
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» Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.



Derivative of inverse -I

» Theorem 30.3: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then

(€)= 7y

» Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.

» Now by the chain rule we get 1 = h'(c) = f'(¢)g’(f(c)).



Derivative of inverse -I

» Theorem 30.3: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then

g'(f(c) =

f'(c)’

» Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.
» Now by the chain rule we get 1 = h'(c) = f'(¢)g’(f(c)).

» Consequently, g’(f(c)) = f/:(lc)‘.




Derivative of inverse -I
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Theorem 30.3: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at c € / and g := f 1 is
differentiable at f(c). Then

Proof: Take h=gof. As g = f~1, his the identity map on
I. In particular h'(c) =1 for every c € /.

Now by the chain rule we get 1 = h'(c) = f'(¢c)g’'(f(c)).
Consequently, g'(f(c)) = %.l

Note that this in particular means that in this Theorem,
f’(c) = 0 is not possible.



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.

Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
on I, which is continuous at ¢ and

f(x)—f(c) =(x—c)u(x), Vxel.



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
on I, which is continuous at ¢ and

f(x)—f(c) =(x—c)u(x), Vxel.

» First we note that u(x) # 0 for every x. Indeed, for x # c,
f(x) # f(c) as f is injective and hence u(x) # 0. At x = c,
u(c) = f'(c), which is not zero by hypothesis.



Derivative of inverse -l

» Theorem 30.4: Let /, J be intervals and let f : | — J be a
bijection. Suppose f is differentiable at ¢ € I and f'(¢) # 0.
Also assume that ! is continuous at f(c). Then g := f~1is
differentiable at f(c) and g'(f(c)) = %

» Proof: By Caratheodory's theorem, there exists a function u
on I, which is continuous at ¢ and

f(x)—f(c) =(x—c)u(x), Vxel.

» First we note that u(x) # 0 for every x. Indeed, for x # c,
f(x) # f(c) as f is injective and hence u(x) # 0. At x = c,
u(c) = f'(c), which is not zero by hypothesis.

» Now take y = f(x) and d = f(c) in the equation above, to
get

y —d=(f(x) — FH(d))u(f(y))



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

).



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-

» Therefore by Caratheodory’s theorem g is differentiable at d,
and the result follows.



Continuation

» Since f is surjective, this equation is true for every y € J and

we get
1

u(g(y))

» Finally note that since g = f~1 is continuous at d and u is
continuous at ¢, y — m is continuous at d.

g(y) —g(d) = (y — d)( )-

» Therefore by Caratheodory’s theorem g is differentiable at d,
and the result follows.

» Example 30.5: For n € N the function g : (0,00) — (0, 00)
defined by g(y) = yn is differentiable and

1
g'y)=——=1 ye(0,00).
ny*"n



Local extremums

» Definition 30.6: Let f : | — R be a function and suppose
c € [. Then c is said to be a local maximum of f if there
exists > 0 such that

f(c) > f(x), Vxe(c—d,c+d)( )/



Local extremums

» Definition 30.6: Let f : | — R be a function and suppose
c € [. Then c is said to be a local maximum of f if there
exists > 0 such that

f(c) > f(x), Vxe(c—d,c+d)( )/

» Similarly ¢ is said to be a local minimum if there exists § > 0
such that

f(c) < f(x), Vxe(c—d,c+d)( )/



Local extremums

» Definition 30.6: Let f : | — R be a function and suppose
c € [. Then c is said to be a local maximum of f if there
exists > 0 such that

f(c) > f(x), Vxe(c—d,c+d)( )/

» Similarly ¢ is said to be a local minimum if there exists § > 0
such that

f(c) < f(x), Vxe(c—d,c+d)( )/

» If ¢ is a local maximum or local minimum it is said to be a
local extremum.



Global extremums

» Definition 30.7: Let f : | — R be a function and suppose
c € l. Then c is said to be a global maximum of f if

f(c) > f(x), Vxel.



Global extremums

» Definition 30.7: Let f : | — R be a function and suppose
c € l. Then c is said to be a global maximum of f if

f(c) > f(x), Vxel.
» Similarly ¢ is said to be a global minimum of f if

f(c) < f(x), Vxel.



Global

extremums

Definition 30.7: Let f : | — R be a function and suppose
c € l. Then c is said to be a global maximum of f if

f(c) > f(x), Vxel.
Similarly c is said to be a global minimum of f if
f(c) < f(x), Vxel.

If c is a global maximum or global minimum it is said to be a
global extremum.



Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.



Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.

» Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.



Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.

» Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.

» Proof. Given that c is an interior point of f.



Interior extremum theorem

» Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—=6d,c+6)CI.
» Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then
f'(c) =0.

» Proof. Given that c is an interior point of f.
» So there exists §; > 0 such that (¢ — d1,¢c + 1) C I.



Interior extremum theorem
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Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that
(c—=6d,c+6)CI.

Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.

Proof. Given that c is an interior point of f.

So there exists 07 > 0 such that (¢ — d1,¢c+d1) C /.
Suppose that c is a local maximum of f. Then there exists
d2 > 0 such that

f(c) > f(x) Vx € (c—da,c+8)[ )]



Interior extremum theorem
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Definition 30.8: Let / be an interval and let c € [. Then c is
said to be an interior point of I if there exists § > 0 such that

(c—b,c+6)CI.

Theorem 30.9: Let f : | — R be a function. Suppose c is an
interior point of / and suppose c is a local extremum of f. If
f is differentiable at ¢ then

f'(c) = 0.

Proof. Given that c is an interior point of f.

So there exists 07 > 0 such that (¢ — d1,¢c+d1) C /.
Suppose that c is a local maximum of f. Then there exists
d2 > 0 such that

f(c) > f(x) Vx € (c—da,c+8)[ )]
Taking § = min{d1, 02}, we have (c — d,c+ ) C | and
f(c) > f(x), Vxe(c—4d,c+)9).
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» Assume that f is differentiable at c.
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» Suppose {xp}nen is a sequence in (c,c + §) converging to ¢
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Continuation

» Assume that f is differentiable at c.

» Suppose {xp}nen is a sequence in (c,c + §) converging to ¢
(For instance, we can take x, = ¢ + £-.)

» Then for every n, x, > ¢ and f(x,) < f(c) and hence
f(xa) — f(c)

Xp — C

<0 (1)



Continuation

» Assume that f is differentiable at c.

» Suppose {xp}nen is a sequence in (c,c + §) converging to ¢
(For instance, we can take x, = ¢ + £-.)

» Then for every n, x, > ¢ and f(x,) < f(c) and hence

F(xn) — f(c)

Xp — C

<0 (1)

» Taking limit as n — oo, we get

f'(c) <O0.



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o

» Taking limit as n — oo, we get

f'(c) > 0. (2)



Continuation

» Now suppose {yn}nen is a sequence in (¢ — 6, c) converging

to ¢ (For instance, we can take y, = ¢ — %)

» Then for every n, y, < ¢ and f(y,) < f(c) and hence

) = (<)
Yn—C o

» Taking limit as n — oo, we get
f'(c) > 0. (2)

» Combining inequalities (1) and (2) we get f'(c) =0 as
required. W



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

» Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

» Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

» In particular, c is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.



Rolle’s theorem
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Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

In particular, ¢ is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.

Similarly, if there exists s € (a, b) such that f(s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f'(d) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

» Suppose there exists some t € (a, b) such that f(t) > 0, then
as f(a) = f(b) = 0, the global maximum of f is attained at
some ¢ € (a, b).

» In particular, c is a local extremum and by the interior
extremum theorem, f’(c) = 0 and we are done.

» Similarly, if there exists s € (a, b) such that f(s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f'(d) = 0.

» The only other possibility is f(x) = 0 for all x € [a, b] and in
such a case f'(x) = 0 for all x € (a, b) and we are done. .
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» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].
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» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.
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» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.

» It is to be noted that f is not differentiable at —1 and +1, but
is differentiable on (—1,1).



Example

» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.

» It is to be noted that f is not differentiable at —1 and +1, but
is differentiable on (—1,1).

» Of course we get f/(0) =0 and so conclusion of Rolle’s
theorem holds.



Example

» Example 30.11: Consider f : [—1,1] — R defined by

flx)=vV1-x2, xe[-1,1].

» This function f satisfies the hypothesis of Rolle's theorem.

» It is to be noted that f is not differentiable at —1 and +1, but
is differentiable on (—1,1).

» Of course we get f/(0) =0 and so conclusion of Rolle’s
theorem holds.

» END OF LECTURE 30



Lecture 31. Mean value theorem

» We recall:



Lecture 31. Mean value theorem

» We recall:

» Definition 29.1: Let A C R. Let ¢ € A be a cluster point of A.
Let f : A— R be a function. Then f is said to be
differentiable at c if

im f(x) —f(c)

X—C X —C

exists. In such a case, f'(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Sketch of proof.



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Sketch of proof.

» Suppose {x,}nen is a sequence decreasing to c. Then

f'(c) = lim 7“)(") —f(e)

n—00 Xp— C

<0.



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Sketch of proof.

» Suppose {x,}nen is a sequence decreasing to c. Then

f'(c) = lim 7“)(") —f(e)

n—00 Xp— C

<0.

» Similarly if {y,}nen is a sequence increasing to c,



Interior Extremum theorem and Rolle’s theorem

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Sketch of proof.

» Suppose {x,}nen is a sequence decreasing to c. Then

f'(c) = lim 7“)(") —f(e)

n—00 Xp— C

<0.

» Similarly if {y,}nen is a sequence increasing to c,

» Combining two inequalities we get '(c) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Sketch of proof.



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Sketch of proof.

» If f is non-zero it attains either supremum or infimum at some
interior point ¢ in (a, b).



Rolle’s theorem

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Sketch of proof.

» If f is non-zero it attains either supremum or infimum at some
interior point ¢ in (a, b).

» Then by interior extremum theorem f’(c) = 0.



Mean value theorem (MVT)

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).



Mean value theorem (MVT)

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
» Proof: Define g : [a,b] — R by

_ f(b) —1(a)

g(x) = f() — () - " (x— ).



Mean value theorem (MVT)

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
» Proof: Define g : [a,b] — R by

g0) = F() — () - "Iy

» Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also



Mean value theorem (MVT)
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Theorem 31.1 (Mean value theorem): Let f : [a, b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).
Proof: Define g : [a, b] — R by

g0) = F() — () - "Iy

Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also
g(a) = g(b) =0.
Hence Rolle's theorem is applicable to g, and we get
¢ € (a, b) such that g’(c) = 0.



Continuation

» Using linearity of differentiation,

f(b) — f(a)

.1=0.
b—a 0

g'(c)="f(c)-0-



Continuation

» Using linearity of differentiation,

f(b) — f(a)

.1=0.
b—a 0

g'(c)="f(c)-0-

» Hence,
f'(c)(b— a) = f(b) — f(a).



