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My take

I What do we do in mathematics?

I We do logical thinking.

I Given a set of statements, what are the statements we can
deduce is what bothers us most of the time.

I We learn to make these deductions systematically.

I The statements we start with or which we take for granted are
axioms.

I We think of some deductions as important or beautiful. We
call them as theorems.
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Logical deductions

I We need to be careful in making deductions.

I A statement seen: ”Smoking causes cancer”.

I Some one does not believe in it and tries to refute it by:
”Well, a friend of mine got cancer though no one in his family
smoked! ”

I There is no contradiction here! Non-smoking also may cause
cancer!

I Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.



Logical deductions

I We need to be careful in making deductions.

I A statement seen: ”Smoking causes cancer”.

I Some one does not believe in it and tries to refute it by:
”Well, a friend of mine got cancer though no one in his family
smoked! ”

I There is no contradiction here! Non-smoking also may cause
cancer!

I Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.



Logical deductions

I We need to be careful in making deductions.

I A statement seen: ”Smoking causes cancer”.

I Some one does not believe in it and tries to refute it by:
”Well, a friend of mine got cancer though no one in his family
smoked! ”

I There is no contradiction here! Non-smoking also may cause
cancer!

I Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.



Logical deductions

I We need to be careful in making deductions.

I A statement seen: ”Smoking causes cancer”.

I Some one does not believe in it and tries to refute it by:
”Well, a friend of mine got cancer though no one in his family
smoked! ”

I There is no contradiction here! Non-smoking also may cause
cancer!

I Starting with a small set of axioms, the whole edifice of
mathematics is built using logical deductions.



Applications

I We use Mathematics to know the real life.

I We do this by modeling what we see.

I We model: The space around us through geometry.

I Dynamics through calculus.

I Randomness through probability.

I So on.

I We see structural, logical similarities in many different
contexts.
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Amazing diversity of Applications

I Physics: Have a look at this famous essay: ”The
Unreasonable Effectiveness of Mathematics in the Natural
Sciences”, by E. Wigner.

I Computer Science, Biology, Chemistry, Statistics,
Economics,... Everywhere there are mathematical models.

I All our technology is built using mathematics.

I We are living in a digital world. We convert all the
information into digits. A sequence of 0’s and 1’s, The
information could be audio, image, video, currency,...

I Keeping the information safe is done using cryptology. That
also uses mathematics in a non-trivial way.
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I Mathematicians try to be precise.

I The setting should be clear. The statements should be clear,
the deductions should be clear and so on.
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A story from the internet

I Black sheep:

I An engineer, a physicist, and a mathematician were on a train
heading north, and had just crossed the border into Scotland.

I The engineer looked out of the window and said ”Look!
Scottish sheep are black!”

I The physicist said, ”No, no. Some Scottish sheep are black.”

I The mathematician looked irritated and said: ”All we can say
is that there is one field, containing at least one sheep, of
which at least one side is black, as of now.”
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Different areas in Mathematics

I To begin with people talk of ‘pure mathematics’ and ‘applied
mathematics’.

I Like for instance you may considering modeling COVID
situation as applied mathematics.

I In pure mathematics we have areas like algebra, analysis,
geometry, number theory, complex analysis, combinatorics and
so on.

I It is very important to understand that these are broad
classifications. There are no strict borders. More importantly
very often methods and results become useful in another area.
For instance, complex analysis is routinely used to do number
theory.

I In other words all these topics are deeply inter-connected.
Simply said, mathematics is one subject.

I You should learn basics of all the areas for now. Specialization
comes only at an advanced level. You should not bother
about it for now. Just have an open mind about all the areas.
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Challenge problem

I Fix n ∈ N and take S = {1, 2, . . . , n}.

I Let F be a collection of subsets with following two properties:

I (i) F 6= ∅ ; F 6= {∅}.
I (ii) If A ∈ F and B ∈ F then A

⋃
B ∈ F .

I Suppose M = ]F . Here ] denotes number of elements in a set.

I Show that there exists j ∈ S such that

]{A ∈ F : j ∈ A} ≥ M

2
.

I In other words, there exists an element j which is contained in
at least half the sets in F .
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I Take S = {1, 2, . . . , 10}.

I F1 = {∅, {1, 2}, {2, 3}, {1, 2, 3}}
I F2 = {A ⊆ S : 1 ∈ A}.
I F3 = {A ⊆ S : 1 /∈ A}.
I F4 = {A ⊆ S : ]A = 2}.
I Then F1,F2,F3 satisfy conditions (i), (ii). F4 does not

satisfy condition (iii).
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Continuation

I S = {1, 2, . . . , 10}.

I F1 = {∅, {1, 2}, {2, 3}, {1, 2, 3}}.
I ]F1 = 4; and we can take j = 2. There are three sets in F1

containing j .

I F2 = {A ⊆ S : 1 ∈ A}.
I ]F2 = 29; and we can take j = 1 and ]{A ∈ F2 : j ∈ A} = 29.

I F3 = {A ⊆ S : 1 /∈ A}.
I ]F1 = 29; and we can take j = 2 (or any number in S

different from 1) and ]{A ∈ F3 : j ∈ A} = 28.

I END OF LECTURE 1.
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different from 1) and ]{A ∈ F3 : j ∈ A} = 28.
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Lecture 2: Set theory and Russell’s paradox

I What is a set?

I Informal Definition: A set is a collection of well-defined
objects.

I Example: A = {2, 3, 4}. B = {a, b, c}.
I N = {1, 2, . . .} the set of natural numbers.

I Z = {. . . ,−2,−1, 0, 1, 2, . . .}-the set of integers.
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Why to have the phrase ‘well-defined’?

I The collection of students in this class. This is a set.

I The collection of tall students in this class. This is not
well-defined, unless we specify what exactly we mean by ‘tall’.

I The collection of ‘smart’ students in this class. This is also
not well-defined unless we are clear as to who is smart and
who is not.

I The main point here is that given an object we should be
clear as to whether it is an element of the set or not.

I This is a requirement so that we do not have any confusion.
Still the definition is only an informal one.
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Russell’s barber paradox

I There is a village with just one barber.

I The barber cuts hair of some villager if and only if the villager
does not cut it himself/herself.

I Does the barber cut his/her own hair or not?

I You see that either way you have a problem.

I Let us see some more paradoxes of similar type.
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Almighty god

I Assume that there exists a god, who is almighty. That is
he/she is all powerful.

I Qn: Can god create a small stone?

I Ans: Yes!

I Qn: Can god create a huge stone?

I Ans: Yes!

I Qn: Can god lift a small stone?

I Ans: Yes!

I Qn: Can god lift a huge stone?

I Ans: Yes!

I Qn: Can god create a huge stone which is so big that god
also can’t lift it?

I Ans: ?????
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Adjectives

I We classify the adjectives in English into two types.

I An adjective is autological if it applies to itself. Otherwise it is
heterological.

I For instance, ‘SHORT’ is a short word. So it is auto-logical,
whereas, ‘LONG’ is not a long word, so it is heterological.

I More auto-logical words: ENGLISH, NOUN,
UNHYPHENATED, AUTOLOGICAL, ...

I More hetero-logical words: JAPANESE, HYPHENATED,
MONOSYLLABIC, ...

I What about the adjective ‘HETEROLOGICAL? We again face
a problem.
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A catalogue of catalogues

I Our city has many libraries. Every library has a catalogue
listing all the books the library has.

I Now the catalogue itself is a book. So some librarians may
include it as a book the library has. Some other librarians may
disagree and may not include the catalogue as a book of the
library.

I There is a master librarian of the city, who maintains two
catalogues of catalogues.

I First Catalogue containing names of all catalogues which list
themselves and the Second Catalogue containing names of all
catalogues which do not list themselves.

I The First Catalogue can contain itself in its list or you may
drop it. Either way it is fine.

I There is a problem with the Second Catalogue. Should it list
itself or not?
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Russell’s paradox in set theory

I Let L be the set of all sets in the world.

I Clearly L is well-defined. Any set is a member of L, anything
else say mangoes and apples are not in L.

I But L is a bit extraordinary as L itself is a member of itself.

I So we classify sets into two mutually exclusive types as
ordinary sets are those which do not contain themselves as
members. Extraordinary sets are those which contain
themselves as members.

I Let M be the set of all sets having two or more elements.
Then M is an extraordinary set.

I Let A be the set of all ordinary sets and let B be the set of all
extraordinary sets.

I Is A ordinary or extraordinary? Either way we have a problem!
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Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.

I Along with these most mathematicians use the Axiom of
Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.

I We will NOT go into the details of these axioms. If you are
interested please have a look at Wikipedia.

I The purpose of this lecture is just to warn you that our naive
definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.

I The purpose of this lecture is just to warn you that our naive
definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Zermelo Fraenkel axioms for set theory

I Our conclusion from Russell’s paradox is that our naive
definition of sets as collections of well-defined objects is not
good enough. It leads to contradictions.

I A good set of axioms were given by Zermelo and Fraenkel.
I Along with these most mathematicians use the Axiom of

Choice, which says given a non-empty collection of non-empty
sets one can form a set containing at least one element from
each set, or equivalently, the Cartesian product of a
non-empty collection of non-empty sets is non-empty.

I Together these axioms are known as ZFC.
I We will NOT go into the details of these axioms. If you are

interested please have a look at Wikipedia.
I The purpose of this lecture is just to warn you that our naive

definition of sets is not good enough. In particular, we should
avoid talking about objects such as set of all sets etc. We
avoid such a problem by only talking about sets formed by
familiar objects such as natural numbers and real numbers.

I You may see details ZFC later on if you do a course on
foundations of set theory and logic.

I END OF LECTURE 2.



Lecture 3: Sets and functions

I Informal Definition: A set is a collection of well-defined
objects.

I We continue with this definition though ideally speaking we
should be following ZFC axioms.

I We assume familiarity with

I N = {1, 2, . . .} the set of natural numbers.

I Z = {. . . ,−2,−1, 0, 1, 2, . . .}-the set of integers.
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Functions

I Given two non-empty sets A and B, a function f from A to B
is an association of some element f (x) in B, for every x in A.

I This is denoted by f : A→ B.

I You may also think of a function f as a subset of the
Cartesian product A× B = {(a, b) : a ∈ A, b ∈ B} having
certain properties.

I More precisely, G (f ) = {(x , f (x)) : x ∈ A} is a subset of
A× B, where every element x ∈ A appears with exactly one
element f (x) ∈ B.

I G (f ) is known as the graph of f .
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Vertical line test

I Clearly not all subsets G of A× B appear as graphs of f .

I Every element x ∈ A should appear. More over for every
element x there should be unique x ′ in B such that
(x , x ′) ∈ G .

I In other words, there should not be x ′, x ′′ in B with x ′ 6= x ′′,
such that both (x .x ′) and (x , x ′′) are in G .

I In the usual picture of graphs of functions on real line this is
known as vertical line test. A graph of a function can not be
touching a vertical line at more than one point.
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function as a machine

I You may think of a function f : A→ B as a machine.

I It takes any x ∈ A as input and spews out some element f (x)
in B as out put.

I Any element of A can be input.

I With one input there is only one output.

I Different inputs may give same output.

I Some elements of B may not be an output value for f .
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Domain, Co-domain and Range

I Terminology: Suppose f : A→ B is a function.

I Then A is known as the domain of f .

I B is known as the co-domain of f .

I The set {f (x) : x ∈ A} is known as the range of f .

I Note that the range of f is a subset of the co-domain.

I Sometimes people call B, the co-domain as range of f . It is
better to avoid that kind of terminology as it can lead to
confusion.
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Students and Hostel rooms

I Think of A as students and B as the set of hostel rooms.

I Then think of a function f : A→ B as allotment of rooms. In
other words, student x gets room f (x).

I Note that to have a genuine function f it is necessary that all
students are allotted rooms. Nobody is left out.

I Same student can’t be allotted multiple rooms. In other words
if y = f (x) and z = f (x), then y = z .

I It is fine, if some rooms are vacant. In other words, there
could be y ∈ B such that y 6= f (x) for any x ∈ A.

I It is also fine if students are asked to share rooms. In other
words it is possible to have x , x ′ in A, such that f (x) = f (x ′).
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Injectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be injective or one to one if
a1, a2 are in A and a1 6= a2 then f (a1) 6= f (a2). In other
words, distinct elements are mapped to distinct elements.

I Equivalently, f is injective if f (a1) = f (a2) implies a1 = a2.

I In the language of machines this corresponds to outputs being
different for different inputs.

I While allotting rooms to students, injectivity or one-to-one
means there is no sharing of rooms.
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Surjectivity

I Let A,B be non-empty sets and let f : A→ B be a function.

I Definition: Then f is said to be surjective or onto if the range
of f is same as the co-domain.

I Equivalently, f is surjective if for every b ∈ B there exists
a ∈ A such that f (a) = b.

I Thinking of machines, f is surjective if every element of B can
be produced using f .

I In the problem of allotting rooms to students it means that
the hostel is full. That is all the rooms have got allotted.
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the hostel is full. That is all the rooms have got allotted.



Bijections

I Give examples to show that an injective function need not be
surjective and a surjective function need not be injective.

I Definition: Let A,B be non-empty sets and let f : A→ B be
a function. Then f is said to be bijective if f is both injective
and surjective. In other words, it is both one to one and onto.

I Define f1 : Z→ Z by f1(n) = n + 1, ∀n ∈ Z. Then f1 is a
bijection.

I Define f2 : Z→ Z by f2(n) = −n, ∀n ∈ Z. Then f2 is a
bijection.

I Define f3 : Z→ Z by f3(n) = n2. Then f3 is neither injective
nor surjective.
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Compositions of functions

I Let A,B,C be non-empty sets. Let f : A→ B and g : B → C
be functions. Then a new function g ◦ f : A→ C is got by
taking

g ◦ f (a) = g(f (a)), ∀a ∈ A.

I g ◦ f is known as composition of g and f .

I The out put of machine f is taken as input for g .
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Inverse map

I Let A,B be non-empty sets and let f : A→ B be a bijection.
Then we see that for every b ∈ B there exists unique a ∈ A
such that f (a) = b. Then we call a as f −1(b).

I In other words, if f : A→ B is a bijection then there exists a
unique function f −1 : B → A such that

f ◦ f −1(b) = b, ∀b ∈ B

and
f −1 ◦ f (a) = a, ∀a ∈ A.

I So f ◦ f −1 is the identity map on B and f −1 ◦ f is the identity
map on A.

I The identity map is a completely lazy machine where the
output is same as the input.
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One sided inverses

I Example: Suppose A = {x , y} and B = {4, 5, 6}.

I Define f : A→ B by f (x) = 4 and f (y) = 6.

I Define g : B → A by g(4) = g(5) = x and g(6) = y .

I Then g ◦ f (x) = x and g ◦ f (y) = y .

I So g ◦ f is the identity map on A. However, f ◦ g is not the
identity map on B.
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Properties inferred from compositions

I Let A,B,C be non-empty sets and let f : A→ B and
g : B → C be functions.

I Theorem 3.1: Suppose g ◦ f is one to one then f is one to one.

I Proof: Take h = g ◦ f . Suppose f (a1) = f (a2) for some a1, a2
in A. Then by the definition of a function,
g(f (a1)) = g(f (a2)). In other words, h(a1) = h(a2). But h is
assumed to be one to one. Hence a1 = a2. This shows that f
is one to one.

I Theorem 3.2: Suppose g ◦ f is onto then g is onto.

I Proof: Exercise!
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Powers of functions

I Let A be a non-empty set and let f : A→ A be a function.

I Then f 2 : A→ A is defined as f 2(a) = f ◦ f (a) = f (f (a)).

I Similarly f 3(a) = (f ◦ f ◦ f )(a) = f (f (f (a))).

I More generally, we can define f n for any natural number n.

I Note that in general you can not define f 2 when f is a
function from one set to a different set.
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Conway’s problem

I Consider h : Z→ Z defined by

h(n) =


3k if n = 2k, k ∈ Z

3k + 1 if n = 4k + 1 k ∈ Z

3k − 1 if n = 4k − 1 k ∈ Z

I Here on the repeated action of h,

7→ 5→ 4→ 6→ 9→ 7.

I So we end up with a loop or a ‘cycle’.
I Show that h is a bijection.
I Challenge Problem 2: What happens if we start with 8? Do

we ever come back to 8, that is, is there a cycle starting at 8?
I END OF LECTURE 3.
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Lecture 4: Natural numbers: Well-ordering and induction

I We have assumed familiarity with

I N = {1, 2, . . .}, the set of natural numbers.

I If we are to construct it abstractly from set theory, we may
take 1 as the set {∅}, 2 as the set {∅, 1} = {∅, {∅}}, 3 as the
set {∅, 1, 2} = {∅, {∅}, {∅, {∅}}, so on.

I We order the natural numbers in the usual way:

1 < 2 < 3 < 4 < · · · .

I Let us look at a few basic properties of the set of natural
numbers and its subsets.
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Well-ordering principle

I Well-ordering principle: The set of natural numbers satisfies
well-ordering principle, that is, every non-empty subset of
natural numbers has a smallest element.

I In other words, if R is a non-empty subset of N then there
exists an element m ∈ R such that m ≤ k for all k ∈ R.

I Note that clearly the minimal element of R is unique, for if
both k, l are minimal then we have k ≤ l and l ≤ k , and this
means k = l .

I We also note that if n ∈ R, then the minimal element of R is
contained in {1, 2, . . . , n}

⋂
R. So the existence of minimum

here is essentially a statement about finite sets.
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Mathematical Induction

I Principle of mathematical induction: Let S be a subset of N
having following properties:

I (i) 1 ∈ S .

I (ii) If k ∈ S , then k + 1 ∈ S .

I Then S = N.
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Strong Mathematical Induction

I Principle of strong mathematical induction : Let T be a
subset of N with following properties:

I (a) 1 ∈ T .

I (b) If {1, 2, . . . , k} ⊆ T then {1, 2, . . . , k + 1} ⊆ T

I Then T = N.
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Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂
S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂

S = ∅.

I Hence S = N.



Equivalence

I Theorem 4.1: The following properties of N are equivalent:

I (1) N satisfies well-ordering principle;

I (2) N satisfies the mathematical induction principle;

I (3) N satisfies the strong mathematical induction principle.

I Proof: (1)⇒ (2). Assume well ordering principle. Now
suppose S is a subset of N satisfying (i) and (ii). We want to
show that S = N. Suppose not. Then R = N\S is non-empty.

I By well ordering principle, R has a minimal element, say
m ∈ R.

I Now m 6= 1 as 1 ∈ S . Therefore, m − 1 ∈ N. As m is the
minimal element of R, m− 1 ∈ S . By property (ii), this yields,
m = (m − 1) + 1 ∈ S . This is a contradiction as m ∈ R and
R
⋂

S = ∅.
I Hence S = N.



Proof continued

I (2)⇒ (3). Assume induction principle.

I Now suppose T ⊆ N satisfies (a), (b).

I We want to show that T = N.
I Take S = {m ∈ N : {1, 2, . . . ,m} ⊆ T}.
I In view of (a), 1 ∈ T and hence 1 ∈ S .

I In view of (b), if m ∈ S then m + 1 ∈ S . Then by the principle
of induction S = N. This clearly implies T = N.
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Proof Continued

I (iii)⇒ (i). Assume strong mathematical induction.

I Suppose R is a non-empty subset of N.
I We want to show that R has a minimal element.

I Suppose not. Take T = N\R.
I We may take 1 ∈ T , otherwise, 1 ∈ R, and 1 becomes the

minimal element of R.

I If for m ∈ N, {1, 2, . . . ,m} ⊆ T , then m + 1 ∈ T , as
otherwise, m + 1 is the minimal element of R.

I Now by strong mathematical induction T = N. This means
that R is empty and we have a contradiction.

I This proves that R has a minimal element. .

I Note. Here after we take it for granted that N has all these
three properties.
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Applications of Mathematical induction

I Suppose we have a property P defined for natural numbers,
where (i) 1 satisfies property P; (ii) If m ∈ N satisfies property
P then (m + 1) satisfies property P. Then property P is
satisfied by all natural numbers.

I This is clear from the principle of mathematical induction as
we can take R = {m ∈ N : m satisfies property P}.

I Example: Show that for all natural numbers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
, (P).

I Proof: Let S be the set of all natural numbers satisfying P.
I Clearly 1 ∈ S . If m ∈ S , then 1 + 2 + · · ·+ m = m(m+1)

2 .
I Now using induction hypothesis

1+2+· · ·+m+(m+1) =
m(m + 1)

2
+(m+1) =

(m + 1)(m + 2)

2
.

I Hence m + 1 ∈ S . Then by the principle of mathematical
induction S = N. In other words every natural number
satisfies P.
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A fake theorem

I ”Theorem”: If you take bag full of balls all of them would
have same color.

I ”Proof”:” We will prove this by induction.
I Let n be the number of balls in the bag.
I If n = 1, the claim is obvious. There is nothing to prove.
I Now assume the result for n = m and we will prove it for

n = m + 1.
I Suppose the bag has m + 1 balls. Remove one ball.
I Now there are m balls in the bag, and all of them have the

same color, say black, by the induction hypothesis.
I Now put the ball you have in hand in bag and remove some

other. Clearly the ball you have removed must be black color.
Consider the balls in the bag. Now there are only m of them,
also have to be of same color, same as the one ball we
removed.

I So all the m + 1 balls are black. Quite Easily Done!
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I So all the m + 1 balls are black. Quite Easily Done!



Pigeonhole principle

I Pigeonhole principle: Let m, n be natural numbers and m < n.
Let

f : {1, 2, . . . , n} → {1, 2, . . . ,m}

be a function. Then f can not be injective.

I You may think of n as the number of pigeons and m as the
number of holes. When we put n pigeons in to m holes with
m < n, at least one hole would have more than one pigeon.

I In other words, if m hostel rooms are assigned to n students
with m < n, then some students have to share rooms.

I The pigeonhole principle can be proved using mathematical
induction.

I You may see the Appendix of the book of Bartle and Sherbert.

I END OF LECTURE 4.
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Lecture 5: Countable and Uncountable sets

I Definition 5.1 Let A,B be two non-empty sets. Then B is said
to be equipotent with A, if there exists a bijection f : A→ B.
Empty set is equipotent to only itself.

I Some say B has same cardinality as A if B is equipotent with
A.

I This means that B and A have ‘same number of elements’.
But currently we are not going to define ‘cardinality’ or
number of elements for infinite sets. For this reason we prefer
the terminology ‘equipotent’.

I We write A ∼ B if B is equipotent with A.
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Equivalence relation

I Theorem 5.2: Equipotency is an equivalence relation.

I Proof: Claim 1: For any set A, A ∼ A (Reflexivity).

I If A is non-empty, we just take the identity function
i : A→ A, defined by i(a) = a, ∀a ∈ A. If A is empty, A ∼ A
by definition. This proves the claim.

I Claim 2: If A ∼ B then B ∼ A (Symmetry).

I If f : A→ B is a bijection, then f −1 : B → A is a bijection.

I Indeed if f −1(x) = f −1(y), then applying f , x = y . This
shows that f −1 is injective.

I If a ∈ A, then a = f −1(b), where b = f (a). Hence f −1 is
surjective. Combining the two statements, f −1 is bijective.

I If A,B are empty then there is nothing to show.
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Proof Continued

I Claim 3: Suppose A ∼ B and B ∼ C , then A ∼ C
(Transitivity).

I Suppose f : A→ B is a bijection and g : B → C is a bijection.

I Then h := g ◦ f is a map from A to C .

I It is easy to see that h is a bijection.

I If A,B,C are empty, there is nothing to show.

I This completes the proof that equipotency (∼) is an
equivalence relation.
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Finite and infinite sets

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I From the pigeonhole principle, if A is equipotent with
{1, 2, . . . ,m} and with {1, 2, . . . , n} then m = n.

I This allows us to define the number of elements of a finite set
A as n, if A is equipotent with {1, 2, . . . n}. If A is empty then
the number of elements A is defined to be zero.

I Example 5.4: A = {a, b, c} and B = {x , y , z} have same
number of elements, namely 3, as both of them are
equipotent with {1, 2, 3}.

I Even for infinite sets A,B we may informally say that A and B
have same number of elements to mean that A and B are
equipotent, even though we have not defined number of
elements for infinite sets.
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Countable sets

I Theorem 5.5: The set of natural numbers N is infinite:

I Proof: Suppose g : N→ {1, 2, . . . n} is a bijection for some
n ∈ N. In particular g is injective.

I Taking any m > n and restricting g to {1, 2, . . . ,m} we get
an injective map, as restriction of any injective map to a
non-empty subset in the domain is injective. This contradicts
pigeonhole principle. Hence N is infinite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.
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A story

I Hilbert’s Hotel: Hilbert built a large hotel, which has a room
with room number n for every natural number n.

I Here are some great features of this hotel.

I Flexibility: Suppose one day the hotel is houseful and a new
guest arrives.

I The hotel manager need not send away the new guest.

I The manager instructs the guest who is in room number 1 to
move to room number 2, and the one in room number 2 to
move to 3 and so on.

I This way no old guest has been asked to vacate, still room
number 1 is free.

I The manager can ask the new guest to take room number 1.
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More guests

I What if there are two new guests?

I Well, either we can go through the previous procedure of
accommodating one new person twice, or we can simply ask
the present guest at room number n to go to room number
n + 2 so that two rooms are freed up.

I What if there are infinitely many new guests? Say present
guests are g1, g2, . . . and new guests are h1, h2, . . . ,.

I We can ask present guest gn in room number n to go to room
number 2n, so that all odd numbered rooms are freed up.

I Then new guest hn can go to room number number (2n − 1)
and we are done.
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Countably infinite sets

I Example 5.7: The set N+ = {0, 1, 2, . . .} is countable.

I Indeed the function g : N+ → N defined by

g(n) = n + 1, ∀n ∈ N+

is easily seen to be a bijection.

I Example 5.8: The set Z of integers is countable:

I Define h : Z→ N by

h(n) =

{
2n if n ≥ 1

−2n + 1 if n ≤ 0

I You may verify that h is a bijection.
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More or less

I There are more even numbers or more natural numbers?

I E = {2, 4, 6, 8, . . .}
I N = {1, 2, 3, . . .}.
I On first look, it seems there are more natural numbers than

even numbers.

I However, g : N→ E defined by g(n) = 2n is a bijection. So
there are as many even numbers as there are natural numbers.
Not less! Note more!

I Moral of the story: For infinite sets, a subset may have as
many elements as the full set.
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Disjoint union

I Consider the set of odd natural numbers H = {1, 3, 5, . . .}
and the set of even natural numbers E = {2, 4, 6, . . .}.

I Now H,E have same number of elements and their union N
also has same number of elements!

I In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.



Disjoint union

I Consider the set of odd natural numbers H = {1, 3, 5, . . .}
and the set of even natural numbers E = {2, 4, 6, . . .}.

I Now H,E have same number of elements and their union N
also has same number of elements!

I In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.



Disjoint union

I Consider the set of odd natural numbers H = {1, 3, 5, . . .}
and the set of even natural numbers E = {2, 4, 6, . . .}.

I Now H,E have same number of elements and their union N
also has same number of elements!

I In other words for infinite sets disjoint union of sets of equal
number of elements may again have same number of elements.



Cartesian product

I Theorem 5.9: N× N is countable.

I Proof: Here is Cantor’s argument.
I Look at N× N.
I

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·

...
...

...
...

. . .

I Zig-zag counting.
I We count the elements here as

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), . . .,
I This way we are able to exhaust all the elements of N× N,

without repeating any element twice.
I In other words we have a bijection between N and N× N. In

particular, N× N is countable.
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Explicit bijections

I Exercise 5.10.1: Define g : N× N→ N by

g(m, n) = 2m−1(2n − 1), (m, n) ∈ N× N.

I Show that g is a bijection.

I Exercise 5.10.2: Define h : N× N→ N by

h(m, n) = m + [
(m + n − 1)(m + n − 2)

2
], (m, n) ∈ N× N.

I Show that h is a bijection.

I Challenge Problem 3: Obtain another ‘explicit’ bijection
between N× N and N different from g , h, g̃ , h̃, where
g̃(m, n) = g(n,m), and h̃(m, n) = h(n,m), ∀m, n ∈ N× N.

I This problem is not very clearly stated. But we leave it at
that.
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Schroder-Bernstein theorem

I The pigeon hole principle suggests that if we have an injective
function f : A→ B, then B should be having ‘more’ elements
than A.

I What if there is an injective function from A to B and another
injective function from B to A?

I Theorem 5.11 (Schroder-Bernstein theorem): Let A,B be
non-empty sets. Suppose there exist injective functions
f : A→ B and g : B → A. Then there exists a bijective
function h : A→ B. Consequently A and B are equipotent.

I Exercise 5.12: Prove Schroder-Bernstein theorem. If you are
unable to prove it yourself, discuss with your friends. Still if
you can’t do it, get a proof from the internet and understand
it!

I END OF LECTURE 5
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Lecture 6: Uncountable sets

I To begin with we recall a few definitions from last lecture.

I Definition 5.1: Let A,B be two non-empty sets. Then B is
said to be equipotent with A, if there exists a bijection
f : A→ B. Empty set is equipotent to only itself.

I Definition 5.3: A set A is said to be finite if it is equipotent
with {1, 2, . . . , n} for some n ∈ N or it is empty. A set A is
said to be infinite if it is not finite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

I We saw that N,Z,N× N are all countable.

I Now it is time to see some uncountable sets.
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said to be infinite if it is not finite.

I Definition 5.6: A set A is said to be countable if it is
equipotent with N or if it is finite. It is said to be countably
infinite if is countable and not finite. A set A is said to be
uncountable if it is not countable.

I We saw that N,Z,N× N are all countable.

I Now it is time to see some uncountable sets.
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Binary sequences

I Let B = {(w1,w2,w3, . . .) : wj ∈ {0, 1}}.

I Each wj is either 0 or 1. We call (w1,w2, . . .) as a binary
sequence.

I B is the set of all possible binary sequences. (Warning: This
notation is not standard.)

I Theorem 6.1: B is uncountable.

I The proof is by contradiction and the argument is known as
Cantor’s diagonal argument.

I Proof: Suppose that there exists a bijection f : N→ B. In
particular f is a surjection.

I Then for every i ∈ N, f (i) is a binary sequence.
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Proof Continued

I Suppose f (i) = (wi1,wi2,wi3, . . .)

I Each wij is either 0 or 1.

I Look at the infinite matrix:

w11 w12 w13 w14 · · ·
w21 w22 w23 w24 · · ·
w31 w32 w33 w34 · · ·
w41 w42 w43 w44 · · ·

...
...

...
...

. . .

I formed by writing down f (1), f (2), . . . as rows.

I Form a binary sequence using the diagonal entries:
(w11,w22,w33, . . .).