Continuation

» Using linearity of differentiation,

f(b) — f(a)

.1=0.
b—a 0

g'(c)="f"(c)-0-
» Hence,
f'(c)(b— a) = f(b) — f(a).

> Note that Rolle's theorem is a special case of mean value
theorem.



Cauchy’s mean value theorem

» Theorem 31.2 (Cauchy’'s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(2)g’(c) = f'(c)(g(b) — &(a)).

» Proof: Consider f, g as in the hypothesis of the theorem.



Cauchy’s mean value theorem

» Theorem 31.2 (Cauchy’'s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g'(c) = f'(c)(g(b) — &(a))-
» Proof: Consider f, g as in the hypothesis of the theorem.
» Define h: [a, b] — R by

h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+f(a)g(b)
for x € [a, b].
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Theorem 31.2 (Cauchy’s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g’(c) = f'(c)(g(b) — g(a)).
Proof: Consider f, g as in the hypothesis of the theorem.
Define h : [a, b] — R by
h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+f(a)g(b)
for x € [a, b].

Then h is continuous on [a, b], differentiable on (a, b) and
h(a) = h(b) = 0.



Cauchy’s mean value theorem

» Theorem 31.2 (Cauchy’'s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g'(c) = f'(c)(g(b) — &(a))-
» Proof: Consider f, g as in the hypothesis of the theorem.
» Define h: [a, b] — R by

h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+1(a)g(b)

for x € [a, b].
» Then h is continuous on [a, b], differentiable on (a, b) and
h(a) = h(b) = 0.

» Therefore Rolle's theorem is applicable.



Cauchy’s mean value theorem

» Theorem 31.2 (Cauchy’'s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g'(c) = f'(c)(g(b) — &(a))-
» Proof: Consider f, g as in the hypothesis of the theorem.
» Define h: [a, b] — R by

h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+1(a)g(b)

for x € [a, b].
» Then h is continuous on [a, b], differentiable on (a, b) and
h(a) = h(b) = 0.

» Therefore Rolle's theorem is applicable.
» So we get ¢ € (a, b) such that #’(c) = 0 and that gives the
result.



Cauchy’s mean value theorem

>

Theorem 31.2 (Cauchy’s Mean value theorem): Let
f,g :[a, b] = R be continuous functions which are
differentiable on (a, b). Then there exists ¢ € (a, b) such that

(f(b) — f(a))g'(c) = f'(c)(g(b) — &(a))-
Proof: Consider f, g as in the hypothesis of the theorem.
Define h : [a, b] — R by

h(x) = (f(b)—f(a))g(x)—f(x)(g(b)—g(a))—f(b)g(a)+f(a)g(b)
for x € [a, b].

Then h is continuous on [a, b], differentiable on (a, b) and

h(a) = h(b) = 0.

Therefore Rolle’s theorem is applicable.

So we get ¢ € (a, b) such that h'(c) = 0 and that gives the
result.

Note that mean value theorem is a special case of Cauchy’s
mean value theorem with g(x) = x, x € [a, b].
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» Corollary 31.3: Let f : [a, b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
x € (a,b). Then f is a constant.
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» Corollary 31.3: Let f : [a, b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
x € (a,b). Then f is a constant.

» Proof: Fix any t € (a, b] and consider f restricted to [a, t].

» Clearly mean value theorem is applicable to this function and
we get
f(t)—f(a)=0.(t —a)=0.

» Therefore f(t) = f(a).



Applications of mean value theorem

» Corollary 31.3: Let f : [a,b] — R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all
€ (a,b). Then f is a constant.

» Proof: Fix any t € (a, b] and consider f restricted to [a, t].

» Clearly mean value theorem is applicable to this function and

we get
f(t) — f(a) = 0.(t — ) = 0.

» Therefore f(t) = f(a).
» In other words f(t) = f(a) for every t € [a, b].H



Equal derivatives

» Corollary 31.4: Let f,g : [a, b] = R be continuous functions
differentiable on (a, b). Suppose f'(x) = g’(x) for all
x € (a,b). Then f(x) = g(x)+ C, x € [a, b] for some C € R.



Equal derivatives

» Corollary 31.4: Let f,g : [a, b] = R be continuous functions
differentiable on (a, b). Suppose f'(x) = g’(x) for all
x € (a,b). Then f(x) = g(x)+ C, x € [a, b] for some C € R.
» Proof: This is clear from the previous corollary, by considering
the function, h: [a, b] — R defined by

h(x) = f(x) — g(x), x € |a,b].
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Monotonicity

» Recall that a function f : [a, b] — R is said to be increasing
(respectively decreasing) if f(x) < f(y) (respectively
f(x) > f(y) ) for all x,y in [a, b] with x < y.

» Theorem 31.5: Let f : [a, b] — R be a continuous function
which is differentiable on (a, b).

» (i) f is increasing on [a, b] if and only if f/(x) > 0 for all
x € (a, b).

» (ii) f is decreasing on [a, b] if and only if f'(x) < 0 for all
x € (a, b).

» Proof: (i) Suppose f is increasing and x € (a, b).

» Consider any sequence {x,} in (a, b) with x < x, < b,
converging to x. Then f(x,) — f(x) > 0 for all n and we get

f'(x) = lim 7“)(") —f()

n—o0 Xp — X

> 0.
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Continuation

» Conversely suppose f'(x) > 0 for all x € (a, b).

v

For any x, y in [a, b] with x < y, consider f restricted to [x, y]

» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.

> So we get
Fly) = f(x) = f'(2)(y —x)

» for some z € [x, y]. Then by the hypothesis, f'(z) > 0 and
therefore f(y) — f(x) > 0 or f(y) > f(x).



Continuation

» Conversely suppose f'(x) > 0 for all x € (a, b).

v

For any x, y in [a, b] with x < y, consider f restricted to [x, y]

» Then f is continuous on [x, y] and is differntiable on (x, y)
and hence mean value theorem is applicable.

> So we get
F(y) = f(x) = f(2)(y — x)
» for some z € [x, y]. Then by the hypothesis, f'(z) > 0 and
therefore f(y) — f(x) > 0 or f(y) > f(x).
» Proof of (ii) is similar. W



Strictly increasing functions

» Suppose f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Suppose f'(x) > 0 for all x € (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.
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» Suppose f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Suppose f'(x) > 0 for all x € (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.

» However, the converse is not true.
» Example 31.6: Consider f : [—1,1] — R defined by

f(x)=x3 xe[-1,1].

» Then f is strictly increasing but '(0) = 0.

» Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x,y € [-1,1] with x < y, f(y) — f(x) = f'(0)(y — x). Can we
characterize such points?



Strictly increasing functions

» Suppose f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Suppose f'(x) > 0 for all x € (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.

» However, the converse is not true.
» Example 31.6: Consider f : [—1,1] — R defined by

f(x)=x3 xe[-1,1].

» Then f is strictly increasing but '(0) = 0.

» Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x,y € [-1,1] with x < y, f(y) — f(x) = f'(0)(y — x). Can we
characterize such points?

» END OF LECTURE 31.
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Lecture 32. Taylor's theorem

> We recall:

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) =0.

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) =0.



Lecture 32. Taylor's theorem

» We recall:

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) =0.
» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a

continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that
f'(c) =0.

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).



Continuation

> Note that, for a < xp < x < b, by considering f restricted to
[x0, x|, by mean value theorem we get

f(x) = f(x0) + f'(c)(x — x0).



Continuation

> Note that, for a < xp < x < b, by considering f restricted to
[x0, x|, by mean value theorem we get

f(x) = f(x0) + f'(c)(x — x0).

» Taylor's theorem gives similar result for higher order
derivatives.



Higher derivatives

» We recall a few definitions.

» Definition 29.6: A function f : | — R is said to be
differentiable if it is differentiable at every ce /. If f : | = R
is differentiable then the function ' : I — R is called the first
derivative of f.
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» Definition 29.6: A function f : | — R is said to be
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is differentiable then the function ' : | — R is called the first
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for every n € N.



Higher derivatives

» We recall a few definitions.

» Definition 29.6: A function f : | — R is said to be
differentiable if it is differentiable at every ce /. If f : | = R
is differentiable then the function ' : I — R is called the first
derivative of f.

> If f/ is differentiable then f(2) := (") is called the second
derivative of f.

» Inductively if f(n=1) ig differentiable, then f(”), the n-th
derivative of f is the derivative of f("—1),

> By f(9(x) we would mean simply f(x).

P> f is said to be infinitely differentiable if it has n-th derivative
for every n € N.

> We can see that polynomials are infinitely differentiable.
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» Definition 32.1: Let f : [a, b] = R be a function. Fix
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degree polynomial such that
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» Definition 32.1: Let f : [a, b] = R be a function. Fix
xo € [a, b]. Assume f(V(xg), FP)(xp),. .., F")(xp) exist. Then
the polynomial P, defined by P,(x) =

f()
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» is known as n-th degree Taylor polynomial of f centered at xp.
> Remark 32.2: It is easy to see that P, is the unique n-th
degree polynomial such that
P (x0) = FR)(x0), 0< k< n.
» Given f as above, we wish to say that P, approximates f. We
write Ry(x) = f(x) — Pn(x), x € [a, b] or equivalently,
f(x) = Pa(x) + Ra(x), x € [a, b].



Taylor's polynomial

» Definition 32.1: Let f : [a, b] = R be a function. Fix
xo € [a, b]. Assume f(V(xg), FP)(xp),. .., F")(xp) exist. Then
the polynomial P, defined by P,(x) =

f()

P+ F ) xx0)+ ) (o 00 e

» is known as n-th degree Taylor polynomial of f centered at xp.
> Remark 32.2: It is easy to see that P, is the unique n-th
degree polynomial such that

P (x0) = fW(x0), 0< k< n.

» Given f as above, we wish to say that P, approximates f. We
write Ry(x) = f(x) — Pn(x), x € [a, b] or equivalently,

f(x) = Pa(x) + Ra(x), x € [a, b].

» Here R, is known as the remainder term or the error term.
The main problem here is to get a suitable formula for R, and
to estimate it.