I We flip the entries to get a new binary sequence,
v = (v1, v2, v3, . . .) where vj = 1− wjj for every j ∈ N. Now
we claim that v is not in the range of f .
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Proof Continued

I v 6= f (1) as v = (v1, v2, . . .), f (1) = (w11,w12, . . .) and
v1 = 1− w11 6= w11. So the first entry does not match.

I v 6= f (2) as v = (v1, v2, . . .), f (2) = (w21,w22, . . .) and
v2 = 1− w22 6= w22. So the second entry does not match.

I In fact, for every i ∈ N, f (i) 6= v as vi 6= wii . Here i th entry
does not match.

I Therefore v is not in the range of f .

I Actually, we have shown that no function f : N→ B can be
surjective.

I In particular B is not countable.
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Power sets

I Definition 6.2: Let A be any set. Then the power set of A is
defined as

P(A) = {B : B ⊆ A}.

I In other words, the power set of A is the set of all subsets of
A.

I If A = ∅, then P(A) = {∅}.
I If A = {1}, then P(A) = {∅, {1}}.
I If A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.
I If A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
I Exercise: If A is a finite set with n elements, show that P(A)

has 2n elements.

I We guess that P(A) should be having ‘more’ elements than A.
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Power sets -continued

I Theorem 6.3: Let A be a non-empty set. Let f : A→ P(A)
be a function. Then f is not surjective.

I This is really a way of saying ”P(A) has ‘more’ elements than
A”.

I Proof: Given that f : A→ P(A) is a function.

I Note that for every a ∈ A, f (a) is a subset of A.

I It is possible that a is an element of f (a) and it is also
possible that a is not an element of f (a).

I Define a set D by

D = {a ∈ A : a /∈ f (a)}.

I Clearly D is a subset of A, and hence it is an element of P(A).

I We claim that D is not in the range of f . That would show
that f is not surjective.
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Proof continued

I Recall: D = {a ∈ A : a /∈ f (a)}.
I Assume that D is in the range of f .

I So D = f (a0) for some a0 ∈ A.

I Now either a0 ∈ D or a0 /∈ D.

I If a0 ∈ D, then by the definition of D,

a0 /∈ f (a0).

I But f (a0) = D. Hence a0 /∈ D. This contradicts a0 ∈ D.

I On the other hand, if a0 is not in D, as D = f (a0), a0 is not
in f (a0). Then by the definition of D, a0 is in D. Once again
we have a contradiction.

I Therefore our assumption that D is in the range of f must be
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Remarks

I The proof of the previous theorem is reminiscent of Russel’s
paradox. However, here there is no paradox. The conclusion
that D is not in the range of f resolves everything.

I Consider the case A = N.

I Show that the power set of N is equipotent with the set B of
binary sequences.

I If C is a subset of N, map it to the binary sequence
c = (c1, c2, . . .), where cj = 1 if j ∈ C and cj = 0 if j /∈ C .

I In other words, c(j) := cj , is just the ‘indicator function’ of
the set C .

I Now go back and see that the proof of last theorem and that
of uncountability of B use the same idea!
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Bigger and bigger infinities

I We have seen that P(N) is bigger than N in the sense that
there is no surjective function from N to P(N). [There are of
course, surjective functions from P(N) to N. (Why?).]

I Now by the previous theorem P(P(N)) is even bigger than
P(N).

I We can go on.

I So there are bigger and bigger infinities.
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Spaces of functions

I Let A,B be non-empty sets. Let BA denote the set of all
functions from A to B.

I For n ∈ N, if A = {1, 2, . . . , n} and B = {0, 1}, then observe
that BA has 2n elements.

I More generally, if A,B are non-empty finite sets, A has n
elements and B has m elements, then BA has mn elements.

I Observe that for any non-empty set A, if B = {0, 1} then BA

is equipotent with the power set of A.

I Observe that BN is same as the space of sequences with
elements from B. In particular, if B = {0, 1}, then BN is
same as the space of binary sequences.
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Lecture 7: Real Numbers

I God created the integers, all else is the work of man.
-Kronecker.

I You must be familiar with real numbers, which include natural
numbers, integers, rational numbers and also irrational
numbers such as

√
2, π, and e.

I Here we are going to assume that there exists a set called real
numbers, denoted by R, having a list of properties to be
specified.

I One may construct real numbers out of natural numbers, step
by step by constructing integers, rational numbers and so on.

I For instance, we construct positive rational numbers out of
N× N, by identifying (a, b) with (a′, b′) if ab′ = a′b. (Think
of (a, b) as a

b .) However, we will not take such an approach.

I If you wish, you may see the construction of real numbers in
due course once you are fully familiar with various properties
of real numbers.
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Algebraic axioms for real numbers

I The set R of real numbers has two binary operations, ‘+’
(addition) and ‘.’ (multiplication), with following properties:

I (You may recall that a binary operation on a non-empty set A
is a function from A× A to A.)

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.
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Addition Axioms continued

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Addition Axioms continued

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.



Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.

I Note that we have explicitly assumed that 1 6= 0.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

I This axiom binds addition and multiplication.
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Consequences

I Theorem 7.1 : (i) (Uniqueness of 0). If e ∈ R satisfies
a+ e = e + a = a for all a ∈ R, then e = 0. (ii) (uniqueness of
1). If f ∈ R satisfies a.f = f .a = a for all a ∈ R, then f = 1.

I Proof: (i) Take a = 0. Then we get 0 + e = e + 0 = 0. But
by A3, 0 + e = e + 0 = e. Hence e = 0. (ii)Take a = 1 and
we get 1.f = f .1 = 1 and also 1.f = f .1 = f . Hence f = 1.

I Theorem 7.2 (Cancellation property of addition): For
a, b, c ∈ R, if a + b = a + c then b = c .

I Proof: Given a + b = a + c .
I Hence (−a) + (a + b) = (−a) + (a + c).
I By associativity of addition A2,

((−a) + a) + b = ((−a) + a) + c .
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Consequences -2

I Theorem 7.4 (Cancellation property of multiplication): For
a, b, c ∈ R with a 6= 0, if a.b = a.c then b = c .

I The proof is similar to the proof of Theorem 7.2. This time
multiply by a−1 from the left.

I Corollary 7.5 (Uniqueness of multiplicative inverse): For
a ∈ R, if a.b = 1, then b = a−1.

I Proof: Clear from Theorem 7.4.
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Consequences -3

I Theorem 7.6: (i) (−0) = 0; 1−1 = 1. (ii) For a ∈ R a.0 = 0.
(iii) For a, b ∈ R, if a.b = 0 then either a = 0 or b = 0.

I Proof: (i) follows easily from previous results, as 0 + 0 = 0
and 1.1 = 1.

I (ii) For a ∈ R, by distributivity, a.0 = a.(0 + 0) = a.0 + a.0.
In other words, a.0 + 0 = a.0 + a.0. Hence by cancellation
property 0 = a.0.

I (iii) Given a, b ∈ R and a.b = 0.

I Now suppose a 6= 0, then a−1 exists and we get

a−1.(a.b) = a−1.0 = 0.

Hence by associativity of multiplication, (a−1.a).b = 0, or
1.b = 0, which implies b = 0. So either a = 0 or b = 0.
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Natural numbers

I Notation: Here after for real numbers a, b write ab to mean
a.b. We write a + (−b) as a− b and if b 6= 0, we write ab−1

as a
b . In particular, we may write b−1 as 1

b .

I We take N as a subset of R, where,

I we identify 1 ∈ N with 1 of R,

I 2 ∈ N with 1 + 1 in R,

I Note that 1 6= 2, as otherwise, we get 0 + 1 = 1 + 1, and that
would mean 0 = 1, by cancellation property.

I We identify 3 ∈ N with 2 + 1 (or equivalently with 1 + 2 or
1 + 1 + 1) of R.

I More generally, n ∈ N is identified with
1 + 1 + · · ·+ 1(n times).

I You may verify that all natural numbers are distinct.
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Integers, rational numbers and irrational numbers

I Z is also thought of as a subset of R: 0 ∈ Z is identified with
0 of R and −n for n ∈ N is just the additive inverse of n.

I Definition 7.7: A real number a is said to be a rational
number if it is of the form a

b for some integers a, b with b 6= 0.
A real number which is not rational is said to be irrational.

I To show existence of irrational numbers we would need more
axioms.

I END OF LECTURE 7.
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Lecture 8: Real Numbers : Order axioms

I We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

-Distributivity.

I These axioms are known as algebraic axioms. They determine
the ‘algebraic structure’ of real numbers.
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Order axioms: Positive elements

I Here we have a bunch of three axioms as described below.

I The set R has a subset P called the set of positive real
numbers satisfying following axioms:

I O1. If a, b ∈ P then a + b ∈ P. [ The set of positive real
numbers is closed under addition.]

I O2. If a, b ∈ P then a.b ∈ P. [ The set of positive real
numbers is closed under multiplication.]

I O3. If a ∈ R, then exactly one of the following three
properties is true:
(i) a ∈ P;
(ii) −a ∈ P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

I Any element of P is said to be positive.
I Warning: The notation P for positive real numbers is not

standard. You may see R+, (0,∞) as some of the alternative
notations for the set of positive real numbers.
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Natural numbers are positive

I Theorem 8.1: If n ∈ N then n ∈ P.

I Proof: First we show that 1 ∈ P. We have 1 6= 0 by axiom
M3. Now if (−1) ∈ P, then by axiom O2, (−1).(−1) ∈ P.

I But (−1).(−1) = 1 (Exercise: Show this!).

I This shows that both 1 ∈ P and also (−1) ∈ P and that
violates trichotomy property O3. Therefore (−1) ∈ P is not
possible. The only other possibility is 1 ∈ P.

I Then by property O1, 2 = 1 + 1 is in P.

I Consider the set S of all natural numbers which are positive.
Then 1 ∈ S and if n ∈ S , then n + 1 ∈ S .

I Now a simple application of mathematical induction shows
that n ∈ P for every n ∈ N.
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Inequalities

I Notation: For real numbers, a, b, we write a < b or b > a if
b − a ∈ P. We write a ≤ b or b ≥ a if b − a ∈ P

⋃
{0}.

I In particular, a > 0 iff a ∈ P. Similarly a ≥ 0 iff a ∈ P
⋃
{0}.

I Now order axioms under this notation, becomes:
(1) O1. : If a > 0 and b > 0 then a + b > 0.
(2) O2. : If a > 0 and b > 0 then ab > 0.
(3) O3.: If a ∈ R then exactly one of the following holds: (i)
a > 0; (ii) a < 0; (iii) a = 0.

I Here after we may not use the notation P at all!

I We may call a real number a as negative if −a is positive.
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Simple inequalities

I Theorem 8.2: Suppose a, b, c , d are real numbers. Then
(i) If a < b, then a + c < b + c .
(ii) If a ≤ b, then a + c ≤ b + c .
(iii) If a < b and c < d , then a + c < b + d .
(iv) If a < b and c > 0, then ac < bc.
(v) If a < b and c < 0, then a > b.
(vi) If a < b and c = 0, then ac = bc = 0.
(vii) If a < 0 and b > 0, then ab < 0.
(viii) If a < 0 and b < 0, then ab > 0.

I Proof. Exercise.

I Often we show two real numbers a, b are equal by showing
a ≤ b and b ≤ a. The equality follows by trichotomy property.
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More inequalities

I Inequalities play a crucial role in whole of Analysis.

I Notation. For any real number a, a2 is defined a.a. More
generally, for any a ∈ R and n ∈ N, an is defined as
a.a.a . . . .a (n times ).

I Theorem 8.3: If a, b are positive real numbers, then a2 < b2 if
and only if a < b.

I Proof. Suppose a < b. Now b2 − a2 = (b + a)(b − a). As,
both (b + a) and (b − a) are positive, b2 − a2 is positive. In
other words, a2 < b2.

I Conversely, suppose a2 < b2. Hence
(b2 − a2) = (b + a)(b − a) is positive. As a, b are assumed to
be positive, (b + a) is positive. Now from Theorem 8.1 it is
clear that for the product (b + a)(b − a) to be positive, we
also need (b − a) positive.
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Modulus

I For any real number a, the modulus of a, denoted by |a|, is
defined by

|a| =

{
a if a ≥ 0;
−a if a < 0.

I Note that |a| ≥ 0 for every real number a and |a| = 0 if and
only if a = 0. Further |ab| = |a|.|b| for a, b ∈ R.

I Theorem 8.4 (Triangle inequality): Let a, b be real numbers.
Then

|a + b| ≤ |a|+ |b|.
I Proof: If a or b is zero, it is easily seen that |a+ b| = |a|+ |b|.
I If both a, b are positive, then a + b is also positive, and we

get |a + b| = a + b = |a|+ |b|.
I Now if a is positive and b is negative, say b = −|b|, with

0 < |b| ≤ a, we get
|a + b| = |a− |b|| = a− |b| ≤ a = |a| ≤ |a|+ |b|.

I Similarly if a is positive and b is negative with 0 < a ≤ |b|, we
get |a + b| = |a− |b|| = |b| − a ≤ |b| ≤ |a|+ |b|. Other cases
are similar.
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Why is this triangle inequality?

I Suppose a, b are any two real numbers. Define the ‘distance’
between a and b as

dist (a, b) = |b − a|.

I The triangle inequality tells us that for any three points a, b, c
in R,

dist(a, b) ≤ dist(a, c) + dist(c, b).

I Now it should be clear as to why this is called triangle
inequality.

I You will see that this notion of distance has far reaching
applications in Analysis.
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No smallest or largest positive elements

I Theorem 8.5: (i) The set P has no least element, that is,
there exists no positive real number α, such that α ≤ a for
every positive real number a. (ii) The set P has no largest
element, that is, there exists no positive real number β, such
that a ≤ β for every positive real number a.

I Proof: Suppose α is a positive real number. Then we claim
0 < α

2 < α.

I It is easy to see that 2−1 = 1
2 is positive (Otherwise 1 = 2.2−1

would be negative). Hence α
2 = α.12 is positive.

I So α− α
2 = α

2 is also positive.

I This means that 0 < α
2 < α. Hence no real number α can be

the smallest positive element.

I (ii) If β is any positive element, then β < β + 1. This proves
the second statement.

I END OF LECTURE 8.
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Lecture 9: Real Numbers : Completeness Axiom

I We are assuming that there is a set called set of real numbers
R with two binary operations’, +, . , satisfying certain axioms.



Axioms for addition

I A1.
a + b = b + a, ∀a, b ∈ R.

-Commutativity of addition.

I A2.
a + (b + c) = (a + b) + c , ∀a, b, c ∈ R.

-Associativity of addition.

I A3. There exists an element called ‘zero’, denoted by ‘0’ in R
such that

a + 0 = 0 + a = a, ∀a ∈ R.

-Existence of zero.

I A4. For every a ∈ R, there exists an element ‘−a’ in R such
that

a + (−a) = (−a) + a = 0.

-Existence of additive inverse. −a is known as additive inverse
of a.
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Axioms for multiplication

I M1.
a.b = b.a, ∀a, b ∈ R.

-Commutativity of multiplication.

I M2.
a.(b.c) = (a.b).c , ∀a, b, c ∈ R.

-Associativity of multiplication.
I M3. There exists an element called ‘one’, denoted by ‘1’

different from 0 in R such that

a.1 = 1.a = a, ∀a ∈ R.

-Existence of one.
I M4. For every a ∈ R, with a 6= 0, there exists an element

‘a−1’ in R such that

a.a−1 = a−1.a = 1.

-Existence of multiplicative inverse. a−1 is known as
multiplicative inverse of a.
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Distributivity

I D. For a, b, c in R,

a.(b + c) = a.b + a.c

(a + b).c = a.c + b.c

-Distributivity.