Taylor's theorem

» Theorem 32.3 (Taylor's theorem): Let f : [a,b] — R be a
function. Fix xp € [a, b]. Suppose for some n € N,
f, £ . f(" exist and are continuous on [a, b], and
further (1) exists on (a, b). Then for any x € [a, b], there
exists ¢ strictly in between xp and x such that

(2)(x,
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Taylor's theorem

» Theorem 32.3 (Taylor's theorem): Let f : [a,b] — R be a
function. Fix xp € [a, b]. Suppose for some n € N,
f, £ . f(" exist and are continuous on [a, b], and
further (1) exists on (a, b). Then for any x € [a, b], there
exists ¢ strictly in between xp and x such that

£(2)
f(x) = f(x0)+ D (x0)(x — x0) + 2(IX0)(X—XO)2+...
F7) (x0) Fr(c)
_ n T N\H) o (n+1)
+ o (x — x0)" + (1)l (x — x0) :
» In other words, the remainder term is given by
Firt1)(¢c)
R S AV (n+1)
1y <)
for some c.

» This is known as the Lagrange form of the remainder.
» Here c is in (x0, x) if xo < x and it is in (x, xg) if x < xo. If
X = Xp, the equation above is a triviality for any c.
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Proof of Taylor's theorem

> Proof: We take xg < x. Similar proof works if x < xg.

» Define a function h: [xo,x] — R by
=L (e
ey = £~ £~ 3 e 0, e e b
k=1

» We observe h(xp) is the remainder term we are interested in
and h(x) =0.
» Moreover, for every t € (xp, x)

n k+1 FR) (¢ B
H(t) = Z[ (x— )k—k!().k(x—t)(k 1.
» This is a telescopic sum. So we get
g (n+1)
n+
W =-" ey ).

n!
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» Consider g : [xp, x| — R defined by
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» Then g is continuous on [xg, x], differentiable on (xp, x).
Moreover, g(xp) = 0 and g(x) = h(x) = 0.

» Hence we may apply Rolle's theorem.
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Continuation

» Consider g : [xp, x| — R defined by

(n1)
g(t)zh(t)—( ) hxo). ¢ € .l

» Then g is continuous on [xg, x], differentiable on (xp, x).
Moreover, g(xp) = 0 and g(x) = h(x) = 0.

» Hence we may apply Rolle's theorem.

» By Rolle's theorem, there exists ¢ € (xp, x) such that

X —t

X — Xp

g'(c)=0.
» Hence using equation (1),
7f(”+1)(c) X—c

(x— )"+ (n+1)(

n! X — Xp

)"h(x) = O.



Continuation

» Consider g : [xp, x| — R defined by

X —t

(n1)
g(t)zh(t)—( ) hxo). ¢ € .l

» Then g is continuous on [xg, x], differentiable on (xp, x).
Moreover, g(xp) = 0 and g(x) = h(x) = 0.

» Hence we may apply Rolle's theorem.

» By Rolle's theorem, there exists ¢ € (xp, x) such that

X — Xp

g'(c)=0.
» Hence using equation (1),
f(n+1)(c) n X=Cyn
—T(X —c)"+(n+ 1)(X — Xo) h(x) = 0.

> Equivalently,

hoo) = ()



Continuation

» Consider g : [xp, x| — R defined by

X —t

(n1)
g(t)zh(t)—( ) hxo). ¢ € .l

» Then g is continuous on [xg, x], differentiable on (xp, x).
Moreover, g(xp) = 0 and g(x) = h(x) = 0.

» Hence we may apply Rolle's theorem.

» By Rolle's theorem, there exists ¢ € (xp, x) such that

X — Xp

g'(c)=0.
» Hence using equation (1),
f(n+1)(C) n X=Cyn
—T(X —c)"+(n+ 1)(X — Xo) h(x) = 0.

> Equivalently,
x—=x0)" .(n
h(xp) = ((n+1°))!f( +(0).

» This is the formula for the remainder term we wanted to
A P |
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» Theorem 32.4: Let f : [a, b] — R be continuous and let
c € (a, b).
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» Theorem 32.4: Let f : [a, b] — R be continuous and let
c € (a, b).

» (i) Assume that there exists § > 0 such that f is differentiable
on (¢ —4d,¢c)UJ(c,c+9) and
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Vx € (¢, c+9).
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Then f has local maxima at c.



First derivative test for extrema

» Theorem 32.4: Let f : [a, b] — R be continuous and let
c € (a, b).

» (i) Assume that there exists § > 0 such that f is differentiable
on (¢ —4d,¢c)UJ(c,c+9) and

Fi(x)
F(x)

Vx € (¢ — 6, c¢);
Vx € (¢, c+9).

IN IV

0,
0,
Then f has local maxima at c.

» (ii) Assume that there exists § > 0 such that f is
differentiable on (¢ — d, ¢) (¢, c + 4) and

f'(x) < 0, ¥x€(c—§c);
f'(x) > 0, Vxe(c,c+9).

Then f has local minima at c.



Continuation

» Proof: (i) For ¢ = < x < ¢, by considering f restricted to
[x, c], by mean value theorem we get

f(c) = f(x) = f'(d)(c — x)



Continuation
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f(c)—f(x) >0or f(c) > f(x).
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» Proof: (i) For ¢ = < x < ¢, by considering f restricted to
[x, c], by mean value theorem we get

f(c) = f(x) = f'(d)(c — x)

» for some d € (x,¢) C (c —d,c). Hence f'(d) > 0. So
f(c)—f(x) >0or f(c) > f(x).

» Similarly, if x € (¢, c + ), consider f restricted to [c, x]. By
mean value theorem,

f(x) = f(c) = f'(d)(x — c)

for some d € (¢,x) C (c,c + ). Hence f(x) — f(c) <0 or
f(x) < f(c).
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» Proof: (i) For ¢ = < x < ¢, by considering f restricted to
[x, c], by mean value theorem we get

f(c) = f(x) = f'(d)(c — x)
» for some d € (x,¢) C (c —d,c). Hence f'(d) > 0. So
f(c)— f(x) > 0or f(c) > f(x).
» Similarly, if x € (¢, c + ), consider f restricted to [c, x]. By
mean value theorem,
f(x) = f(c) = f'(d)(x — c)
for some d € (¢, x) C (¢,c+ ). Hence f(x) — f(c) <0 or
f(x) < f(c).

» We have seen that f(c) > f(x) for all x € (¢ — §,c +9),
proving that f has local maxima at c.



Continuation

» Proof: (i) For ¢ = < x < ¢, by considering f restricted to
[x, c], by mean value theorem we get

f(c) = f(x) = f'(d)(c — x)
» for some d € (x,¢) C (c —d,c). Hence f'(d) > 0. So
f(c)—f(x) >0or f(c) > f(x).

» Similarly, if x € (¢, c + ), consider f restricted to [c, x]. By
mean value theorem,

f(x) = f(c) = f'(d)(x — c)
for some d € (¢, x) C (¢, c + 6). Hence f(x) — f(c) <0 or
f(x) < f(c).
» We have seen that f(c) > f(x) for all x € (¢ — §,c +9),

proving that f has local maxima at c.
» The proof of (ii) is similar. H.
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» Theorem 32.5: Let f : [a, b] — R be continuous and let
X € (a, b)

> Assume that there exists § > 0 such that f(1), F(2) £
exist and are continuous in (xo — d, xp + d). Suppose

and (") (xg) # 0.
> (i) If nis even and f("(xp) > 0 then f has local minimum at
X0-



Higher order tests for extrema

>

>

Theorem 32.5: Let f : [a, b] — R be continuous and let

X € (a, b)

Assume that there exists § > 0 such that f(1) £(@_ £
exist and are continuous in (xo — d, xp + d). Suppose

and (") (xg) # 0.

(i) If nis even and f(")(xg) > 0 then f has local minimum at
X0-

(ii) If n is even and f(")(xg) < 0 then f has local maximum at
X0.



Higher order tests for extrema

>

>

Theorem 32.5: Let f : [a, b] — R be continuous and let

X € (a, b)

Assume that there exists § > 0 such that f(1) £(@_ £
exist and are continuous in (xp — d, xp + ¢). Suppose

and (") (xg) # 0.

(i) If nis even and f(")(xg) > 0 then f has local minimum at
X0-

(ii) If n is even and f(")(xg) < 0 then f has local maximum at
X0.

(iii) If nis odd then f has neither local maximum nor local
minimum at xp.



Continuation

» Proof. (i) Assume n is even and f(")(xg) > 0.
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» Proof. (i) Assume n is even and f(")(xg) > 0.

> As f(") is continuous and f(")(xg) > 0 by choosing a smaller &
if necessary we may assume (") (c) > 0 for all
Cc E (Xg — (5,X0 +5)



Continuation

» Proof. (i) Assume n is even and f(")(xg) > 0.

> As f(") is continuous and f(")(xg) > 0 by choosing a smaller &
if necessary we may assume (") (c) > 0 for all
cc (Xg — 9, X —1—5)

» Since F(D(xg) = --- = f(""1(xg) = 0, by Taylor's theorem,
for x € (xo — 9, x0 + 9),

f(")(c)

() = fr0) + —|

(x — x0)"

for some ¢ € (xg — 0, %0 + ).
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» Proof. (i) Assume n is even and f(")(xg) > 0.

> As f(") is continuous and f(")(xg) > 0 by choosing a smaller &
if necessary we may assume (") (c) > 0 for all
Cc E (Xg — (5,X0 +5)

» Since F(D(xg) = --- = f(""1(xg) = 0, by Taylor's theorem,
for x € (xo — 9, x0 + 9),

f(")(c)

f(x) = f(xo) + o

(x — x0)"

for some ¢ € (xg — d, x0 + 9).

> As nis even (x — xp)" > 0. We also have f(")(c) > 0.
Consequently f(x) > f(xp). This shows that f has local
minimum at xg.
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» Proof. (i) Assume n is even and f(")(xg) > 0.

> As f(") is continuous and f(")(xg) > 0 by choosing a smaller &
if necessary we may assume (") (c) > 0 for all
Cc E (Xg — (5,X0 +5)

» Since F(D(xg) = --- = f(""1(xg) = 0, by Taylor's theorem,
for x € (xo — 9, x0 + 9),

f(")(c)

f(x) = f(xo) + o

(x — x0)"

for some ¢ € (xg — d, x0 + 9).

> As nis even (x — xp)" > 0. We also have f(")(c) > 0.
Consequently f(x) > f(xp). This shows that f has local
minimum at xg.

» (ii) This is similar.



Continuation

» (iii) Now as nis odd, (x — xp)" is either positive or negative
depending upon x > xg or x < Xp.
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» (iii) Now as nis odd, (x — xp)" is either positive or negative
depending upon x > xg or x < Xp.

> Like before by continuity £(")(c) has fixed sign, namely the
sign of £(")(xg) in an open interval around xp.
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» (iii) Now as nis odd, (x — xp)" is either positive or negative
depending upon x > xg or x < Xp.

> Like before by continuity £(")(c) has fixed sign, namely the
sign of £(")(xg) in an open interval around xp.