I These axioms are known as algebraic axioms. They determine
the ‘algebraic structure’ of real numbers.
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Order axioms: Positive elements

I Here we have a bunch of three axioms as described below.

I The set R has a subset P called the set of positive real
numbers satisfying following axioms:

I O1. If a, b ∈ P then a + b ∈ P. [ The set of positive real
numbers is closed under addition.]

I O2. If a, b ∈ P then a.b ∈ P. [ The set of positive real
numbers is closed under multiplication.]

I O3. If a ∈ R, then exactly one of the following three
properties is true:
(i) a ∈ P;
(ii) −a ∈ P;
(iii) a = 0.
[This is known as trichotomy property for real numbers.]

I Any element of P is said to be positive.
I Notation: For real numbers, a, b, we write a < b or b > a if

b − a ∈ P. We write a ≤ b or b ≥ a if b − a ∈ P
⋃
{0}.

I In particular, a > 0 iff a ∈ P. Similarly a ≥ 0 iff a ∈ P
⋃
{0}.
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Boundedness

I Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists u ∈ R such that

x ≤ u, ∀x ∈ S .

In such a case, u is said to be an upper bound of S .

I Definition 9.2: A non-empty subset S of R is said to be
bounded below if there exists v ∈ R such that

v ≤ x , ∀x ∈ S .

In such a case, v is said to be a lower bound of S .

I Definition 9.3: A non-empty subset S of R is said to be
bounded if it is both bounded above and bounded below.
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Examples

I Example 9.4: Consider the set S = {1, 2, 3}. Then 4 is an
upper bound for S . 5 is also an upper bound for S . −1 is a
lower bound for S . 1

2 is also a lower bound for S . Since S
admits both lower and upper bounds, it is a bounded subset
of R.

I Example 9.5: The set P of positive real numbers is bounded
below with 0 as a lower bound, as 0 < x for every x ∈ P.

I Suppose u ∈ R is an upper bound for P. Then

x ≤ u

for every real number x ∈ P. In particular 1 ≤ u. Hence
u − 1 ∈ P

⋃
{0}. As 1 ∈ P, we see that u = (u − 1) + 1 is also

positive. Hence u is a positive element such that x ≤ u for
every x ∈ P. Clearly this is not possible as u + 1 is also
positive, and we get u + 1 ≤ u, implying 1 ≤ 0. In other
words, P is bounded below, but not bounded above.

I Example 9.6: It is easily seen that R is neither bounded below
nor bounded above.
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Upper bound vs lower bound

I Remark: Note that if u is an upper bound of S , then u + v is
an upper bound of S , for every v ∈ P.

I Proposition 9.7: A non-empty subset S of R is bounded above
by u if and only if

−S := {−x : x ∈ S}

is bounded below by −u.
I Proof: Exercise.
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Least upper bound

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I Remark: Least upper bound, when it exists is unique, for if u0,
u1 are two least upper bounds, then by (i), (ii) applied to
both u0, u1, we get u0 ≤ u1 and u1 ≤ u0, and hence u0 = u1.

I Example 9.9: Suppose

S1 = {x ∈ R : x ≤ 1};

S2 = {x ∈ R : x < 1}.

It is clear that 1 is the least upper bound for both S1 and S2.
In particular, if u0 is a least upper bound for S , then u0 may
or may not be in S .
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Greatest lower bound

I Definition 9.10: Let S be a non-empty subset of R, which is
bounded below. Then v0 ∈ R is said to be a greatest lower
bound (or infimum) of S if

I (i) v0 is a lower bound of S ;

I (ii) If v is a lower bound of S , then v ≤ v0.

I Remark: Greatest lower bound, when it exists is unique, for if
v0, v1 are two least upper bounds, then by (i), (ii) applied to
both v0, v1, we get v0 ≤ v1 and v1 ≤ v0, and hence v0 = v1.

I Example 9.11: Suppose

T1 = {x ∈ R : x ≥ 1};

T2 = {x ∈ R : x > 1}.

It is clear that 1 is the greatest lower bound for both T1 and
T2. In particular, if v0 is a greatest lower bound for S , then v0
may or may not be in S .
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Equivalence

I Proposition 9.12: Let S be a non-empty subset of R. Then
the following are equivalent:
(a) S is bounded above and u0 ∈ R is the least upper bound
of S .
(b) −S is bounded below and −u0 ∈ R is the greatest lower
bound of −S .



Completeness axiom of R.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I We have already noted that least upper bound when it exists
is unique.

I Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

I Proof: Suppose T ⊂ R is non-empty and is bounded below.
Then by consider −T which is bounded above and appeal to
the completeness axiom. If u0 is the least upper bound of
−T , we know that −u0 is the greatest lower bound of T .



Completeness axiom of R.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I We have already noted that least upper bound when it exists
is unique.

I Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

I Proof: Suppose T ⊂ R is non-empty and is bounded below.
Then by consider −T which is bounded above and appeal to
the completeness axiom. If u0 is the least upper bound of
−T , we know that −u0 is the greatest lower bound of T .



Completeness axiom of R.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I We have already noted that least upper bound when it exists
is unique.

I Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

I Proof: Suppose T ⊂ R is non-empty and is bounded below.
Then by consider −T which is bounded above and appeal to
the completeness axiom. If u0 is the least upper bound of
−T , we know that −u0 is the greatest lower bound of T .



Completeness axiom of R.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I We have already noted that least upper bound when it exists
is unique.

I Proposition 9.13: Every non-empty subset of R which is
bounded below has a greatest lower bound.

I Proof: Suppose T ⊂ R is non-empty and is bounded below.
Then by consider −T which is bounded above and appeal to
the completeness axiom. If u0 is the least upper bound of
−T , we know that −u0 is the greatest lower bound of T .



Notation

I Notation: If S is a non-empty subset of R, we write

sup(S) =

{
Least upper bound of S if S is bounded above;

∞ otherwise.

inf(S) =

{
Greatest lower bound of S if S is bounded below;

−∞ otherwise.

I Note that notationally:
sup(S) = − inf(−S), inf(S) = − sup(−S)

I However, keep in mind that −∞,∞ are not real numbers.
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A Characterization

I Theorem 9.14: Let S be a non-empty subset of R and let
u0 ∈ R. Then u0 = sup(S) if and only if
(i) u0 is an upper bound of S ;
(ii) For every ε > 0, there exists xε ∈ S such that u0 − ε < xε.

I Proof: Suppose u0 = sup(S). Consider any ε > 0. Now if
every x ∈ S satisfies x ≤ u0− ε, then u0− ε is an upper bound
for S . This contradicts the fact that u0 is the least upper
bound. Hence there exists some xε in S , such that u0− ε < xε.

I Conversely suppose u0 satisfies (i) and (ii). Now if u0 is not
the least upper bound of S , then there exists an upper bound
u of S such that u < u0. Take ε = u0 − u.

I As u is an upper bound of S , every x ∈ S satisfies
x ≤ u = u0 − ε. This violates (ii). So u0 must be the least
upper bound of S .
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Consequences of of completeness property

I Theorem 9.15: N is not bounded above.

I Note that we know that N has no largest element. But this
does not leave out the possibility of existence of a real number
u, such that n ≤ u for all n ∈ N.

I Proof: Suppose N is bounded above.

I Then by the least upper bound property, N has a least upper
bound, say u0.
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Continuation of proof

I Take ε = 1
2 .

I Then by Theorem 9.14, there exists a natural number x such
that u0 − 1

2 < x .

I Adding 1, we get u0 + 1
2 < x + 1.

I In particular, u0 < x + 1.

I As x is a natural number x + 1 is also a natural number.

I Then u0 < x + 1 is a contradiction, as u0 is an upper bound
for the set of natural numbers.

I Hence N can’t be bounded above.
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A corollary

I Corollary 9.16: Suppose x is a natural number. Then there
exists a natural number n such that x < n.

I Proof: Let x ∈ R. If n ≤ x for every natural number n, then
N is bounded above by x . Since N is not bounded above,
there exists a natural number n such that x < n.
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I Proof: Let x ∈ R. If n ≤ x for every natural number n, then
N is bounded above by x . Since N is not bounded above,
there exists a natural number n such that x < n.



Archimedean property

I Theorem 9.17 (Archimedean property): Suppose ε ∈ R and
ε > 0. Then given any y ∈ R there exists n ∈ N such that

y < n.ε.

I Proof: Take x = y
ε .

I By the previous Corollary, there exists a natural number n
such that x < n.

I That is, y
ε < n or y < nε.
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Continuation

I Recall: Archimedean property: Suppose ε ∈ R and ε > 0.
Then given any x ∈ R there exists n ∈ N such that

x < n.ε.

I We say even ocean is made up of small drops of water.

I However big the x is, we can exceed that by taking a large
multiple of ε is the statement in Archimedean property.

I Even a long journey we can finish by taking small steps.

I Long proofs of theorems are also made up of small,
understandable steps!
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Lecture 10: Existence of irrational numbers

I We now have all the required axioms.

I A1-A4, axioms for addition; M1-M4, axioms for multiplication
and D-distributivity axiom.

I O1-O3, axioms of order, and

I C- Completeness axiom.
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Recall: Completeness axiom

I Definition 9.1: A non-empty subset S of R is said to be
bounded above if there exists u ∈ R such that

x ≤ u, ∀x ∈ S .

In such a case, u is said to be an upper bound of S .

I Definition 9.8: Let S be a non-empty subset of R, which is
bounded above. Then u0 ∈ R is said to be a least upper
bound (or supremum) of S if

I (i) u0 is an upper bound of S ;

I (ii) If u is an upper bound of S , then u0 ≤ u.

I C. Completeness axiom (Least upper bound property): Every
non-empty subset of R which is bounded above has a least
upper bound.

I If S is non-empty and bounded above, its least upper bound is
unique and is denoted by sup(S).
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A Lemma

I Lemma 10.1: Let ε be a positive real number. Then there
exists a natural number n such that

0 <
1

n
< ε.

I Proof: This inequality is equivalent to

0 < 1 < n.ε.

I Now the result is a special case of Archimedean property with
x = 1.
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Squares of integers

I An integer n ∈ Z is said to be an even number if it is a
multiple of 2, that is, it is of the form 2k for some integer k.

I The set of even integers is: {. . . ,−4,−2, 0, 2, 4, 6, . . .}.
I An integer n ∈ Z is said to be an odd number if it is not an

even number. Odd integers are all of the form 2k + 1 for
some integer k, and conversely all integers of the form 2k + 1
with k ∈ Z are all odd.

I The set of odd integers is: {. . . ,−5,−3,−1, 1, 3, 5, . . .}.
I Proposition 10.1: Square of an even integer is even and

square of an odd integer is odd.

I Proof. Exercise.
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Square root of 2

I Theorem 10.2: There is no rational number x such that
x2 = 2.

I Proof: The proof is by contradiction.

I Suppose x is a rational number such that x2 = 2.

I As x is a rational number, x = p
q , for some integers, p, q with

q 6= 0.

I Without loss of generality, we may assume that p, q are
relatively prime (they have no common factor bigger than 1).
This is possible, because, if p = rp1 and q = rq1, with r > 1,
we can write x = p1

q1
.
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Continuation

I We have x = p
q , where p, q ∈ Z and are relatively prime.

I As x2 = 2, we get p2

q2
= 2 or p2 = 2q2.

I In particular, p2 is even.

I Since squares of odd numbers are odd, p also must be even.
Say, p = 2k , with k ∈ Z.

I Then we get 4k2 = 2q2 or 2k2 = q2.

I In particular, q2 is even and hence q is also even.

I Consequently, both p and q are even. This is a contradiction,
as we have taken p, q to be relatively prime.

I This completes the proof.
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Square root of 2 as a real number

I Theorem 10.3: There exists unique positive real number s
such that s2 = 2.

I Proof: Consider the set S defined by

S = {x ∈ R : x > 0, x2 < 2}.

I Then S is non-empty as 1 ∈ S .

I We have seen earlier that for positive real numbers a, b:

I a < b if and only if a2 < b2.

I If x ∈ S , then x2 < 2 < 4 = 22.

I As x2 < 22, we get x < 2. Therefore S is bounded above by 2.
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Continuation

I Now, as S is non-empty and bounded above, by the
completeness of axiom of real numbers, S has a least upper
bound.

I Let s be the least upper bound of S .

I Claim: s2 = 2.

I Suppose s2 < 2.

I We want to choose a natural number n such that

(s +
1

n
)2 < 2.

I (s + 1
n )2 = s2 + 2s

n + 1
n2
.

I Since n2 ≥ n, 1
n2
≤ 1

n .

I Hence, (s + 1
n )2 ≤ s2 + 2s

n + 1
n .
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Continuation

I Since both s2 < 2 and s2 > 2 are not possible, the only
possibility is s2 = 2, by the trichotomy property.

I So we have shown the existence of a positive real number s
such that s2 = 2.

I If 0 < t < s, we have 0 < t2 < s2 = 2, and if s < t, we get
2 = s2 < t2. Hence s is the unique positive real number such
that s2 = 2.

I We denote s, by
√

2.

I It is easily seen that −
√

2 is the only other real number whose
square 2.
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Integer part and fractional part

I Given any positive real number x , we know that there exists a
natural number n, such that x < n.

I Now it is easy to see that given any real number x , there exist
integers, m, n such that m < x < n.

I Fix a real number x . Take

T = {m : m ∈ Z,m ≤ x}.

I Then T is non-empty and is bounded above by x .

I Take [x ] = sup(T ).

I Then [x ] is known as the integer part of x .

I [x ] is the unique integer satisfying [x ] ≤ x < [x ] + 1.

I x − [x ] is known as the fractional part of x . Note that

0 ≤ x − [x ] < 1, ∀x ∈ R.
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Intervals

I Notation: For any two real numbers a, b with a < b, we write

(a, b) := {x ∈ R : a < x < b}.

[a, b) := {x ∈ R : a ≤ x < b}.

(a, b] := {x ∈ R : a < x ≤ b}.

[a, b] := {x ∈ R : a ≤ x ≤ b}.

(a,∞) := {x ∈ R : a < x}.

[a,∞) := {x ∈ R : a ≤ x}.

(−∞, a) := {x ∈ R : x < a}.

(−∞, a] := {x ∈ R : x ≤ a}.

I We call (a, b) as open interval and [a, b] as closed interval.
Intervals [a, b) etc. are called semi-open intervals.
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The density of rational and irrational numbers

I Lemma 10.8: For any rational number x 6= 0, x
√

2 is an
irrational number.

I Proof: It is easily seen that if x
√

2 is rational, then so is
√

2.
But we have already proved that

√
2 is not rational.

I Theorem 10.9: Suppose a, b are real numbers such that a < b.
(i) Then there exists a rational number r such that a < r < b.
(ii) There exists an irrational number s such that a < s < b.

I Proof: (i) Case I: a = 0: We know that there exists n ∈ N
such that 0 < 1

n < b. Since 1
n is rational, we are done.
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Continuation

I Case II: a > 0. Now as (b − a) > 0, we can find n ∈ N such
that 0 < 1

n < (b − a), or 1 < nb − na, that is, na + 1 < nb.

I Take m = [na] + 1. So m ∈ N.

I Then m − 1 ≤ na < m. Which implies, on dividing by n,
a < m

n .

I And also, m
n −

1
n ≤ a

I or m
n < a + 1

n < a + (b − a) = b.

I So we have a < m
n < b.

I Case III: a < 0. The result for this case can be derived from
Case I and Case II (Exercise).
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Lecture 11: Real Numbers: Nested intervals property and
Uncountability

I Consider R the set of real numbers.