» By Taylor's theorem,

f(")(c)

f(x) = f(xo) + o

(x — x0)",
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» (iii) Now as nis odd, (x — xp)" is either positive or negative
depending upon x > xg or x < Xp.

> Like before by continuity £(")(c) has fixed sign, namely the
sign of £(")(xg) in an open interval around xp.

» By Taylor's theorem,

f(")(c)

f(x) = f(xo) + o

(x — x0)",

» and we see that f(x) — f(xp) has different signs for x > xp
and x < xp in an open interval around xp. Il



Continuation

» (iii) Now as nis odd, (x — xp)" is either positive or negative
depending upon x > xg or x < Xp.

> Like before by continuity £(")(c) has fixed sign, namely the
sign of £(")(xg) in an open interval around xp.

» By Taylor's theorem,

f(")(c)

f(x) = f(xo) + o

(x — x0)",

» and we see that f(x) — f(xp) has different signs for x > xp
and x < xp in an open interval around xp. Il

» END OF LECTURE 32.
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» We recall:

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.



Lecture 33. L'Hospital’s rules

> We recall:

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.



Lecture 33. L'Hospital’s rules

> We recall:

» Theorem 30.9 (Interior Extremum theorem): Let f : | — R be
a function. Suppose c is an interior point of / and suppose ¢
is a local extremum of f. If f is differentiable at ¢ then

f'(c) = 0.

» Theorem 30.10 (Rolle’s theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Suppose
f(a) = f(b) = 0. Then there exists ¢ € (a, b) such that

f'(c) = 0.

» Theorem 31.1 (Mean value theorem): Let f : [a,b] — R be a
continuous function which is differentiable on (a, b). Then
there exists ¢ € (a, b) such that

f(b) — f(a) = f'(c)(b— a).



Limits to cluster points

» We recall:



Limits to cluster points

» We recall:

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) —z| <&, Vx€(c,c+d)[)A
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» We recall:

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) —z| <&, Vx€(c,c+d)[)A
» Clearly if such a limit exists, then it is unique and we write

Xl—I)T+ f(X) -



Limits to cluster points

» We recall:

» Definition 27.9: Let ¢ be a right cluster point of a subset A of
R. Let f : A— R be a function. Then f is said to have a
right hand limit at c if there exists z € R such that for every
€ > 0, there exists § > 0 such that

f(x) —z| <&, Vx€(c,c+d)[)A

» Clearly if such a limit exists, then it is unique and we write

Xl—I)T+ f(X) -z
» Observe that,
lim f(x)=z
X—C+

iff for every decreasing sequence {x,}nen in A converging to
¢, {f(xn)} converges to z.

> Some texts may have the notation: lim, | f(x) = z.



L'Hospital’s rule -0

» Theorem 33.1: Let f, g : [a, b] = R be functions differentiable
at a, with f(a) = g(a) =0, g(x) # 0 for x # 0 and g’(a) # 0.
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» Theorem 33.1: Let f, g : [a, b] = R be functions differentiable
at a, with f(a) = g(a) =0, g(x) # 0 for x # 0 and g’(a) # 0.

> Then limy_, 4 f% % exists and




L'Hospital’s rule -0

» Theorem 33.1: Let f, g : [a, b] = R be functions differentiable
at a, with f(a) = g(a) =0, g(x) # 0 for x # 0 and g’(a) # 0.

> Then limy_, 4 f% % exists and

» Proof:




L'Hospital’s rule -0

» Theorem 33.1: Let f, g : [a, b] = R be functions differentiable
at a, with f(a) = g(a) =0, g(x) # 0 for x # 0 and g’(a) # 0.
> Then limy_, 4 f% % exists and
f(x) _ f'(a)

A 2() g8

» Proof:
f(x) f(x) —f(a) X—a
g(x) x—a g(x)—g(a)

!’
» Hence the limit as x tends to a exists and equals 2%3) |

v



L'Hospital's rule I(a)

» Theorem 33.2 (L'Hospital's rule | (a):) Let f,g:(a,b) > R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume

lim f(x)=0= lim g(x).

x—ra+ xX—ra+



L'Hospital's rule I(a)

» Theorem 33.2 (L'Hospital's rule | (a):) Let f,g:(a,b) > R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume
lim f(x)=0= lim g(x).

x—ra+ xX—ra+

> I limyas % = L € R then

lim f—x) = L.
X—a+ g(x)



L'Hospital's rule I(a)

» Theorem 33.2 (L'Hospital's rule | (a):) Let f,g:(a,b) > R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume

lim f(x)=0= lim g(x).

x—ra+ xX—ra+

> I limyas % = L € R then

f(x)

x|—|>n;+ g(x) =L

» Proof. We use Cauchy's mean value theorem.



L'Hospital's rule I(a)

» Theorem 33.2 (L'Hospital's rule | (a):) Let f,g:(a,b) > R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume
lim f(x)=0= lim g(x).

x—ra+ xX—ra+

> I limyas % = L € R then

lim f—x) =1L
X—a+ g(x)

v

Proof. We use Cauchy's mean value theorem.
» For € > 0, choose § > 0 such that

f'(x)
g'(x)

—Ll<e

fora<x<a+d.



Continuation

» Now for any a < y < x < a+ 9, by Cauchy's mean value
theorem

(F(x) = f(y))g'(c) = F'(c)(e(x) — &(y))

for some ¢ € (y,x) C (a,a+9).



Continuation

» Now for any a < y < x < a+ 9, by Cauchy's mean value
theorem

(F(x) = f(y))g'(c) = F'(c)(e(x) — &(y))

for some ¢ € (y,x) C (a,a+9).
» Since g’(c) # 0, we may write this as,

)~ Fy) =

(Iq\

—~~
(@}

~—



Continuation

» Now for any a < y < x < a+ 9, by Cauchy's mean value
theorem

(F(x) = f(y))g'(c) = F'(c)(e(x) — &(y))

for some ¢ € (y,x) C (a,a+9).
» Since g’(c) # 0, we may write this as,

)~ Fy) =

» Also, by mean value theorem g(x) # g(y) (Otherwise,
g'(z) = 0 for some z.)



Continuation

» Now for any a < y < x < a+ 9, by Cauchy's mean value
theorem

(F(x) = f(y))g'(c) = F'(c)(e(x) — &(y))

for some ¢ € (y,x) C (a,a+9).
» Since g’(c) # 0, we may write this as,

)~ Fy) =

» Also, by mean value theorem g(x) # g(y) (Otherwise,
g'(z) = 0 for some z.)

» Hence,




Continuation

» In particular,
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» In particular,

) = fly)

g0 —gly) ~Fte

L—e<
P> Taking limit as y converges to a, we get
f.’
L—e< ﬁ < L+e,
g(x)

for all x € (a,a +9).



Continuation

» In particular,

) = fly)

g0 —gly) ~Fte

L—e<
P> Taking limit as y converges to a, we get

L—egmgL—ke,
X)

&(

for all x € (a,a +9).
» This proves that



L'Hospital's rule I(b)

» Theorem 33.2 (L'Hospital’s rule | (b)): Let f,g : (a,b) = R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume
lim f(x)=0= lim g(x).

xX—ra+ xX—ra+



L'Hospital's rule I(b)

» Theorem 33.2 (L'Hospital’s rule | (b)): Let f,g : (a,b) = R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume

lim f(x)=0= lim g(x).

xX—ra+ xX—ra+
> If limy_ ot % = L € {400, —o0} then
lim LX) =L
X—a+ g(X)



L'Hospital's rule I(b)

» Theorem 33.2 (L'Hospital’s rule | (b)): Let f,g : (a,b) = R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume

lim f(x)=0= lim g(x).

xX—ra+ xX—ra+
> If limy_ ot % = L € {400, —o0} then
lim LX) =L
X—a+ g(X)

» Proof. Consider the case L = co. (Similar proof works when
L = —o0.



L'Hospital's rule I(b)

» Theorem 33.2 (L'Hospital’s rule | (b)): Let f,g : (a,b) = R
be differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume

lim f(x)=0= lim g(x).

xX—ra+ xX—ra+
> If limy_ ot % = L € {400, —o0} then
lim LX) =L
x—a+ g(x)
» Proof. Consider the case L = co. (Similar proof works when
L = —o0.

» Now for M € R, there exists 6 > 0 such that

f‘l

0w
g'(x)

for x € (a,a+ 9).



Continuation

» By Cauchy’s mean value theorem, for a <y < x < a+ 9,

(Fx) = f(¥)g'(c) = F'(c)(e(x) — ()

for some ¢ € (y,x) C (a,a+9).



Continuation

» By Cauchy’s mean value theorem, for a <y < x < a+ 9,

(Fx) = f(¥)g'(c) = F'(c)(e(x) — ()

for some ¢ € (y,x) C (a,a +9).
> Like before, g’(c) #0, g(x) — g(y) # 0 and we get




Continuation

» By Cauchy’s mean value theorem, for a <y < x < a+ 9,

(Fx) = f(¥)g'(c) = F'(c)(e(x) — ()

for some ¢ € (y,x) C (a,a +9).
> Like before, g’(c) #0, g(x) — g(y) # 0 and we get

)~ fly)  F(e)
c)—gl) g0 "

» Taking limit as y converges to a we get

f(x)

g(x) ~

~—

for all x € (a,a+9).



Continuation

» By Cauchy’s mean value theorem, for a <y < x < a+ 9,

(Fx) = f(¥)g'(c) = F'(c)(e(x) — ()

for some ¢ € (y,x) C (a,a +9).
> Like before, g’(c) #0, g(x) — g(y) # 0 and we get

)~ fly)  F(e)
c)—gl) g0 "

» Taking limit as y converges to a we get

f(x)

g(x) ~

~—

for all x € (a,a+9).

» This shows limy_, .+ % = +o00.



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every
x € (a, b). Assume lim,_, .+ g(x) = £o0.



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every

x € (a, b). Assume lim,_, .+ g(x) = £o0.
f'(x

> (a) If limy sy SE3 = L € R then

. f(x)
A ek~ b



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every
€ (a, b). Assume limy_, 4 g(x) = £oo.
> ( ) I lim oy D0 = L € R then
f(x) _ L

x|—|>n;+ g(x)

> (b) If lim, oy L4 = 1 € {+00,—00}

i fO)
x|—|>r2+ g(x) L



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every
€ (a, b). Assume limy_, .+ g(x) = £oo.

> ( ) I lim oy D0 = L € R then

f(x)
A ek~ b

> (b) If lim, oy L4 = 1 € {+00,—00}

Bl

» Proof. Omitted. (See the book of Bartle and Sherbert.)

>



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every
€ (a, b). Assume limy_, 4 g(x) = too.
> () If limy oy 50 = L € R then
f(x) _ L

2 g(x)

> (b) If lim, oy L4 = 1 € {+00,—00}
f(x)

lim —= =
ot g(x)
» Proof. Omitted. (See the book of Bartle and Sherbert.)

» INFINITE SERIES LECTURES BY CHAITANYA APPENDED
BELOW



L'Hospital's rule Il

» Theorem 33.3(L'Hospital’s rule ll:Let f, g : (a,b) = R be
differentiable functions. Suppose g’(x) # 0 for every
€ (a, b). Assume limy_, 4 g(x) = too.
> () If limy oy 50 = L € R then
f(x)

A ek~ b

> (b) If lim, oy L4 = 1 € {+00,—00}
f(x)

3+ g(x)

» Proof. Omitted. (See the book of Bartle and Sherbert.)

» INFINITE SERIES LECTURES BY CHAITANYA APPENDED
BELOW

» THANK YOU FOR LISTENING AND BEST WISHES FOR
YOUR EXAMINATIONS.
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» We know that finite sums 22:1 ax=ai+ay+---+a, of real
numbers are well-defined due to the associativity of addition.

» Now, it is natural to ask: What is the meaning of Y °° ; a,
when {a,}nen is a real sequence?

> For example, consider > °°, a, with a, = (—1)""1,vn € N,

i.e., consider thesum 1—-1+1—-1+---.
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= 0+0+---=0
1-141-14- = 14(-14+1)+(-141)+---

= 14+0+0+---=1



Infinite Series L1

» We know that finite sums 22:1 ax=ai+ay+---+a, of real
numbers are well-defined due to the associativity of addition.

» Now, it is natural to ask: What is the meaning of Y °° ; a,
when {a,}nen is a real sequence?

> For example, consider > °°, a, with a, = (—1)""1,vn € N,

i.e., consider thesum 1—-1+1—-1+---.

>
1-1+1—-14- = (1-1)+(1-1)+---
= 0+0+---=0
1-141-14- = 14(-14+1)+(-141)+---
= 140+0+---=1

» This absurdity shows that we should give a ‘sensible meaning’
to Y 07, an.
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Convergence and Sum of an infinite series

» Definition 1: Let {a,}nren be a sequence of real numbers.
An expression of the form >, a, is called an infinite series.

For each n € N, the finite sum s, = >_7_, ax is called the n'
- 00
partial sum of > 7% a,.

The infinite series >"7° | a, is said to be convergent if {s,}nen
is convergent.

In such a case, the limit s := lim s, is called the sum of the
n—o0

series, and we denote this fact by the symbol 77, a, = s.

The infinite series 7, a, is said to be divergent if {s,}nen
is divergent.
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Examples

» Example 1. Consider the infinite series Y~ ; a,, where
a,=c,VnéeN.

Then Y07 a, is convergent <= ¢ =0.
(In fact, {sp}nen = {nc}nen is convergent <= ¢ =0)

» Example 2 (Geometric series).

1
1+r+r2_|_...:1

for |r| < 1.
—r

(Infact, sp=1+4+r+r2+.. -+ rt= 11:’: —>ﬁfor
rl<1)

» Example 3 (Harmonic series).

=1 "1
Z - is divergent, as {Z k} is not bounded above.
neN

n=1 k=1
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Proof: Let {s,}nen be the sequence of partial sums of
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Si_1 = 1
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> Example 4.
The infinite series >.7°; % is convergent.

Proof: Let {s,}nen be the sequence of partial sums of
220:1 n—lg Look at the subsequence {spn_1}nen.

Si_1 = 1

52271 = ]. +

523_1 =1 + (
1
2

IN
—
+

N

1 (1)? 1
Son_1 S 1+2+(2) ++<2 =: tp, VFIEN,

where {t,} nen is the sequence of partial sums of >0° 1 (3)" .
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= s 1 <t, <2, VneN.
= s, <2, VneN (why?).

Therefore {sp}nen is convergent, being an increasing sequence.

Hence 0%, & is convergent. O
> Note: In fact, it can be proved that Y70, L = %2 (see Basel
problem).

> Exercise: Prove that the infinite series 7 ; L is convergent

for all p € N\ {1}.

» Theorem 1 (Cauchy criterion). An infinite series Y >, ap is
convergent if and only if for every € > 0 there exists K € N
such that

lant1 + ang2 + -+ am| <€, Ym>n> K.

» Theorem 2 (nth term test). If a series > °°, a, converges,
then lim a, =0.
n—oo
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Algebra of convergent series

Theorem 3. Let > 72, a, and Y 72 ; b, be convergent series with
sums x and y, respectively. Then

(i) 2on=1(an + bn) = x +y;
(it) >0 1(can) = cx for all c € R.
Sketch of the proof:
(i) Let {sp}nen and {t,}nen be the sequence of partial sums of
> 1 an and > 07 by, respectively.
Similarly, let {un}nen be the sequence of partial sums of
> ne1(an =+ bp).
Then

n

n n
Un:Z(ak‘i‘bk)Zzak+2bk:sn+tn—>x+yasn—>oo.

(i) Similar O



Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?



Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

» Recall that given two convergent sequences {a,}n,en and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product

(g, 2n) - g, bn)



Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

» Recall that given two convergent sequences {a,}n,en and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product

lim a,)-( lim by,).
(n—>oo n) (n—>oo n)

» So, given two series Y o ; a, and Y7 by, one may think of

defining their product as >~ | c,, where ¢, = apb.



Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

» Recall that given two convergent sequences {a,}n,en and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product
(g, 2n) - g, bn)

» So, given two series Y o ; a, and Y7 by, one may think of
defining their product as >~ | c,, where ¢, = apb.

» But, this is not a good definition.



Cauchy product

>

>

Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?
Recall that given two convergent sequences {a,}nen and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product

lim a,) - ( lim b,).
(im_ n) - fim_bn)
So, given two series Y °° . a, and > -, by, one may think of
defining their product as >~ | c,, where ¢, = apb.
But, this is not a good definition.

In fact, even for n = 2, the equality
(a1 + a2)(b1 + bp) = a1b1 + azby is not true in general.



Cauchy product

>

>

Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

Recall that given two convergent sequences {a,}nen and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product

(g, 2n) - g, bn)

So, given two series Y °° . a, and > -, by, one may think of
defining their product as >~ | c,, where ¢, = apb.

But, this is not a good definition.

In fact, even for n = 2, the equality

(a1 + a2)(b1 + bp) = a1b1 + azby is not true in general.
Recall that we have used distributivity while computing

(a1 + a2)(b1 + bo)



Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

» Recall that given two convergent sequences {a,}n,en and
{ap} nen, we defined their product as the sequence {anbn}nen
and the product converges to the product

(g, 2n) - g, bn)

» So, given two series Y o ; a, and Y7 by, one may think of
defining their product as >~ | c,, where ¢, = apb.

» But, this is not a good definition.

» In fact, even for n = 2, the equality
(a1 + a2)(b1 + bp) = a1b1 + azby is not true in general.
» Recall that we have used distributivity while computing
(a1 + a2)(b1 + bo)
» Indeed (al + 82)(b1 + bz) = a1by +aiby + axb; + axbs
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» If we look at two polynomials
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and
Q(X) = by + b1 X + boX? + -+ by X™,

then their product is a polynomial
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Cp = aobp+ain,_1+axb, 2+ -+ap_1b1+anby = Z axbp_.
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» Can we use distributivity for an infinite sum?

» If we look at two polynomials
P(X) = a0+ a1 X + aX?+ -+ a,X"

and
Q(X) = bo + b1 X + boX? + -+ + bpX™,

then their product is a polynomial
ot aX+oX2+-+ CrymX™M,

where ¢y = agbg, ¢1 = agh1 + ai1bg, ¢ = agby + a1 b1 + az by,
and in general

n
Cp = aobp+ain,_1+axb, 2+ -+ap_1b1+anby = Z axbp_.
k=0

P> This suggests the following definition.
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> Definition 2. Given two series Y ° g a, and >~ by, their
Cauchy product is the series Y ° ; ¢c,, where
Cn =Y p—_o akbn—«.

» Remark: In spite of this intuitive idea, in general, the Cauchy
product of two convergent series need not be convergent.

Example 5.
Consider the series >~ 7 yan and Y72 by, where

(1"
n=by= , Vne NU{0}.
? N ES U {0y

Then Y~0° s an and > 2 b, are convergent by the following
result.
(Result: The series > o, (—1)""1a,, where {a,}nen is a
decreasing sequence of positive reals, is convergent if and only
if lim a,=0.)

n—o00
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Claim: Their Cauchy product > ° ; ¢, is divergent.
We have

C”_;)akb”k__ Z\/k+ n—k+1)
For 0 < k < n,
(k+1)(n—k+1):(g+1>2—<g—k)2§(g+1)2.

1

> , forall0< k<n
\/(k+1)(n—k+1) n+2

J2nt1) 20147

— Chl|l = =
lenl = Z\/k+1 Yn—k+1) ~ n+2 1+2

Therefore, it follows that ZZ‘;O cp is not convergent.
P> However, things are not that bad. We will revisit this and see
when can we assure that the Cauchy product of two series is
convergent.
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Tests for convergence of series

> nt" term test-already seen.

» Theorem 4. Let > 77, a, be a series of non-negative real
numbers. Then it is convergent if and only if its sequence of
partial sums {s,}nen is bounded above. In this case

oo
Z ap = sup{s, : n € N}.
n=1

Proof: Exercise
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» Theorem 5 (Comparison test). Let {an}nen and {b,}nen be
real sequences, and suppose that there exists N € N such that

0<a,<b, Vn>N.
(i) If >0 by is convergent, then sois > 2, ap.
(ii) If >°°°; an is divergent, then so is Y by.

Proof: (i) Let € > 0 be arbitrary. Since Y 77, by is
convergent, by Cauchy criterion, for the € there exists K € N
such that

|bn+1+bn+2+'”+bm| < €, Vm>n> K.
Then

0 < apyi1tang2+--+am < bn+1+bn+2+' . '+bm < €, VYm>n > M,

where M := max{N, K}. Since ¢ > 0 is arbitrary, again by
Cauchy criterion, it follows that >"7° ; a, is convergent.
(i) Follows from (i). O
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» Theorem 6 (Limit comparison test): Let {a,}nen and
{bn}nen be strictly positive sequences.
(i) If nhj;o 2 =cand c >0, then 377, b, is convergent if
and only if Y 72 a, is convergent.
(ii) If [lim 22 =0 and Y021 bp is convergent, then "7 a,
is convergent.
(iii) If I|m % oo and > 02, by is divergent, then Y 77 a,
is d|vergent

Proof: (i) Since ¢ > 0, there exists K € N such that

Z—:— , Vn> K.
— —£<—"—c< , Vn> K.
2 bn

— (%) by < ap < <32C) by, Vn > K.