I We draw the set as ‘Real line’:

I

I

I

I

I This is only a visual aid for us. We are not connecting axioms
of geometry with axioms of real line.
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Nested Intervals

I A sequence of intervals I1, I2, I3, . . . is said to be nested if
In ⊇ In+1 for every n ∈ N, that is,

I1 ⊇ I2 ⊇ I3 ⊇ · · · .

I Example 11.1: Take In = (− 1
n ,

1
n ), then

(−1, 1) ⊃ (−1

2
,

1

2
) ⊃ (−1

3
,

1

3
) · · · .

I Claim:
⋂

n∈N(− 1
n ,

1
n ) = {0}.

I Proof: Clearly 0 ∈ (− 1
n ,

1
n ) for every n ∈ N, and hence

0 ∈
⋂∞

n=1(− 1
n ,

1
n ).

I Now if x ∈ R and x > 0, there exists m ∈ N, such that
0 < 1

m < x .
I Hence x /∈ (− 1

m ,
1
m ).

I Consequently x /∈
⋂

n∈N(− 1
n ,

1
n ).

I Similarly, if x ∈ R and x < 0, then x /∈
⋂

n∈N(− 1
n ,

1
n ).

I This completes the proof.
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Another Example

I Example 11.2: Take Jn = (0, 1n ) for n ∈ N.

I Then Jn is a nested family of intervals:

J1 ⊃ J2 ⊃ J3 ⊃ · · · .

I Clearly ⋂
n∈N

Jn = ∅.

I So intersection of a nested family of intervals can be empty.
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One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.

I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.
I Considering previous examples, the following theorem can be

a bit of a surprise.



One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.
I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.
I Considering previous examples, the following theorem can be

a bit of a surprise.



One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.
I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.

I Considering previous examples, the following theorem can be
a bit of a surprise.



One more example

I For n ∈ N take Kn = [n,∞) = {x ∈ R : n ≤ x}.
I Then Kn is a nested family of intervals:

K1 ⊃ K2 ⊃ K3 ⊃ · · · .

I
⋂

n∈N Kn = ∅.
I Considering previous examples, the following theorem can be

a bit of a surprise.



Nested intervals property

I Theorem 11.3 (Nested intervals property): Intersection of a
nested sequence of closed and bounded intervals is non-empty.

I Recall that an interval is said to be closed and bounded if it is
of the form [a, b] for some real numbers a, b with a < b.

I Proof: Suppose I1, I2, . . . is a nested sequence of intervals,
where In = [an, bn], for some an, bn ∈ R, with an < bn for
every n.

I We want to show that
⋂

n∈N In =
⋂

n∈N[an, bn] 6= ∅.
I As In ⊇ In+1, we have [an, bn] ⊇ [an+1, bn+1] for every n.

I This means that an ≤ an+1 < bn+1 ≤ bn for every n.
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Continuation

I Since for every n, I1 ⊇ In, we get a1 ≤ an ≤ bn ≤ b1.

I In particular A := {an : n ∈ N} is bounded by b1.
I By completeness axiom, A has a least upper bound. Take

u = sup(A).
I We claim that u ∈

⋂
n∈N In.

I Fix n ∈ N.
I Since u is an upper bound for A, and an ∈ A,

an ≤ u, (i)

I We have
a1 ≤ a2 ≤ · · · ≤ an ≤ bn

Hence am ≤ bn for 1 ≤ m ≤ n.
I For m ≥ n, Im ⊆ In, and hence an ≤ am < bm ≤ bn. In

particular, am ≤ bn.
I Combining the last two conclusions, we have

am ≤ bn, ∀m (ii)
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Continuation

I From (ii), bn is an upper bound for A. Since u is the least
upper bound, we get

u ≤ bn, (iii).

I From (i) and (iii), an ≤ u ≤ bn. In other words, u ∈ In. Since
this is true for every n, u ∈

⋂
n∈N In.

I In particular,
⋂

n∈N In is non-empty.
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The intersection is an interval

I Consider the intervals In = [an, bn] of previous theorem.

I Similar arguments show that B = {bn : n ∈ N} is bounded
below and taking v = inf(B),

I v ∈
⋂

n∈N In.
I We have am ≤ bn for all m, n.
I This implies u ≤ bn for all n, as bn is an upper bound for A

and u is the least upper bound.
I This in turn implies u is a lower bound for B and since v is

the greatest lower bound we get

u ≤ v .

I In fact, as an ≤ u ≤ v ≤ bn for every n, we can see that

[u, v ] ⊆
⋂
n∈N

In.

I Here if u = v , then [u, v ] is to be understood as the singleton
{u}.
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The Singleton

I Theorem 11.4: Let I1, I2, . . . be a nested sequence of intervals,
with In = [an, bn], for some an, bn ∈ R. Suppose
inf{bn − an : n ∈ N} = 0. Then

⋂
n∈N In is a singleton set.

I Proof: Suppose u = sup{an : n ∈ N} and v = inf{bn : n ∈ N}.
I We want to show u = v .

I Suppose not. Since an ≤ u ≤ v ≤ bn for every n.

I Hence bn − an ≥ (v − u) for every n.

I In particular v − u is a lower bound for {bn − an : n ∈ N}
Therefore (v − u) ≤ 0.

I Since we already have u ≤ v , we get v − u = 0, that is, u = v .
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Uncountability of R

I Theorem 11.5: The set R is uncountable.

I Proof: Fix a, b ∈ R with a < b.

I We will show that [a, b] is uncountable.

I This would complete the proof as subsets of countable sets
are countable, R can not be countable.

I Suppose [a, b] is countable.

I Let {x1, x2, . . .} be an enumeration of [a, b]. (This just means
that n 7→ xn is a bijective function from N to [a, b].)
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Continuation

I Now x1 ∈ [a, b]. Clearly we can choose a closed sub-interval
I1 = [a1, b1] of [a, b] such that x1 /∈ I1.

I Next, in a similar fashion, we can choose a sub-interval
I2 = [a2, b2] of I1, such that x2 /∈ I2. (If x2 /∈ I1, we can simply
choose I2 = I1.

I Then we can choose a sub-interval I3 = [a3, b3] of I2 such that
x3 /∈ I3.

I Continuing this way, we have a nested sequence of closed and
bounded intervals:

[a, b] ⊇ I1 ⊇ I2 ⊇ · · · ,
I with xn /∈ In for every n ∈ R.
I By nested intervals property of R,⋂

n∈N
In

is non-empty. Take u ∈
⋂

n∈N In.
I Then clearly u ∈ [a, b].
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Continuation

I Also for every n, u ∈ In and xn /∈ In, and hence u 6= xn.

I This holds for every n. This means that n 7→ xn from N to
[a, b] is not surjective as we have got u ∈ [a, b] such that
u 6= xn for every n.

I This is a contradiction and hence [a, b] is not countable.

I END OF LECTURE 11.
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Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?

I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Lecture 12: Real Numbers: Binary and Decimal systems

I Consider R, the set of real numbers.

I We want to look at the familiar binary and decimal systems of
writing real numbers.

I Binary expansion for integers: We know that any natural
number can be written uniquely as
cn.2

n + cn−1.2
n−1 + · · ·+ c1.2 + c0, for some n ∈ N with each

cj ∈ {0, 1} (cn 6= 0).

I As every real number is its integer part plus the fractional part
it suffices to consider real numbers in the interval [0, 1) in
binary and decimal systems.

I Qn: What is the difference between 1 and 0.9999999 · · · ?
I Ans: 1 = 0.999999 · · · . In other words, they are equal.



Bernoulli’s inequality

I Theorem 12.1 (Bernoulli’s inequality): If x ∈ R with x > −1,
then

(1 + x)n ≥ 1 + nx , ∀n ∈ N.

I Proof: This we prove by induction on n.
I For n = 1, clearly the equality holds.
I Assume the result for n = m, so we have (1 + x)m ≥ 1 + mx .
I Note that as x > −1, 1 + x > 0.
I Now using the induction hypothesis,

(1 + x)m+1 = (1 + x)m.(1 + x)
≥ (1 + mx)(1 + x)
= 1 + x + mx + mx2

≥ 1 + (m + 1)x

as mx2 ≥ 0.
I Hence the inequality is true for n = m + 1.
I This completes the proof by Mathematical Induction.
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Binary system

I We divide the interval [0, 1) into two parts, [0, 1/2) and [12 , 1),
and then sub-divide them into two more equal pieces and so
on.

I We have [0, 1) = [0, 12)
⋃

[12 , 1)

I If x ∈ [0, 12), the first binary digit b1 of x is 0. If x ∈ [12 , 1),
the first binary digit b1 of x is 1.

I Here we have made a choice to put the mid-point with the
right interval. We can opt to the mid-point with the left
interval. This option we will explore later on.

I Consider the case where b1 = 0. Now x ∈ [0, 12). To
determine the second digit, divide [0, 12) into two parts.

I If x ∈ [0, 14), the second binary digit b2 of x is 0. If x ∈ [14 ,
1
2)

the second binary digit b2 of x is 1.

I On the other hand if b1 = 1, that is, x ∈ [12 , 1), the second
binary digit b2 is 0 if x ∈ [12 ,

3
4) and b2 = 1 if x ∈ [34 , 1).
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Binary expansion: Continuation

I Continuing this way, if b1, b2, . . . , bn are the first n-binary
digits of x , then

b1
2

+
b2
22
· · ·+ bn

2n
≤ x <

b1
21

+
b2
22
· · ·+ (bn + 1)

2n
.

I In other words, taking

I1 = [
b1
21
,

(b1 + 1)

21
].

I2 = [
b1
21

+
b2
22
,

b1
21

+
(b2 + 1)

22
]

In = [
b1
21

+
b2
22

+ · · ·+ bn
2n
,

b1
21

+
b2
22

+ · · ·+ (bn + 1)

2n
], ∀n,

I we get a nested family of closed and bounded intervals:

I1 ⊃ I2 ⊃ I2 · · ·
I satisfying x ∈ In for every n.
I Hence x ∈

⋂
n∈N In.
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Continuation

I By Bernoulli’s inequality (taking x = 1) 2n = (1 + 1)n ≥ 1 +n.

I In particular, for ε > 0, there exists n ∈ N, such that
0 < 1

2n <
1

n+1 < ε.

I Consequently, inf{ (bn+1)
2n − bn

2n : n ∈ N} = inf{ 1
2n : n ∈ N} = 0.

I Then by Theorem 11.5,
⋂

n∈N In is singleton.

I Hence
⋂

n∈N In = {x}.
I This shows that the binary digits of x , determines x .

I In other words, two different real numbers x , y would have
different binary expansions.
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Second Option in Binary expansion

I Now we explore the Second Option.

I We divide the interval (0, 1] as (0, 12 ]
⋃

(12 , 1].

I Then (0, 12 ] as (0, 1
22

]
⋃

( 1
22
, 12 ] and (12 , 1] as (12 ,

3
22

]
⋃

( 3
22
, 1].

I This way we get a possibly new binary expansion, say the
digits are c1, c2, . . ., satisfying

c1
21

+
c2
22
· · ·+ cn

2n
≤ x ≤ c1

21
+

c2
22
· · ·+ cn + 1

2n
.

I The two expansions are different only if x is one of the end
points in these divisions, that is, if x = m

2k
for some natural

numbers m, k. Here without loss of generality we may take m
to be odd.

I In other words in (0, 1), only numbers of the form m
2k

, with
natural numbers m, k have two binary expansions.

I For instance, 1
2 is expressed as 0.10000000 . . . using the first

option and as 0.0111111111 . . . through the second option.
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Binary expansion continued

I Suppose x ∈ (0, 1) is expressed using binary expansion, under
either option, and b1, b2, . . . , bn are the first n binary digits.

I Then

b1
2

+
b2
22

+ · · ·+ bn
2n
≤ x ≤ b1

2
+

b2
22

+ · · ·+ bn + 1

2n

I From the proof of the nested intervals property, we see that

x = sup{b1
2

+
b2
22

+ · · ·+ bn
2n

: n ∈ N}.

I Note that

1
2 = sup{12 + 0 + · · ·+ 0(n − 1 times ) : n ∈ N}

= sup{0 + 1
22

+ 1
23

+ · · ·+ 1
2n : n ∈ N}.

I Similarly 1 = sup{12 + 1
22

+ · · · 1
2n : n ∈ N}.
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Ternary and decimal expansions

I Similar to binary expansion we can have expansion with ‘base’
M, for any M ∈ {2, 3, 4, . . .}, where we use only the digits
{0, 1, 2, . . . , (M − 1)}.

I Ternary (M = 3) and decimal (M = 10)expansions are
particularly useful.

I If x = 0.d1d2 · · · is the decimal expansion of x , then, each
dj ∈ {0, 1, 2, . . . , 9} and

x = sup{d1
10

+
d2

102
+ · · ·+ dn

10n
: n ∈ N}.

I Here x ∈ (0, 1) has two decimal expansions if and only if
x = m

10k
for some natural numbers m, k.

I Alternatively x has two decimal expansions if and only if its
decimal expansion is of the form 0.d1d2 . . . dn000000 . . . or it
is of the form 0.d1d2 . . . dn999999 . . . for some dj ’s.

I In such cases, we say that x has a terminating decimal
expansion. (It ends either with a sequence of 0’s or with a
sequence of 9’s.)
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Summary

I We summarize our observations as follows.

I Theorem 12.2: Fix M ∈ N with M ≥ 2. Then any real number
x ∈ [0, 1) can be expressed as:

x = sup{d1
M

+
d2
M2

+ · · ·+ dn
Mn

: n ∈ N, dj ∈ {0, 1, . . . ,M−1}}

The sequence d1, d2, . . . is uniquely determined unless x = m
Mk

for some natural numbers m, k. Further, if x = m
Mk then x has

two possible expressions, one terminating with 0’s and another
terminating with (M − 1)’s.

I If d1, d2, . . . are as in this theorem, we say

x = 0.d1d2d3 . . .

in base M.

I END OF LECTURE 12
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Lecture 13. Countable sets in infinite sets

I Theorem 13.1: Let S be any infinite set. Then S contains a
countably infinite set, that is, there exists a subset T of S ,
such that T is equipotent to N.

I Proof: As S is infinite, it is non-empty. So there exists some
x1 ∈ S .

I Now consider S\{x1}. If S\{x1} is empty, then S = {x1} and
this would mean that S is finite. Therefore S\{x1} is
non-empty. Choose any x2 ∈ S\{x1}.

I Now we can see that S\{x1, x2} is non-empty.

I For every n, after choosing distinct elements x1, x2, . . . , xn in
S , we can choose xn+1 ∈ S\{x1, x2, . . . , xn} in S .

I Then by mathematical induction we have a sequence
{x1, x2, . . .} of distinct elements in S . Clearly
T = {xn : n ∈ N} is equipotent with N.
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Unions of finite and infinite sets

I Theorem 13.2: Let S be an infinite set and let F be a finite
set. Then S

⋃
F is equipotent with S .

I Proof: This is an exercise. Here are the suggested steps:

I Step 1: S
⋃
F = S

⋃
(F\(S

⋂
F )). Since F is finite,

F\(S
⋂

F ) is also finite. Note that S and F\(S
⋂

F ) are
disjoint. Consequently, it suffices to prove the Theorem when
S and F are disjoint (Otherwise, we can replace F by
F\(S

⋂
F ).

I Step 2: Using the previous theorem, choose a subset T of S ,
which is equipotent with N.

I Step 3: Show that T
⋃

F is equipotent with N, and hence it
is equipotent with T .

I Conclude that S
⋃
F is equipotent with S .
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Countable sets in Uncountable sets

I Theorem 13.3: Let S be an uncountable set. Let C be a
countable set. Then S

⋃
C is equipotent with S .

I Proof: Like before, it suffices to prove the result when C is
disjoint from S .

I By Theorem 13.1, there exists a countably infinite subset T of
S .

I Clearly T
⋃

C is equipotent with T .

I If f : T → T
⋃

C is a bijection, f̃ : S → S
⋃
C defined by

(f̃ )(x) =

{
f (x) x ∈ T ;
x x ∈ S\T

is seen to be a bijection from S to S
⋃
C and this completes

the proof.

I Corollary 13.4: If S is an uncountable set and T ⊂ S is
countable then S is equipotent with S\T .
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[0, 1) and binary sequences

I Theorem 13.5: The set of real numbers in [0, 1) is in bijection
with binary sequences.

I Proof: Let B be the set of binary sequences:

B = {(w1,w2, . . . , ) : wj ∈ {0, 1}, j ∈ N}.
I Let B0 be the set of binary sequences which terminate with

sequence of just 1’s.
I Clearly B0 is an infinite set. Since B0 is countable union of

finite sets (Why?) it is countably infinite. Take A = B\B0.
I Consider the map f : [0, 1)→ A defined by

f (x) = (b1, b2, b3, . . .),

where 0.b1b2b3 . . . is the binary expansion of x , using the first
option. We have seen that f is a bijection. Therefore [0, 1)
and A are equipotent.

I Now B = A
⋃
B0. A is uncountable and B0 is countable.

Hence B is equipotent with A.
I Consequently [0, 1) and B are equipotent.
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Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



Different intervals

I Theorem 13.6: Any two sub-intervals of R are equipotent.

I Proof: (i) [0, 1) is equipotent with (0, 1): This is clear, as {0}
is countable and (0, 1) is uncountable.

I (ii) (0, 1) is equipotent with [0, 1]. This is clear, as {0, 1} is
countable and (0, 1) is uncountable.

I (iii) [0, 1] is equipotent with [a, b] for any a, b in R with
a < b: Consider the map g : [0, 1]→ [a, b] defined by

g(x) = a + x(b − a), x ∈ [0, 1]

Then g is a bijection.

I (iv) (0, 1) is equipotent with (1,∞):

I Consider the map h : (0, 1)→ (1,∞) defined by
h(x) = 1

x , x ∈ (0, 1). Then it is easily seen that h is a
bijection.

I (v) It is an exercise to cover all the remaining cases.



More problems

I Show that R× R is equipotent with R. More generally, show
that Rn is equipotent with R for any n ∈ N.

I Show that [0, 1]× [0, 1] is equipotent with R.
I Show that the space of real valued functions on N :

F = {f |f : N→ R}

is equipotent with R.
I END OF LECTURE 13
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Lecture 14. Direct and inverse images of functions

I Notation: Let X ,Y be non-empty sets and let f : X → Y be
a function. The for A ⊆ X , f (A) is defined as:

I
f (A) := {f (x) : x ∈ A}.

I Example 14.1: Suppose X = {1, 2, 3} and Y = {u, v ,w} and
f : X → Y is defined by f (1) = f (2) = u and f (3) = v .

I Then f ({1, 2}) = {u} and f ({3}) = {v}.
I Here we have slight abuse of notation as we are defining f (A)

for subsets of X and not elements of X , where as, normally
when we write f (x), x is an element of X . However, this
notation is standard.

I Note that for any element x of X , f ({x}) = {f (x)}, which is
the singleton set containing f (x) and is different from the
element f (x). This distinction between elements and singleton
sets should always be maintained to avoid confusion.
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Basic properties

I Proposition 14.2: Let f : X → Y be a function. Then,

I (i) f (∅) = ∅.
I (ii) In general, f (X ) 6= Y .
I (iii) In general, for A,B ⊆ X ,

f (A
⋂

B) 6= f (A)
⋂

f (B).

I (iv) For any two subsets A,B of X ,

f (A
⋃

B) = f (A)
⋃

f (B).

I More generally, for arbitrary family {Ai : i ∈ I} of subsets of
X ,

f (
⋃
i∈I

Ai ) =
⋃
i∈I

f (Ai ).

I (v) In general, for A ⊆ X

f (Ac) 6= (f (A))c .
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Examples

I Example 14.3: Suppose f : R→ R is defined by
f (x) = x2, ∀x ∈ R.

I Take A = (−∞, 0] and B = [0,∞). Then

I A
⋂
B = {0}.

I f (A)
⋂
f (B) = [0,∞)

⋂
[0,∞) = [0,∞), where as,

I f (A
⋂
B) = f ({0}) = {0}.

I Hence f (A
⋂
B) 6= f (A)

⋂
f (B).
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Continuation

I The prof of Proposition 14.2 is an exercise.

I For instance, if y ∈ f (A
⋃
B), then y = f (x) for some

x ∈ A
⋃
B. Here either x ∈ A or x ∈ B (or both). If x ∈ A,

we get y ∈ f (A). If x ∈ B, we get y ∈ f (B). Consequently,
we get y ∈ f (A)

⋃
f (B). This shows that

f (A
⋃
B) ⊆ f (A)

⋃
f (B).

I Similarly, you can show f (A)
⋃

f (B) ⊆ f (A
⋃

B) and
conclude that f (A

⋃
B) = f (A)

⋃
f (B).
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Characterizations

I Theorem 14.4: Let X ,Y be non-empty sets and let
f : X → Y be a function.

I (a) f (X ) = Y if and only if f is surjective.

I (b) f (A
⋂

B) = f (A)
⋂
f (B) for all subsets A,B of X if and

only if f is injective.

I (c) f (Ac) = (f (A))c for all subsets A of X if and only if f is a
bijection.

I Proof: (a) follows from the definition of surjectivity. (b) and
(c) are interesting exercises.
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Inverse images

I Notation: Let X ,Y be non-empty sets and let f : X → Y be
a function. Then for any subset V of Y ,

f −1(V ) := {x ∈ X : f (x) ∈ V }.

I For instance, for f : {1, 2, 3} → {u, v ,w} defined by
f (1) = f (2) = u and f (3) = v ,

f −1({u}) = {1, 2}, f −1({w}) = ∅.

I Here also there is some abuse of notation as we writing f −1

even when f is not invertible. But we are defining f −1 for
subsets of Y and not for elements of Y .

I For the example, g : R→ R, defined by g(x) = x2, ∀x ∈ R,
we see that g−1({0}) = {0} and g−1([0,∞)) = R.
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Basic properties of inverse images

I Theorem 14.5: Let X ,Y be non-empty sets and let
f : X → Y be a function. Then following properties hold.

I (i) f −1(∅) = ∅;
I (ii) f −1(Y ) = X ;

I (iii) f −1(V
⋂

W ) = f −1(V )
⋂
f −1(W ) for subsets V ,W of

Y . More generally, for any arbitrary collection {Vi : i ∈ I} of
subsets of Y ,

f −1(
⋂
i∈I

Vi ) =
⋂
i∈I

f −1(Vi ).

I (iv) f −1(V
⋃
W ) = f −1(V )

⋃
f −1(W ) for subsets V ,W of

Y . More generally, for any arbitrary collection {Vi : i ∈ I} of
subsets of Y ,

f −1(
⋃
i∈I

Vi ) =
⋃
i∈I

f −1(Vi ).

I (v) f −1(V c) = (f −1(V ))c for every subset V of Y .
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Continuation

I It is indeed amazing that the inverse image f −1 respects all
set theoretic operations with no conditions imposed on f .
This is a very useful fact to remember.

I The proof of Theorem 14.5 is also as an exercise.
I Theorem 14.6: Let X ,Y be non-empty sets and let

f : X → Y be a function.
I (a) For any subset A of X ,

f −1(f (A)) ⊇ A

and the equality may not hold.
I (b) For any subset V of Y ,

f (f −1(V )) ⊆ V

and the equality may not hold.
I Proof: Exercise.
I END OF LECTURE 14.
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Lecture 15. Sequences and limits

I Now that we have the real number system in place we can
build the edifice of real analysis.

I This includes notions such as sequences and their limits,
continuity, differentiability, integration and so on.

I Three basic results we keep using repeatedly:

I (i)
inf{x ∈ R : x > 0} = 0.

I (ii) For any ε > 0, there exists a natural number n ∈ N such
that 0 < 1

n < ε.

I (iii) Triangle inequality: For x , y , z ∈ R,

|x − y | ≤ |x − z |+ |z − y |.

I We have already proved these results.
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Definition and Examples

I Definition 15.1 : A sequence of real numbers

a1, a2, a3, . . .

or written equivalently as {an}n∈N is a function a : N→ R
with an = a(n).

I Example 15.2: Consider the function a : N→ N defined by
a(n) = n2, this gives us the sequence,

1, 4, 9, 16, . . . ,

also written as {n2}n∈N.
I Example 15.3 (Fibonacci sequence): This is the sequence:

1, 1, 2, 3, 5, 8, . . . ,

defined ‘recursively’, by a1 = 1, a2 = 1 and an = an−2 + an−1
for n ≥ 3.
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Limit of a sequence

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I A sequence which is not convergent is said to be divergent.

I We may write, |an − x | < ε, equivalently as
x − ε < an < x + ε or as an ∈ (x − ε, x + ε).
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Constant sequence

I Example 15.3 (Constant sequence): Choose and fix a real
number c . Let {an}n∈N be the sequence defined by
an = c , ∀n ∈ N. So it is the sequence:

c , c, c , c , . . .

Then {an}n∈N is convergent and it converges to c.

I Proof: For any ε > 0, we may take K = 1.

I Then,
|an − c | = |c − c | = 0 < ε, ∀n ≥ K .

I Hence {an}n∈N converges to c .
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The uniqueness of limit

I Theorem 15.3 (The uniqueness of limit): Let {an}n∈N be a
convergent sequence. Then its limit is unique.

I Proof: Suppose {an}n∈N converges to x , y in R. We want to
show x = y .

I Now for any ε > 0, since {an}n∈N converges to x , there exists
some K1 ∈ N such that

|an − x | < ε, ∀n ≥ K1.

I Similarly, since {an}n∈N converges to y , there exists some
K2 ∈ N such that

|an − y | < ε, ∀n ≥ K2.

I Choose any n ≥ max{K1,K2}. Then both the previous
inequalities are true. Then by triangle inequality we get

|x − y | ≤ |x − an|+ |an − y | < ε+ ε.

I Hence
0 ≤ |x − y | < 2ε

for every ε > 0.
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Continuation

I Consequently,

0 ≤ 1

2
|x − y | < ε

for all ε > 0.

I Since inf{ε : ε > 0} = 0, we get 0 ≤ 1
2 |x − y | ≤ 0,

I Hence 1
2 |x − y | = 0 or |x − y | = 0, which is same as saying

x = y .
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Notation

I Suppose {an}n∈N is a sequence converging to x . Then we
write:

lim
n→∞

an = x .

I We say that ”The limit of an as n tends to infinity exists and
is equal to x”.

I Note that here n is a dummy variable, that is, if

lim
n→∞

an = x

then we also have,
lim

m→∞
am = x .

I So the convergence or non-convergence is a property of the
whole sequence.
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Examples

I Example 15.5: Consider the sequence {bn}n∈N where bn = 1
n

for every n ∈ N.

I Claim:
lim
n→∞

bn = 0.

I This means that {bn}n∈N is convergent and it converges to
zero.

I The proof is easy. For any ε > 0, choose K ∈ N such that

0 <
1

K
< ε.

I Then for any n ≥ K , we have 1
n ≤

1
K < ε. Hence,

|bn − 0| = |1
n
| ≤ 1

K
< ε, ∀n ≥ K .

I Consequently, by the definition of convergence, {bn} is
convergent, and limn→∞ bn = 0.

I We may also write this as: limn→∞
1
n = 0.
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Boundedness

I Definition 15.7: A sequence {an}n∈N of real numbers is said to
be bounded if there exists a positive real number M such that

|an| ≤ M, ∀n ∈ N.

Then M is said to be a bound for {an}n∈N.

I A sequence which is not bounded is said to be unbounded.
I Example 15.8: Clearly every constant sequence c , c , . . . is

bounded by M = |c |.
I Example 15.7: The sequence {n}n∈N is unbounded.
I Theorem 15.8: Every convergent sequence of real numbers is

bounded. The converse is not true.
I Proof: Suppose {an}n∈N converges to x .
I Take ε = 1. Then there exists K ∈ N, such that

|an − x | < 1, ∀n ≥ K .

I Note that for n ≥ K , by triangle inequality,

|an| = |an − 0| ≤ |an − x |+ |x − 0| ≤ 1 + |x |.
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Continuation

I Now take,

M = max{|a1|, |a2|, . . . , |aK−1|, |x |+ 1}

I Then we have, |an| ≤ M for all n ∈ N. Hence {an}n∈N is
bounded by M.
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The converse

I The claim ” The converse is not true”, is shown by exhibiting
a bounded sequence which is not convergent.

I Define {cn}n∈N by

cn =

{
0 if n is odd;
1 if n is even.

I So this is the sequence:

0, 1, 0, 1, 0, 1, . . . .

I Suppose {cn}n∈N is convergent and it converges to some x .

I Then for ε > 0, there exists K ∈ N such that

|cn − x | < ε, ∀n ≥ K .

I Choosing an odd number n ≥ K , we get |0− x | < ε.

I Similarly choosing an even number n ≥ K , we get |1− x | < ε.
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Continuation

I Then by triangle inequality,

|0− 1| ≤ |0− x |+ |x − 1| < ε+ ε = 2ε.

I Hence 0 ≤ 1
2 < ε for every ε > 0. This means 1

2 = 0, which is
clearly a contradiction.

I This proves that {cn}n∈N is not convergent.

I END OF LECTURE 15
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Lecture 16. Some limit theorems

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I Notation: If {an}n∈N converges to x , we write

lim
n→∞

an = x .

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.
I We have seen that every convergent sequence is bounded but

the converse is not true.
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Product with a bounded sequence

I Theorem 16.1: Suppose {an}n∈N is a sequence converging to
0 and {bn}n∈N is a bounded sequence then {anbn}n∈N
converges to 0.

I Proof: As {bn}n∈N is bounded, there exists M > 0 such that

|bn| ≤ M, ∀n ∈ N.

I For ε > 0, take ε′ = ε
M .

I As ε′ > 0, and {an}n∈N converges to 0, there exists a natural
number K such that

|an − 0| < ε′, ∀n ≥ K .

I Now for n ≥ K ,

|anbn − 0| = |anbn| = |an||bn| ≤ |an|M < ε′.M = ε.

I Hence {anbn}n∈N converges to 0.
I Taking an = 1

n and bn = n, we see that the result may not be
true when {bn}n∈N is not bounded.
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Sums and products of sequences

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .
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Proof of (a)

I Proof: (a) Clearly the result is true if c = 0. So assume that
c 6= 0.

I Now for ε > 0, take ε′ = ε
|c| > 0.

I As {an}n∈N converges to x , there exists K ∈ N such that

|an − x | < ε′, ∀n ≥ K .

I Then for n ≥ K ,

|can − cx | = |c ||an − x | < |c|ε′ = ε.

I Hence {can}n∈N converges to cx .
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Proof of (b) and (c)

I For ε > 0, we have ε
2 > 0. Choose K1 such that

|an − x | < ε

2
, ∀n ≥ K1.

I Choose K2 such that

|bn − y | < ε

2
, ∀n ≥ K2.

I Take K = max{K1,K2}.
I Then for n ≥ K ,

|(an + bn)− (x + y)| ≤ |an − x |+ |bn − y | < ε

2
+
ε

2
= ε.