Therefore, by comparison test, the result follows.
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Since >, by is divergent, by result (i) of Limit comparison test,
it'follov;/s that )77 a, is divergent.(ii) Exercise. (Hint: Compare
with {ﬁ}neN).



Infinite Series L2. Recall

» Definition. Let {a,}nen be a sequence of real numbers.
An expression of the form >~ a, is called an infinite series.

For each n € N, the finite sum s, = >_7_, ax is called the n'
partial sum of >_°° 1 a,.

The infinite series Y > ; a, is said to be convergent if {s,}nen
is convergent.

In such a case, the limit s := lim s, is called the sum of the
n—oo

series, and we denote this fact by the symbol "7, a, = s.

The infinite series ) 77 ; a, is said to be divergent if {s,}nen
is divergent.
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An expression of the form >~ a, is called an infinite series.

For each n € N, the finite sum s, = >_7_, ax is called the n'
partial sum of >_°° 1 a,.

The infinite series Y > ; a, is said to be convergent if {s,}nen
is convergent.

In such a case, the limit s := lim s, is called the sum of the
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series, and we denote this fact by the symbol "7, a, = s.

The infinite series ) 77 ; a, is said to be divergent if {s,}nen
is divergent.

» Theorem (Cauchy criterion). An infinite series Y 77 ap is
convergent if and only if for every € > 0 there exists K € N
such that |ap11 +ant2+ -+ am| <€, Vm>n> K.
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Theorem. A series > 2, a, of non-negative reals is

convergent if and only if its sequence of partial sums {s,}pen

is bounded above. In this case Y 7" ; a, = sup{s, : n € N}.

Theorem (Comparison test). Let {a,}nen and {bp}nen be

real sequences, and suppose that there exists N € N such that

0<a,< b, Vn>N.

(i) If >0 by is convergent, then so is > 2, ap.

(i) If >°02 an is divergent, then so is > 2 by.

Theorem 6 (Limit comparison test): Let {ap}nen and

{bn}nen be strictly positive sequences.

(i) If lim 2 = cand ¢ >0, then ) °; b, is convergent if
n—oo “n

and only if Y 7 a, is convergent.

(i) If [lim_ 2 =0and Y 72, b, is convergent, then 3 °7¢, a,

is convergent.

(iii) If HILngO 2 =ocand )2, b, is divergent, then 2, a,

is divergent.
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_1\n+1
> We have seen that > 2, ( 13 is convergent whereas
S L s divergent.

n=1n

» Thus, a series ) °; a, may be convergent, but the series
3221 |an| obtained by taking the absolute values of the terms
may be divergent.

» This observation leads to the following definition.

» Definition. Let {a,}nen be a sequence of real numbers. We
say that >0, ap is

(i) absolutely convergent if > 7 |a,| is convergent;
(ii) conditionally convergent if it is convergent, but not absolutely
convergent.

> Examples:

1yl
O ( 2 is absolutely convergent.

_qyt .
(i) S22, ¢ ln) is conditionally convergent.

(i) °02,(—1)"1 is neither absolutely convergent nor
conditionally convergent.
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Immediate observation: A series of non-negative reals is
convergent if and only if it is absolutely convergent.
Theorem. Every absolutely convergent series is convergent.

Proof: Let Y 77 a, be absolutely convergent.

Them, by definition, > 72, |a,| is convergent.

To prove the convergence of 7, a,, we make use of Cauchy
criterion.

Let € > 0 be given.

Since >~77; |an| is convergent, by Cauchy criterion, there
exists K € N such that

l|ant1| + |ant2| + -+ |aml|| <€, Vm>n> K.
Then for all m > n < K, we have

‘an+1+an+2+“'+am’ < ’an+1|+‘an+2’+"'+‘am’
= llansil +fant2l + -+ +lam|| <€

Since € > 0 is arbitrary, Cauchy criterion implies that "7, aj,
is convergent. ]
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exists in R.
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Since (8) holds, there exists K € N such that
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Let {an}nen be a real sequence and suppose that

r:= lim \a,,|% (3)

n—o0

exists in R.

(i) If r <1, then the series > a, is absolutely convergent.
(i) If r > 1, then the series Y, a, is divergent.

Proof: (i) Since r < 1, we can choose s € R such that
r<s<I.
Since (8) holds, there exists K € N such that
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== \a,,]%<5, Vn> K.



Corollary (Cauchy's Root Test—another version).
Let {an}nen be a real sequence and suppose that
. 1
ri= lim Jan|? (3)

exists in R.

(i) If r <1, then the series > a, is absolutely convergent.
(i) If r > 1, then the series Y, a, is divergent.

Proof: (i) Since r < 1, we can choose s € R such that
r<s<I.
Since (8) holds, there exists K € N such that

‘|a,,|%—r‘ <s—r, Vn>K.

= \a,,|%—r<s—r, Vn> K.

= \a,,]% <s, Vn> K.

Since s < 1, by (i) of the previous theorem, it follows that
Y021 an is absolutely convergent.



(ii) Since r > 1, we can choose s € R such that r > s > 1.



(ii) Since r > 1, we can choose s € R such that r > s > 1.
Since (8) holds, there exists K € N such that

)|a,,]%—r‘ <r—s,Vn>K.



(ii) Since r > 1, we can choose s € R such that r > s > 1.
Since (8) holds, there exists K € N such that

)|a,,]%—r‘ <r—s,Vn>K.

= —(r—s)< |a,,|%—r, Vn> K.



(ii) Since r > 1, we can choose s € R such that r > s > 1.
Since (8) holds, there exists K € N such that

)|a,,]%—r‘ <r—s,Vn>K.

= —(r—s)< |a,,|% —r, Vn> K.
= s5< \an\%, Vn> K.



(ii) Since r > 1, we can choose s € R such that r > s > 1.
Since (8) holds, there exists K € N such that

)|a,,]%—r‘ <r—s,Vn>K.

= —(r—s)< |a,,|% —r, Vn> K.

= s5< \an\%, Vn> K.

Since s > 1, by (ii) of the previous theorem, we get that > "~ ; a,
is divergent. |
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» Example: Test the absolute convergence of the following
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() S, 2 (i) o, OF

Solution: (i) -2 2 converges absolutely by root test,

n=1 2n
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because g—,,— ),/;—(‘f) —>— %<1.

(i) 02, (,1_232)1'7 is divergent by root test,
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() ol g () X
Solution: (i) Y-024 g—i converges absolutely by root test,
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(ii) Zn 1 n2021 is divergent by root test, because
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» Remark: The test is inconclusive if r = 1.



» Example: Test the absolute convergence of the following
series.

. 2. _3)n
() ol g () X
Solution: (i) Y-024 g—i converges absolutely by root test,

because "g—i_),/;_(\f) _>7 %<1'

(ii) Zn 1 n2021 is divergent by root test, because

3)n o n/*3,, o -
2021 n2021 U202t (%)2021 — m =3>1

» Remark: The test is inconclusive if r = 1.
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» Example: Test the absolute convergence of the following
series.

. 2. _3)n
() a5 (i) X, S
Solution: (i) Y-024 g—i converges absolutely by root test,

because "g—i_),/;_(\f) _>7 %<1'

(ii) Zn 1 n2021 is divergent by root test, because

3)n o n/*3,, o -
2021 n2021 U202t (%)2021 — m =3>1

» Remark: The test is inconclusive if r = 1.
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» Theorem (D'Alembert Ratio Test). Let {an}nen be a
sequence of nonzero real numbers.
(i) If there exist r € R with 0 < r < 1 and K € N such that
dn+1

—| <r, Vn>K, (4)
an

then the series > | a, is absolutely convergent.
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then the series > | a, is divergent.



» Theorem (D'Alembert Ratio Test). Let {an}nen be a
sequence of nonzero real numbers.
(i) If there exist r € R with 0 < r < 1 and K € N such that

dn+1

an

<r, Vn>K,

then the series > | a, is absolutely convergent.
(i) If there exists K € N such that

an+l

an

>1, Vn> K,

then the series > | a, is divergent.

Proof: (i) Since (4) holds, we have |ap+1| < r|an|, Vn > K.
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sequence of nonzero real numbers.
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= |anik| < |ak|r" = |rK| ntK VneN.
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Now, since r < 1, the geometric series > >, r" is convergent.



» Theorem (D'Alembert Ratio Test). Let {an}nen be a
sequence of nonzero real numbers.
(i) If there exist r € R with 0 < r < 1 and K € N such that

an+1

p <r, Vn>K, (4)

then the series > | a, is absolutely convergent.
(i) If there exists K € N such that
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an

>1, Vn> K, (5)

then the series > | a, is divergent.
Proof: (i) Since (4) holds, we have |ap+1| < r|an|, Vn > K.
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= Jan| < , Vn> K+ 1.

Now, since r < 1, the geometric series > >, r" is convergent.
This implies that the series >, ‘f—,’i‘r” is convergent.



» Theorem (D'Alembert Ratio Test). Let {an}nen be a
sequence of nonzero real numbers.
(i) If there exist r € R with 0 < r < 1 and K € N such that

an+1
an

<r, Vn>K, (4)

then the series > | a, is absolutely convergent.
(i) If there exists K € N such that

an+l
an

>1, Vn> K, (5)

then the series > | a, is divergent.
Proof: (i) Since (4) holds, we have |ap+1| < r|an|, Vn > K.

= |anik| < |ak|r" = |rK| ntK VneN.

|K!

= Jan| < , Vn> K+ 1.

Now, since r < 1, the geometric series > >, r" is convergent.

This implies that the series >, ‘f—,’i‘r” is convergent.
Therefore, by comparison test, > "7, |an| is convergent.



» (ii) Since (5) holds, we have |ap+1| > |an|, Vn > K.
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This implies that a, - 0 as n — oo, since |ak| > 0.
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» (ii) Since (5) holds, we have |ap+1| > |an|, Vn > K.

= |ant+k| > |ak]|, Vn e N.
= |an| > |akl|, Vn > K+ 1.

This implies that a, - 0 as n — oo, since |ak| > 0.
Therefore, by nt/ term test, the series > °° | a, is divergent. B

» Corollary (D'Alembert Ratio Test—another version).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

an+1
an
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n—o00

exists in R.
(i) If r <1, then the series > | a, is absolutely convergent.
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» Corollary (D'Alembert Ratio Test—another version).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

an+1
an

r:= lim
n—o00

exists in R.
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(i) If r > 1, then the series > | a, is divergent.



» (ii) Since (5) holds, we have |ap+1| > |an|, Vn > K.