I Hence {an + bn}n∈N converges to x + y .

I Clearly (c) follows from (a) and (b).
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Boundedness

I Claim: There exists M > 0 such that 1
|bn| ≤ M for all n ∈ N.

I Proof of claim: Recall that limn→∞ bn = y and y 6= 0.

I Take ε = |y |
2 > 0.

I Now there exists natural number K such that

|bn − y | < |y |
2
, ∀n ≥ K .

I This implies that |bn| ≥ |y |2 for n ≥ K . (Why?)

I Therefore 1
|bn| ≤

2
|y | for n ≥ K .

I Take

M = max{ 1

|b1|
,

1

|b2|
, . . . ,

1

|bK−1|
,

2

|y |
}.

I Note that M is well-defined as bn 6= 0 for every n.

I Now we have 1
|bn| ≤ M for every n ∈ N.

I END OF LECTURE 16.
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Lecture 17. Sequences and order

I Recall the definition of convergence:

I Definition 15.2: A sequence of real numbers {an}n∈N is said
to be convergent if there exists a real number x , where for
every ε > 0, there exists a natural number K (depending upon
ε) such that

|an − x | < ε, ∀n ≥ K .

In such a case, {an}n∈N is said to converge to x , and x is said
to be the limit of {an}n∈N.

I |an − x | < ε is equivalent to x − ε < an < x + ε or
an ∈ (x − ε, x + ε).

I A sequence {an}n∈N is said to be bounded if there exists
positive real number M such that

|an| ≤ M, ∀n ∈ N.

I We have seen that every convergent sequence is bounded but
the converse is not true.
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Recall: Sums and products

I Theorem 16.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively.

I (a) For c ∈ R, {can}n∈N converges to cx .

I (b) {an + bn}n∈N converges to x + y .

I (c) For c, d ∈ R, {can + dbn}n∈N converges to cx + dy .

I (d) {anbn}n∈N converges to xy .

I (e) If bn 6= 0 for every n ∈ N and y 6= 0 then { anbn }n∈N
converges to x

y .
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Positivity

I Theorem 17.1: Suppose {an}n∈N is a sequence converging to
x and an ≥ 0 for every n ∈ N. Then x ≥ 0.

I Proof: Suppose x < 0.

I Take ε = |x |
2 .

I As {an}n∈N is convergent to x , there exists K , such that

|an − x | < ε, ∀n ≥ K .

I That is,
an ∈ (x − ε, x + ε), ∀n ≥ K .

I Clearly this is not possible, as an ≥ 0 and

(x − ε, x + ε) ⊂ (−∞, 0)

I So we have a contradiction. Hence x < 0 is not possible.
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Order

I Theorem 17.2: Suppose {an}n∈N and {bn}n∈N are sequences
converging to x , y respectively. Suppose an ≤ bn for every n.
Then x ≤ y .

I Proof: Take cn = bn − an, n ∈ N.
I We know that {cn}n∈N converges to y − x .

I Also cn ≥ 0,∀n.
I Hence by previous theorem y − x ≥ 0, or equivalently x ≤ y .

I Warning: In this Theorem, an < bn for all n does not imply
x < y . For example, take an = 0 and bn = 1

n for all n. Then
x = y = 0 and we don’t have x < y .
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Squeeze theorem

I Theorem 17.3 (Squeeze theorem): Suppose {an}n∈N, {bn}n∈N
and {cn}n∈N are three sequences satisfying
an ≤ bn ≤ cn, ∀n ∈ N.

I Suppose {an}n∈N and {cn}n∈N converge to a real number x .
I Then {bn}n∈N is also convergent and it converges to x .
I Proof: For ε > 0, choose a natural number K1 such that

an ∈ (x − ε, x + ε), ∀n ≥ K1.

I Similarly choose a natural number K2 such that

cn ∈ (x − ε, x + ε), ∀n ≥ K2.

I Take K = max{K1,K2}.
I Now for n ≥ K , as an ≤ bn ≤ cn, we get

x − ε < an ≤ bn ≤ cn < x + ε.

I In particular, bn ∈ (x − ε, x + ε), ∀n ≥ K or
|bn − x | < ε, ∀n ≥ K .

I Hence {bn}n∈N converges to x .
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Monotonicity

I Definition 17.4: A sequence {an}n∈N of real numbers is said
to be increasing (or non-decreasing) if

an ≤ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be decreasing
(or non-increasing) if

an ≥ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

I Example 17.5: The sequence { 1n}n∈N is a decreasing
sequence. The sequence {n}n∈N is an increasing sequence.

I Note that an increasing sequence is always bounded below by
the first term, that is, a1 ≤ an, ∀n ∈ N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

I Theorem 17.6: (i) An increasing sequence {an}n∈N is
convergent if and only if it is bounded above. In such a case,

lim
n→∞

an = sup{an : n ∈ N}.

I (ii) A decreasing sequence {an}n∈N is convergent if and only if
it is bounded below. In such a case,

lim
n→∞

an = inf{an : n ∈ N}.

I (iii) A monotonic sequence is convergent if and only if it is
bounded.

I Proof: Clearly (iii) follows from (i) and (ii).

I Also (ii) follows from (i), by considering {−an}n∈N. So it
suffices to prove (i).
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Bounded increasing sequences

I Proof of (i): Let {an}n∈N be a bounded increasing sequence.

I Take x = sup{an : n ∈ N}.
I We want to show that {an}n∈N converges to x .

I Take any ε > 0. Then x − ε < x .

I As x − ε is not an upper bound for {an : n ∈ N}, there exists
some K ∈ N such that

x − ε < aK ≤ x .

I Then by monotonicity of {an}n∈N and as x is an upper-bound,
we get

x − ε < aK ≤ an ≤ x , ∀n ≥ K

I In particular,

an ∈ (x − ε, x + ε), ∀n ≥ K .

I This shows that {an}n∈N converges to x .
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Binary, decimal expansions

I Theorem 17.7: Fix a natural number d ∈ N with d ≥ 2.

I For a real number y ∈ [0, 1), let

y = 0.b1b2b3 . . .

be the expansion of y in base d .
I Then

y = lim
n→∞

(
b1
d

+
b2
d2

+ · · ·+ bn
dn

).

I Proof: For n ∈ N, take

an =
b1
d

+
b2
d2

+ · · ·+ bn
dn

I Clearly {an}n∈N is an increasing sequence, which is bounded
above by 1.

I By the definition of base-d expansion

y = sup{an : n ∈ N}.
I Now the result y = limn→∞ an, is clear from the previous

theorem.
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Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.

I Define two sequences {an}n∈N and {bn}n∈N recursively by:
a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.
I Define two sequences {an}n∈N and {bn}n∈N recursively by:

a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.
I Define two sequences {an}n∈N and {bn}n∈N recursively by:

a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.

I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.
I Define two sequences {an}n∈N and {bn}n∈N recursively by:

a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.
I Define two sequences {an}n∈N and {bn}n∈N recursively by:

a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Arithmetic-Geometric Mean

I Example 17.8: Let a, b be real numbers with 0 < a < b.
I Define two sequences {an}n∈N and {bn}n∈N recursively by:

a1 = a, b1 = b and

an+1 =
√
anbn, bn+1 =

an + bn
2

, n ≥ 1.

I Note that for any positive t,
√
t is the unique positive real

number x such that x2 = t. The existence of
√
t can be

proved just as we proved the existence of
√

2.
I Making use of AM-GM inequality, it is easy to see

a ≤
√
ab ≤ a + b

2
≤ b.

I In other words,
a1 ≤ a2 ≤ b2 ≤ b1.

I Inductively, one can show that

a = a1 ≤ a2 ≤ · · · an ≤ bn ≤ · · · ≤ b2 ≤ b1 = b.



Continuation

I It follows that limn→∞ an and limn→bn exist.

I Exercise: Show that

lim
n→∞

an = lim
n→∞

bn.

I This value is known as arithmetic-geometric mean of a and b.
7.
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Harmonic sums

I Example 17.9: For n ∈ N, take

hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

I Then {hn}n∈N is unbounded.

I Observe:

1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 1 +

1

2
+

1

2
.

I

1 +
1

2
+ · · ·+ 1

8
> 1 +

1

2
+

1

2
+

1

5
+ · · ·+ 1

8
= 1 + 3.(

1

2
).

I Continue this way, and complete the proof.

I END OF LECTURE 17.
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Lecture 18. Bolzano-Weierstrass theorem

I We recall a few notions from the previous lecture.

I Definition 17.4: A sequence {an}n∈N of real numbers is said
to be increasing (or non-decreasing) if

an ≤ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be decreasing
(or non-increasing) if

an ≥ an+1, ∀n ∈ N.

I A sequence {an}n∈N of real numbers is said to be monotonic
if it is either increasing or it is decreasing.

I Example 17.5: The sequence { 1n}n∈N is a decreasing
sequence. The sequence {n}n∈N is an increasing sequence.

I Note that an increasing sequence is always bounded below by
the first term, that is, a1 ≤ an, ∀n ∈ N and similarly a
decreasing sequence is always bounded above by the first term.
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Bounded monotonic sequences

I Theorem 17.6: (i) An increasing sequence {an}n∈N is
convergent if and only if it is bounded above. In such a case,

lim
n→∞

an = sup{an : n ∈ N}.

I (ii) A decreasing sequence {an}n∈N is convergent if and only if
it is bounded below. In such a case,

lim
n→∞

an = inf{an : n ∈ N}.

I (iii) A monotonic sequence is convergent if and only if it is
bounded.
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Subsequences

I Definition 18.1: Let {an}n∈N be a sequence of real numbers.
Let

n1 < n2 < n3 < · · ·
be a strictly increasing sequence of natural numbers. Then
{ank}k∈N or equivalently,

an1 , an2 , an3 , . . .

is called a sub-sequence of {an}n∈N.

I It is a sampling of terms from the given sequence.
I Example 18.2: Let {an}n∈N be the sequence defined by

an = 1
n . Taking nk = k2, we get get the subsequence

1

12
,

1

22
,

1

32
, . . . .

I It is the sequence { 1
k2 }k∈N. Taking mk = 2k , we get a new

subsequence {amk
}k∈N, which is,

1

2
,

1

22
,

1

23
, . . . .
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Tails of sequences

I Example 18.3: Let {an}n∈N be a sequence.

I Then for any K ∈ N,

aK , aK+1, aK+2, . . .

is a subsequence of {an}n∈N. Here n1 = K , n2 = K + 1, . . . .

I Such subsequences are known as tails of the given sequence.
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Subsequences of convergent sequences

I Theorem 18.4: Let {an}n∈N be a sequence of real numbers
converging to some x ∈ R. Then every subsequence of
{an}n∈N converges to x . In particular, every tail of this
sequence converges to x .

I Proof: Suppose {ank}k∈N is a subsequence of {an}n∈N.
I For ε > 0, there exists K ∈ N such that

|an − x | < ε, ∀n ≥ K .

I Note that, as
1 ≤ n1 < n2 < n3 < · · · ,

I nk ≥ k for every k.
I In particular, nK ≥ K and consequently nm ≥ K for all

m ≥ K . So we have

|anm − x | < ε, ∀m ≥ K .

I Hence {ank}k∈N converges to x .
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Limit points

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Note that the previous Theorem tells us that if {an}n∈N is a
sequence converging to x , then its set of limit points is the
singleton {x}.

I It is easy to see that the sequence {n} has no limit points. In
other words its set of limit points is empty.

I Example 18.6: Define a sequence {cn}n∈N by

cn =

{
2 if n is odd
3 if? n is even

Then clearly 2, 3 are limit points of this sequence. It is an
exercise to show that there are no other limit points.

I Can a sequence have infinitely many limit points?
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Examples

I Example 18.7: Consider the enumeration of N× N as

(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1), . . . ,

I The sum of two co-ordinates, are

2, 3, 3, 4, 4, 4, . . . .

I Now consider the function (m, n) 7→ 1
m + 1

n . Applying this
function on the enumeration above we get a sequence of real
numbers as:

1

1
+

1

1
,

1

2
+

1

1
,

1

2
+

1

1
,

1

3
+

1

1
,

1

1
+

1

4
, . . . .

I It is an exercise to show that the set of limit points of this
sequence is given by

{1

n
: n ∈ N}

⋃
{0}.
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Examples Continued

I Can the set of limit points of a sequence be uncountable?

I Example 18.8: Let {rn : n ∈ N} be an enumeration of the
rational numbers in [0, 1], that is n 7→ rn is a bijective function
from N to the set of rational numbers in [0, 1].

I It is an exercise to show that the set of limit points of this
sequence is the whole interval [0, 1].
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Monotone subsequence theorem

I Theorem 18.9: Every sequence of real numbers has a
monotone subsequence.

I Proof: Let {an}n∈N be a sequence of real numbers.

I Call a natural number m as a peak for {an}n∈N if am ≥ an for
all n ≥ m. In other words m is a peak if am is an upper bound
for {am, am+1, am+2, . . .}.

I Let P ⊆ N be the set of peaks of {an}n∈N.

I It is possible that P is the empty set.
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Continuation

I Now either P is infinite or it is finite.

I Suppose P is infinite and n1 < n2 < n3 < · · · are elements of
P. Then we have

an1 ≥ an2 ≥ an3 ≥ · · · .
I In other words, {ank}k∈N is a decreasing subsequence of
{an}n∈N.

I On the other hand suppose P is a finite set. Let M be the
maximal element of P. (If P is empty, take M = 0.).

I Now none of the n ≥ (M + 1) is a peak for {an}n∈N.
I Take n1 = M + 1. As (M + 1) is not a peak, there exists a

natural number n2 > n1 such that an2 > aM+1.
I As n2 is not a peak, there exists n3 > n2 such that an3 > an2 .
I Continuing this way, after choosing nk , we can choose nk+1,

where nk+1 > nk and ank+1
> ank .

I In other words, we have an increasing subsequence in:

an1 < an2 < an3 < · · ·
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Bolzano Weirstrass theorem

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Sequential Compactness

I Theorem 18.11: Suppose [a, b] is an interval and {cn}n∈N is a
sequence of real numbers with cn ∈ [a, b]. Then {cn}n∈N has
a convergent subsequence and any such subsequence
converges to a point in [a, b].

I This is clear from the Bolzano-Weirstrass theorem and is
known as sequential compactness of [a, b].

I Note that the same property does not hold for intervals like
(a, b) as the limit may not be an element of the interval.
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(a, b) as the limit may not be an element of the interval.



Alternative Proof

I Alternative proof of Bolzano-Weierstrass theorem:

I Let {an}n∈N be a sequence of real numbers with an ∈ [a, b]
for every n.

I Take I1 = [a, b]. We divide the interval into two parts,
[a, a+b

2 ] and [a+b
2 , b]. At least one of these intervals will have

infinitely many terms of the sequence. Pick that interval as I2.
I Now divide I2 into two equal parts. At least one of them will

have infinitely many terms.
I Continue this way, to get a nested sequence of intervals:

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

with length of In = (b−a)
2n−1 . Appeal to nested intervals property.

I We know that
⋂

n∈N In is a singleton, say {x}. We can choose
a subsequence of {an}n∈N such that ank ∈ Ik for every k .

I Then we can conclude that limk→∞ ank = x . (Fill in the
details.)

I END OF LECTURE 18.
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Lecture 19. Cauchy criterion

I We recall the following important theorem:

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Cauchy sequences

I Can we know whether a sequence is convergent without
knowing the limit?

I Definition 19.1: A sequence {an}n∈N is said to be Cauchy if
for every ε > 0, there exists K ∈ N such that

|am − an| < ε, ∀m, n ≥ K .