= |ant+k| > |ak]|, Vn e N.
= |an| > |akl|, Vn > K+ 1.

This implies that a, - 0 as n — oo, since |ak| > 0.
Therefore, by nt/ term test, the series > °° | a, is divergent. B

» Corollary (D'Alembert Ratio Test—another version).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

an+1
an

r:= lim
n—o00

exists in R.

(i) If r <1, then the series > | a, is absolutely convergent.
(i) If r > 1, then the series > | a, is divergent.

Proof: Exercise.
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> Example: Test the absolute convergence of the following
series.

() S % (i) Sy G

Solution: (i) Y-, - converges absolutely by ratio test,
because

2n+1+7
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(i) >0, Eif)); is divergent by ratio test, because
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> Example: Test the absolute convergence of the following
series.

() S % (i) Sy G

Solution: (i) Y-, - converges absolutely by ratio test,
because

et 1 247 1244 12 2,

2415 2747 5 144 "5 1 5
(i) >0, Eif)); is divergent by ratio test, because

2n+2)!
%_(2n+2)(2n+1)_4n+2_4+%_>4>1

(3!77)!! (n+1)(n+1) n+1 141 '

» Remark: The test is inconclusive if r = 1.



> Example: Test the absolute convergence of the following
series.

() S % (i) Sy G

Solution: (i) Y-, - converges absolutely by ratio test,
because

et 1 247 1244 12 2,
2415 2747 5 144 "5 1 5
(i) >0, Eif)); is divergent by ratio test, because
2n+2)!
s 2n+2)(2n+1) 4n+2 442
Bl = - R EEE Al
21) (n+1)(n+1) n+ 1++

» Remark: The test1 is inconclusive if r = 1.
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> Example: Test the absolute convergence of the following
series.

() S % (i) Sy G

Solution: (i) 327, Z£7 converges absolutely by ratio test,

n=1 5n
because
Pl 1 2m47 1244 12 2
2415 2747 5 144 "5 1 5
(i) >0, Eif)); is divergent by ratio test, because
2n+2)!
s 2n+2)(2n+1) 4n+2 442
et - R T T f it
21) (n+1)(n+1) n+ 1+

» Remark: The test1 is inconclusive if r = 1.
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> Definition. Given two series Y "5 a, and >~ by, their
Cauchy product is the series Y ° ; ¢,, where
Cn =>4 oakbn—k.
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Cn =Y p_o akbn—«.

» Remark. The Cauchy product of two convergent series need
not be convergent.
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> Definition. Given two series Y "5 a, and >~ by, their
Cauchy product is the series Y ° ; ¢,, where
Cn =Y p_o akbn—«.

» Remark. The Cauchy product of two convergent series need
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Example.
Consider the series >"° yan and Y2 by, where
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Recall

> Definition. Given two series Y "5 a, and >~ by, their

Cauchy product is the series Y ° ; ¢,, where
Cn =Y p_o akbn—«.

Remark. The Cauchy product of two convergent series need
not be convergent.

Example.
Consider the series >"° yan and Y2 by, where

—1)n
o = by = 1) vn e NU{0}.

Then their Cauchy product is not convergent.
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—1)n
an:bn: \(/n_'_i)l? VnENU{O}

Then their Cauchy product is not convergent.
Observe that both Y -7° 1 a, and 77 ; b, are not absolutely
convergent.
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Then their Cauchy product is not convergent.

Observe that both Y -7° 1 a, and 77 ; b, are not absolutely
convergent.

Question: Can we have a similar example where one of the
series is absolutely convergent?



Recall

Definition. Given two series " 5 a, and >~ by, their
Cauchy product is the series Y ° ; ¢,, where
Cn =Y p_o akbn—«.

Remark. The Cauchy product of two convergent series need
not be convergent.

Example.
Consider the series >"° yan and Y2 by, where

—1)n
an:bn:\(/n_i_i)l7 VnENU{O}

Then their Cauchy product is not convergent.

Observe that both Y -7° 1 a, and 77 ; b, are not absolutely
convergent.

Question: Can we have a similar example where one of the
series is absolutely convergent?

The answer is NO, as seen from the next result.



Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )", b, be convergent. If Y~7° ja, = a and
> 02 o bn = b, then their Cauchy product Y72 ¢, is
convergent and > 7 ¢, = ab.
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Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of 0% g an, > 0" bp, and Y07, cn, respectively.



Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )", b, be convergent. If Y~7° ja, = a and
> 02 o bn = b, then their Cauchy product Y72 ¢, is
convergent and > 7 ¢, = ab.

Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of 0% g an, > 0" bp, and Y07, cn, respectively.
Then for all n € NU {0}, we have
Up=C+c+-+¢Cp
= (aoho) + (aohy + a1bo) + - - - + (aobn + a1bp—1 + - - - + anbo)
=ag(bg + -+ + by) +a1(bo + -+ + by—1) + -+ + anbo
= aotp +artp—1 + -+ anto

n
= aoty + aitp_1 + - + antp — (Z ak> b+ spb
k=0

= ag(tn — b) + a1(tn—1 — b) + - - - + an(to — b) + spb,



c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.



c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.
Now, since I|m spb = ab, in view of (8), to prove that

lim ¢, = ab |t suffices to prove that I|m vp = 0.
n—oo
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Now, since I|m spb = ab, in view of (8), to prove that
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Proof of the claim that |lim v, = O
n—00
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= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.
Now, since I|m spb = ab, in view of (8), to prove that

lim ¢, = ab |t suffices to prove that I|m vp = 0.
n—o0

Proof of the claim that I|m vp = 0: Let € > 0 be arbitrary.



c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
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where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
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Since I|ﬂm (tn — b) =0, there exists K1 € N such that

‘tn—b’ <€, anKl.



c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.

Now, since I|m spb = ab, in view of (8), to prove that

I|_>m Ch = ab |t suffices to prove that I|m vp = 0.

Proof of the claim that I|m vp = 0: Let € > 0 be arbitrary.
Since I|ﬂm (tn — b) =0, there exists K1 € N such that

‘tn— b’ <e Vn> Ki.
Since {t, — b}penu{oy is bounded, there exists M > 0 such that

|tn_b|§M, Vn € N.



Since > 7, a, is absolutely convergent, say Y " |an| = a,by
Cauchy criterion there exists K> € N such that

lant1] + |ant2| + - lam| <€, Vm > n > Ks.
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Cauchy criterion there exists K> € N such that
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Let K := max{Ki, K2 }.
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Since > 7, a, is absolutely convergent, say Y " |an| = a,by

Cauchy criterion there exists K> € N such that

lant1] + |ant2| + - lam| <€, Vm > n > Ks.

Let K := max{Ki, K2}. Then for all n > 2K, we have

|| = |ao(tn — b) + a1(th—1 — b) + - - - + an(to — b)|

< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]
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< (fao| + [ar] + -+ + [an—k|)e
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<ae+eM

= (a+ M)e.
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Since > 7, a, is absolutely convergent, say Y " |an| = a,by

Cauchy criterion there exists K> € N such that

lant1| + |ant2| + - |am| < €, Vm > n> Ks.

Let K := max{Ki, K2}. Then for all n > 2K, we have

|| = |ao(tn — b) + a1(th—1 — b) + - - - + an(to — b)|

< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]

= |aol|tn — b| + |a1[tn—1 = bl + -+ + [an—k ][tk — b]
+ |an—k+1lltnyk—1 — b| + - - + |an|[to — b]

< (fao| + [ar] + -+ + [an—k|)e
+ (lan—k+41] + -+ [an)M

<ae+eM

= (a+ M)e.

Since € > 0 is arbitrary, it follows that lim v, = 0. This completes
n—o00

the proof.
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(i) absolutely convergent if >_ 7 |a,| is convergent;
(ii) conditionally convergent if it is convergent, but not absolutely
convergent.
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Definition. Let {a,}nen be a sequence of real numbers. We
say that >0, ap is
(i) absolutely convergent if >_ 7 |a,| is convergent;
(ii) conditionally convergent if it is convergent, but not absolutely
convergent.

Theorem. Every absolutely convergent series is convergent.

Theorem (Cauchy’s Root Test).
Let {an}nen be a real sequence and suppose that
. 1
r:= lim |ap|»
n—oo
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» Theorem (D’Alembert Ratio Test).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

an+1
dn

r:= lim
n—o0

exists in R.

(i) If r <1, then the series > ° | a, is absolutely convergent.
(i) If r > 1, then the series Y2, a, is divergent.

> Definition. Given two series Y " 5 a, and >_” by, their
Cauchy product is the series Y °  cn, where
Ch = ZZ:O akb,,,k.

» Remark. The Cauchy product of two convergent series need
not be convergent.
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Infinite Series L3. Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )", b, be convergent. If Y~7° ja, = a and
> 02 o bn = b, then their Cauchy product Y72 ¢, is
convergent and > 7 ¢, = ab.

Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of 0% g an, > 0" bp, and Y07, cn, respectively.
Then for all n € NU {0}, we have
Up=¢c+c+--+¢
= (aoho) + (aohy + a1bo) + - - - + (aobn + a1bp—1 + - - - + anbo)
=ag(bg + -+ + by) +a1(bo + -+ + by—1) + -+ + anbo
= aotp +artp—1 + -+ anto

n
= aoty + aitp_1 + - + antp — (Z ak> b+ spb
k=0

= ag(tn — b) + a1(tn—1 — b) + - - - + an(to — b) + spb,
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cn = ao(tn — b) + a1(ta—1 — b) + - + an(to — b) + spb
= v, + spb, (8)

where v, = ao(t, — b) + a1(tn—1 — b) + - - - + an(to — b) for all
n e NU{0}.
Now, since I|m snb = ab, in view of (8), to prove that

lim ¢, = ab |t suffices to prove that lim v, =0.
n—oo n—o0

Proof of the claim that lim v, = 0: Let ¢ > 0 be arbitrary.

n—oo

Since Ii_)m (tn — b) = 0, there exists K1 € N such that

|th — b| <€, Vn > Kj.
Since {t, — b}penuqoy is bounded, there exists M > 0 such that

Ity — b| < M, ¥n € N.
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the proof.
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Tests for conditional convergence

» Definition. A sequence {a,}nen of non-negative real numbers
is said to be alternating if (—1)"1a, is non-negative for all
neN.

If {an}nen is an alternating sequence, then the series > ° , a,
generated by it is called an alternating series.

» Theorem (Alternating Series Test). Let {an}nen be a
decreasing sequence of positive reals such that lim a, = 0.
n—oo

Then the alternating series Yo7, (—1)"*1a, is convergent.
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» Theorem (Dirichlet's Test). Let {a,}nen be a decreasing

sequence of reals with lim a, = 0 and let the sequence of
n—o00

partial sums {s,}nen of Y02 ; b, be bounded. Then the series
Y021 anby is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let {a,}nen be a sequence of reals and
{Sn}nen be the sequence of partial sums of > >, b, with
sp := 0. If m > n, then

m m—1
> akbk = (amsm — ant15n) + (ak — aks1)se- (9)
k=n+1 k=n+1

Proof of the lemma:

m m
E akbx = § ak(sk — Sk—1)
k=n+1 k=n+1

= —ap+1Sn + Z ax — ak+1)Sk + amsm = RHS of (9)
k=n+1
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Proof of the theorem: Let € > 0 be given. Since {s,}nen is
bounded, there exists M > 0 such that |s,| < M, Vn € N.
By Abel’s lemma, for m > n we have

m m—1
> akbi| = |(amSm — ant1sn) + Y (ak — ak1)sk
k=n+1 k=n+1
m—1
< |amllsm| + |ant|lsn| + Z lak — ak-+1/|sk]
k=n+1
m—1
< (am + an+1)M + Z (ak - ak+1)M
k=n-+1

= {(am + ant1) + (an+1 — am)}M = 22,11 M (10)

Since lim a, = 0, there exists K € N such that
n—oo
lan| < 557, Vn > K.
Therefore, by (10) we have | Y7L ., akbi| <€, Ym>n> K.
Since € > 0 is arbitrary, by Cauchy criterion, it follows that
S22 1 anbp is convergent. [ |



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.
Then

anbp = (up + a)b, = upby + ab,, Yne N (11)



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.
Then

anbp = (up + a)b, = upby + ab,, Yne N (11)

Now, {up}nen is decreasing with limit 0 and the sequence of
partial sums of "7 . b,. is bounded.



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.
Then

anbp = (up + a)b, = upby + ab,, Yne N (11)

Now, {up}nen is decreasing with limit 0 and the sequence of
partial sums of "7 . b,. is bounded.
Therefore, by Dirichlet's test, the series 220:1 upb, is convergent.



Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.
Then

anbp = (up + a)b, = upby + ab,, Yne N (11)

Now, {up}nen is decreasing with limit 0 and the sequence of
partial sums of "7 . b,. is bounded.

Therefore, by Dirichlet's test, the series 220:1 upb, is convergent.
This implies by (11) that the series Y77 ; anbj, is convergent,
because by hypothesis > 7 | b, is convergent.
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Case (ii): Let {ap}qen be increasing with limit a.
Set u, = a—a,,VneN.
Then {up}nen is decreasing with limit 0 and

anbp, = (a — up) by = ab, — upby, Vn € N.

Therefore, by an argument similar to above, it follows that the
series Y 7, anby is convergent. [ |

Examples.
(i) 35 Lsin (ZF) is convergent by Dirichlet’s test.

(i) D02y % is convergent by Abel's test.
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Grouping of series

> Given a series Y >, an, we can construct many other series
32 1 by by leaving the order of the terms a, fixed, but
inserting parentheses that group together finite number of
terms.

> For example, the series

1 1 1 1 1 1 1
et e 2) e efn) &t

n+1
is obtained by grouping the terms in the series Y 7, %

P It is an interesting fact that such grouping does not affect the
convergence or the sum of a convergent series.

> More precisely,
Theorem. If a series > ° , a, is convergent, then any series
obtained from it by grouping the terms also converges to the
same value.
Proof: Exercise
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Rearrangements of series
> C id . . . oo (—1)"
onsider the alternating harmonic series ), ~——.
» We know that it is convergent, say to a sum s (In fact
s = In(2)).
P Rearrange the above series in such a way that two negative
terms follow a positive term:

1 1 1 1 1 1 1 1

2 273 6 87 " Ton_1 an_2 an'

> Let s, be the nt partial sum of the original series and t, be
the nt partial sum of this rearranged series.
> Then




t; = i35 + 1 = *2n 1 — s
3n+1 = W3n ntl . 2 n 1 5
L 1 _ S2n 1 1 s

_ Y s
ntl 4nt2 2 2+l 4ni2 2

t3p42 = t35 +




t =t + 1 52n 1 — s
LT BAT oY1 2 "2n+1 (2

L 1 S2n 1 1 s
t3p42 = t35 + =

_ Y s
ntl 4nt2 2 2+l 4ni2 2

» Therefore lim t, = 3.
n—o0



; S 1 752,7_’_ 1 _>5
L TR T oY1 2 " 2nt1 2
1 1 s, 1 1

t =t —
2 =t T T 2 2 T ontl dnt2

» Therefore lim t, = 3.
n—oo

» Thus the rearranged series may converge to a sum different
from that of the given series.
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» Therefore lim t, = 3.
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from that of the given series.

S
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%
ol anto

» Thus the rearranged series may converge to a sum different
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a series > 2, ap if there is a bijection f of N onto N such
that by = af(y for all k € N.
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> Consider the alternating harmonic series >~ ° ; *—

v

We know that it is convergent and its sum is s = In(2).
P> We have also seen that the rearranged series

114_111+ +1 1 1+
2 4 3 6 8 2n—1 4n—-2 4n

is convergent and its sum is 3

» Thus the rearranged series may converge to a sum different
from that of the given series.

» However, things are not that bad when we deal with
absolutely convergent series.
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|sh — a| <€, Vn> Kj.
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exists K> € N such that

m

Z lak| <€, Vm > n> Ka.
k=n+1

Let K := max{Ki, Ka}.
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k=K+1
Choose M € N such that all of the terms a1, ap,...,ak are

contained as summands in tp.

Then it follows that if / > M, then t; — sk is the sum of a finite
number of terms a, with index k > K.

Hence, for some m > K, we have

m
It — skl < D lad <e
k=K-+1

Therefore, if | > M, we have

]t,—a\ < ]t,—sK+1]+|sK+1—a\ <€+ €e=2e.

Since € > 0 is arbitrary, we conclude that lim t, = a. [}
n—o0
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Theorem (Riemann'’s theorem). A conditionally convergent
series can be made to converge to any arbitrary real number or
even made to diverge by a suitable rearrangement of its terms.

(-1

Thus there are rearrangements of » 1~ ; which

converge to % /5, and so on.

This theorem should convince us of the danger of
manipulating an infinite series without any attention to
rigorous analysis.

To prove this theorem, we need the notions of positive and
negative parts of a series.
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Given a series Y 0, ap, let

+

a, = max{a,, 0} and a, := —min{a,,0}.

We call the series > 7 ; a} as the series of positive terms of
>0 1 ap. Similarly, we call series Y7, a,, as the series of
negative terms of 7, a,.

Note that all the terms of both these series are non-negative.

For example, if a, = w then

- 1 1
> a) =140+ 340+ ¢+
n=1

and

8

1 1
day=04+=+0+5+0+-
e 2 4
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sequence of partial sums of Y% an, Y07 |anl, ooy a)f
and Y 77, a,, respectively.

Note that v, is the sum of non-negative terms in s, and —u;,
is the sum of the negative terms in s, for all n € N.

Therefore we have
n
t,,:Z|ak|:u,T+u; and s, =ul —u, forallneN
k=1
Let lim s, =s.
n—o00

Observe that both {u; },en and {u}, }hen are increasing.

By hypothesis >"7° ; |an| is divergent, which implies that

lim t, = oco.
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» Sketch of the proof of Riemann's theorem:

> Let > °° a, be a conditionally convergent series and let c € R
be fixed.

> Then both Y~ °, & and >" 7, a, diverges to infinity.

» Choose the least K; € N such that Z,’gl a} exceeds c.

» Then subtract just enough terms from {a, } so that the
resulting sums is less than c.

» And, so on.

> These steps are possible since both >~°° at and Y2, a,
diverges to infinity.

» Obviously, we obtain a rearrangement of >~ a,.

» Exploit the fact that a, — 0 to estimate at each step how
much the sum differ from c.

» |t follows that the sequence of partial sums of the rearranged
series converges to c.

» Reference: Theorem 3.54 in [Walter Rudin, Principles of
Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis,
Addison-Wesley Publishing Company, Inc., 1974]
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Similar to 220:1 an, it is natural to ask: What is the meaning
of [172; an when {a,}nen is a real sequence?

Definition. Let {a,},en be a sequence of real numbers.
An expression of the form [[;2; a, is called an infinite
product.

For each n € N, the finite product p, = [];_; ax is called the
n'" partial product of [[°2; ap.

For each n € N, the number a, is called the nt factor of
1721 an.

The symbol []2 v, 1 an means [[72; ansn-

By analogy with infinite series, it seems natural to call the
product [[72, a, converges if {pn}nen converges.
However, this definition is inconvenient since every product
having one factor zero would converge regardless of the
behavior of the other factors.
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» Definition. Let [[}2; an be an infinite product of real
numbers.

(i
(i)

(iii)

If infinitely many factors a, are zero, then we say that the
product diverges to zero.

If no factor a, is zero, then we say that the product is
convergent if there exists a real number p # 0 such that

lim p, = p.

n—oo
In this case, p is called the value of the product and we write

p=1II1an

If lim p, = 0., then we say that the product diverges to zero.
n—oo

If there exists an N € N such that n > N implies a, # 0, then
we say that [, a, is convergent provided that [T~ 1 an
converges as described in (ii).

In this case the value of the product [] 2, a, is

o0
didp - --an H dp.

n=N+1

[172, an is called divergent if it does not converge as described
in (i) or (iil).
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Note that value of a convergent infinite product can be zero.
But this happen if and only if a finite number of factors are
zero.

The convergence of an infinite product is not affected by
inserting or removing a finite number of factors, zero or not.

This fact makes the above definition very convenient.

Theorem (Cauchy criterion). The infinite product [, a, is
convergent if and only if for every € > 0, there exists an
N € N such that

lant1dnt2- - am— 1] <€ Vm>n> N.

» Theorem. If Hzozl an is convergent, then lim a, = 1.
n—o0

» For this reason, the factors of a product are written as 1 + a,

instead of just a,. Thus, if [[,2;(1+ an) is convergent, then

lim a, =0.
n—o0
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Theorem. Let a, > 0 for all n € N. Then [[72,(1 + a,) is
convergent if and only if Y 7 a, is convergent.

Definition. The product [];2(1 + an) is said to be absolutely
convergent if [[72;(1 + |an|) is convergent.

Theorem. If [[72;(1+ an) is absolutely convergent, then it is
convergent.

Theorem. The product [[;2;(1 + an) is absolutely convergent
if and only if Y°°°, a, is absolutely convergent.

Reference: pp. 206-209 of [Tom M. Apostol, Mathematical
Analysis, Addison-Wesley Publishing Company, Inc., 1974]