I We may write |am − an| < ε equivalently as
am ∈ (an − ε, an + ε) or as (am − an) ∈ (−ε,+ε).
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Convergent sequences are Cauchy

I Proposition 19.2: Convergent sequences of real numbers is
Cauchy.

I Proof: Let {an}n∈N be a sequence of real numbers converging
to a real number x .

I For ε > 0, take K ∈ N, such that

|an − x | < ε

2
, ∀n ≥ K .

I Now for m, n ≥ K , by triangle inequality,

|am − an| ≤ |am − x |+ |x − an| <
ε

2
+
ε

2
= ε.

I Hence {an}n∈N is Cauchy.
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Cauchy sequences are bounded

I Proposition 19.3: Cauchy sequences of real numbers are
bounded.

I Proof: Let {an}n∈N be a Cauchy sequence.

I Take ε = 1. Using Cauchy property, choose K ∈ N such that

|am − an| < 1, ∀m, n ≥ K .

I Taking n = K , in the inequality above, we get

|am − aK | < 1, ∀m ≥ K .

I In particular, |am| < |aK |+ 1, ∀m ≥ K .

I Take
M = max{|a1|, |a2|, . . . , |ak−1|, |aK |+ 1}.

I Then we have |am| ≤ M, for all m.

I Hence {an}n∈N is bounded.
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Real Cauchy sequences are convergent

I Theorem 19.4: A sequence of real numbers is convergent if
and only it is Cauchy.

I Proof: We have seen that every convergent is Cauchy. Now to
see the converse, let {an}n∈N be a Cauchy sequence.

I By previous Proposition we know that {an}n∈N is bounded.

I By Bolzano-Weierstrass theorem {an}n∈N has a convergent
subsequence.

I Suppose {ank}k∈N is a subsequence converging to some
x ∈ R.

I Now using Cauchy property, for ε > 0, choose K1 such that

|am − an| <
ε

2
, ∀m, n ≥ K1.

I Using convergence of {ank}k∈N, choose K2 such that

|ank − x | < ε

2
, ∀k ≥ K2.
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Continuation

I Take K = max{K1, nK2}. Note that nK ≥ K ≥ K1 and
K ≥ K2.

I Now for m ≥ K , we have

|am − x | ≤ |am − anK |+ |anK − x | < ε

2
+
ε

2
= ε.

I Hence {an}n∈N converges to x .

I This completes the proof.
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Cauchy sequences and completeness

I Here are some general comments for your information.

I Later on you would see that the notion of distance:

d(a, b) = |a− b|
on the real line can be generalized to more general spaces. It
is then called ‘metric’.

I There is a large theory of metric spaces.
I The idea of convergence of sequences as well as Cauchy

property makes sense for metric spaces.
I A metric space is said to be complete if every Cauchy

sequence converges to a point in the space.
I For instance, [0, 1] is complete, but (0, 1),Q are not complete.
I The set of real numbers is complete due to least upper bound
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Infinite series

I We know that finite sums like
∑n

j=1 aj = a1 + a2 + · · ·+ an are
well-defined for real numbers due to associativity of addition.

I It is a natural question as to when
∑∞

j=1 aj or

a1 + a2 + a3 + · · ·

is meaningful.

I Definition 19.5: Suppose a1, a2, . . . are real numbers. Take
sn =

∑n
j=1 aj . Here {sn}n∈N are known as partial sums of the

series. If limn→∞ sn exists then the series,
∑∞

j=1 aj is said to
converge and

∞∑
j=1

aj := lim
n→∞

sn.

If limn→∞ sn does not exist, the series
∑∞

j=1 aj is said to
diverge.
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Geometric Series

I Example 19.6 (Geometric series):
∑∞

j=1
1
2j

= 1.

I Proof: Recall that for any real number r 6= 1 and n ∈ N,

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

I This can be proved by induction.
I Now

sn :=
n∑

j=1

1

2j

=
1

2
+

1

22
+ · · ·+ 1

2n

=
1

2
[1 +

1

2
+ · · ·+ (

1

2
)(n−1)]

=
1

2
.
1− (12)n

1− 1
2

= 1− 1

2n
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Continuation

I Using Bernoulli’s inequality, we have seen that 1
2n <

1
n+1 and

hence limn→∞
1
2n = 0. Hence limn→∞ sn = 1.

I Similarly, one can show that for any |r | < 1, limn→∞ rn−1 = 0
and

1 + r + r2 + · · · =
1

1− r
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Convergence

I Theorem 19.7: Suppose a series
∑∞

j=1 aj converges. Then

lim
n→∞

an = 0.

However, the converse is not true.

I Proof: Suppose sn =
∑n

j=1 aj . Assuming that
∑∞

j=1 aj
converges, limn→∞ sn exists.

I By Cauchy property, for ε > 0, there exists K ∈ N such that

|sm − sn| < ε, ∀m, n ≥ K .

I By taking m = n + 1, we get |an+1| = |sn+1 − sn| < ε for
n ≥ K .

I Equivalently, |an| < ε for n ≥ K + 1. Hence {an}n∈N
converges to 0.

I The converse is not true is seen by considering the ‘Harmonic
series’ :

I
∑∞

j=1
1
j diverges as the corresponding partial sums are

unbounded.
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Alternating sum

I Theorem 19.8: A series
∑∞

j=1 aj , where aj = (−1)j+1bj , with
a decreasing sequence {bj}j∈N of positive real numbers is
convergent if and only if limn→∞ bn = 0.

I Proof: Since |aj | = bj , the necessity of limn→∞ an = 0 for
convergence implies limn→∞ bn = 0. Hence the necessity of
this condition for the convergence of

∑∞
j=1 aj is clear from the

previous theorem.

I Now suppose limn→∞ bn = 0.

I Consider the partial sums

sn =
n∑

j=1

aj = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn.

I First look at the even terms, s2, s4, . . ..

I We have, s2k+2 = s2k + b2k+1 − b2k+2.
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Continuation

I Since {bj}j∈N is a decreasing sequence, b2k+1 − b2k+2 ≥ 0.
Consequently, s2k ≤ s2k+2

I Therefore {s2k}k∈N is an increasing sequence.

I Similarly {s2k−1}k∈N is a decreasing sequence. In particular
s1 ≥ s2k−1 for every k ∈ N.

I Also s2k+2 = s2k+1 − b2k+2 ≤ s2k+1 ≤ s1
I Therefore {s2k}k∈N is bounded above by s1.

I Similarly {s2k−1}k∈N is bounded below by s2 = b1 − b2.

I That is,

b1 − b2 = s2 ≤ s4 ≤ · · · ≤ s2k ≤ s2k−1 ≤ · · · s3 ≤ s1 = b1
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Continuation
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converges to the same value.
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Lecture 20. Limit Superior and Limit Inferior

I We recall the following important theorem:

I Theorem 18.10 (Bolzano-Weierstrass theorem): Every
bounded sequence of real numbers has a convergent
subsequence.

I Proof. Let {an}n∈N be a bounded sequence of real numbers.

I By previous theorem there exists a monotonic subsequence of
{an}n∈N.

I Obviously, this monotonic subsequence is bounded as the
original sequence is bounded.

I As every bounded monotonic sequence is convergent, this
subsequence is convergent. This completes the proof.
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Limit points

I We also recall the notion of limit points:

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I We would like to understand the structure of limit points
better. The following theorem is easy to prove.
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Terms around a limit point

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}
is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.

I Proof: Suppose for k ∈ N,

{m : am ∈ (y − 1

k
, y +

1

k
)}

is infinite for every k. Then it is easy to choose a subsequence
{ank}k∈N such that

y − 1

k
≤ ank ≤ y +

1

k
.

I By the squeeze theorem, limk→∞ ank = y .
I The converse is also easy to see.
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Limsup

I Let {an}n∈N be a bounded sequence of real numbers and
suppose |an| ≤ M, for all n.

I Take b1 = sup{am : m ∈ N} = sup{a1, a2, . . .};
I b2 = sup{am : m ∈ N,m ≥ 2} = sup{a2, a3, . . .};
I b3 = sup{am : m ∈ N,m ≥ 3} = sup{a3, a4, . . .};
I and for any n ∈ N,

bn = sup{am : m ∈ N,m ≥ n} = sup{an, an+1, . . .}.

I Note that as {am : m ∈ N} ⊇ {am : m ∈ N,m ≥ 2}, we have
b1 ≥ b2.

I In general, bn ≥ bn+1 for every n ∈ N. We also have |bn| ≤ M
for every n, as |am| ≤ M for every m.

I In conclusion, {bn} is a bounded decreasing sequence. Hence
limn→∞ bn exists.
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Continuation

I Definition 20.2: For any bounded sequence {an}n∈N, the
limn→∞ bn defined as above is known as the limit superior or
limsup of the bounded sequence {an}n∈N, and we write:

lim sup
n→∞

an = lim
n→∞

bn.

I In other words, the ’limsup’ is the limit of supremums of tails
of the sequence.
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Liminf
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for every n, as |am| ≤ M for every m.

I In conclusion, {cn} is a bounded increasing sequence. Hence
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Continuation

I Definition 20.3: For any bounded sequence {an}n∈N, the
limn→∞ cn defined as above is known as the limit inferior or
liminf of the bounded sequence {an}n∈N, and we write:

lim inf
n→∞

an = lim
n→∞

cn.

I In other words, the ’liminf’ is the limit of infimums of tails of
the sequence.

I Observe that for every n,

−M ≤ cn ≤ an ≤ bn ≤ M.

I Consequently,

−M ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ M.

I A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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Examples

I Example 20.4: Consider the sequence {an} where,

an =


5 if n = 3k + 1, k ∈ N

⋃
{0}

6 if n = 3k + 2, k ∈ N
⋃
{0}

7 if n = 3k , k ∈ N.

I Then bn = 7 for every n and cn = 5 for every n.

I Hence lim infn→∞ an = 5 and lim sup an = 7.

I It is to be noted that in general bn, cn may not be terms of
the sequence.
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A Characterization

I Theorem 20.6: Let {an}n∈N be a bounded sequence of real
numbers and suppose z = lim supn→∞ an. Then for every
ε > 0, the set

S+(z , ε) = {n : an > z + ε} is finite. (∗)

and the set

S−(z , ε) = {n : an > z − ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with z
replaced by v , then v = z .

I Proof: Suppose z = lim supn→∞ an.
I Fix ε > 0. Take bn = sup{am : m ≥ n}. By the definition of

limsup, z = limn→∞ bn.
I Hence there exists K ∈ N such that

bn ∈ (z − ε, z + ε), ∀n ≥ K .
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Continuation

I In particular, bK < z + ε, or sup{am : m ≥ K} < z + ε, and
consequently am < z + ε for m ≥ K .

I This implies that S+(z , ε) ⊆ {1, 2, . . . , (K − 1)} and hence it
is a finite set.

I Now for r ∈ N, by considering ε
r , there exists Kr ∈ N such that

bn ∈ (z − ε

r
, z +

ε

r
), ∀n ≥ Kr .

I In particular, z − ε
r < bKr = sup{am : m ≥ Kr}.

I This means that, there exists m > Kr , such that z − ε
r < bm.

I Inductively we can choose m1 < m2 < · · · such that
z − ε

r < bmr .

I Now it is clear that S−(z , ε) is infinite.
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Continuation

I Conversely, suppose v ∈ R is such that (∗) and (∗∗) are
satisfied for every ε > 0 with z replaced by v .

I Now S+(v , ε) is finite, means that there exists, Mε, such that
for |an| ≤ v + ε for n ≥ Mε.

I Therefore bn ≤ v + ε for n ≥ Mε. Hence
z = limn→∞ bn ≤ v + ε.

I As this is true for every ε > 0, we get z ≤ v .

I Similarly, S−(v , ε) is infinite, for every ε > 0, means that
S−(v , 1r ) = {m : v − 1

r < am} is infinite for every r .

I This allows us to choose a subsequence {anr }r∈N, where
v − 1

r < anr . Then v − 1
r < bnr , and hence on taking limit as

r →∞, v ≤ limr→∞ bnr = z . That is, v ≤ z . Combining the
two statements we have v = z .
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limsup as a limit point

I Theorem 20.7: Suppose {an}n∈N is a bounded sequence of
real numbers. Then lim supn→∞ an is a limit point of {an}n∈N
and if y is any limit point of {an}n∈N, then
y ≤ lim supn→∞ an.

I In other words, limsup is the largest limit point of a bounded
sequence.

I Proof: Take z = lim supn→∞ an.

I By the previous characterization,
{m : z − ε < am < z + ε} = S−(z , ε)\(S+(z , ε)

⋃
{z + ε}) is

infinite.

I Hence z is a limit point of {an}n∈N.

I The fact that z is the largest limit point is also clear from the
characterization.

I END OF LECTURE 20
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Lecture 21. Limit inferior and Properly divergent
sequences

I From previous lecture we recall notions of limit point, limit
superior and limit inferior.

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}

is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.



Lecture 21. Limit inferior and Properly divergent
sequences

I From previous lecture we recall notions of limit point, limit
superior and limit inferior.

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}

is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.



Lecture 21. Limit inferior and Properly divergent
sequences

I From previous lecture we recall notions of limit point, limit
superior and limit inferior.

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
subsequence {ank}k∈N converging to y .

I Theorem 20.1: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is a limit point of the sequence {an}n∈N if and
only if the set

{m : am ∈ (y − ε, y + ε)}

is infinite for every ε > 0.

I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.



Lecture 21. Limit inferior and Properly divergent
sequences

I From previous lecture we recall notions of limit point, limit
superior and limit inferior.

I Definition 18.5: Let {an}n∈N be a sequence of real numbers.
Then y ∈ R is said to be limit point of {an}n∈N, if it has a
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I In other words, there are infinitely many terms of the
sequence in (y − ε, y + ε) for every ε > 0.



Limsup

I Let {an}n∈N be a bounded sequence of real numbers and
suppose |an| ≤ M, for all n.

I Take b1 = sup{am : m ∈ N} = sup{a1, a2, . . .};
I b2 = sup{am : m ∈ N,m ≥ 2} = sup{a2, a3, . . .};
I b3 = sup{am : m ∈ N,m ≥ 3} = sup{a3, a4, . . .};
I and for any n ∈ N,

bn = sup{am : m ∈ N,m ≥ n} = sup{an, an+1, . . .}.

I Note that as {am : m ∈ N} ⊇ {am : m ∈ N,m ≥ 2}, we have
b1 ≥ b2.

I In general, bn ≥ bn+1 for every n ∈ N. We also have |bn| ≤ M
for every n, as |am| ≤ M for every m.

I In conclusion, {bn} is a bounded decreasing sequence. Hence
limn→∞ bn exists.
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Continuation

I Definition 20.2: For any bounded sequence {an}n∈N, the
limn→∞ bn defined as above is known as the limit superior or
limsup of the bounded sequence {an}n∈N, and we write:

lim sup
n→∞

an = lim
n→∞

bn.

I In other words, the ’limsup’ is the limit of supremums of tails
of the sequence.
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Continuation

I Definition 20.3: For any bounded sequence {an}n∈N, the
limn→∞ cn defined as above is known as the limit inferior or
liminf of the bounded sequence {an}n∈N, and we write:

lim inf
n→∞

an = lim
n→∞

cn.

I In other words, the ’liminf’ is the limit of infimums of tails of
the sequence.

I Observe that for every n,

−M ≤ cn ≤ an ≤ bn ≤ M.

I Consequently,

−M ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ M.

I A bounded sequence may not be convergent and so it may
not have a limit. But it always has liminf and limsup.
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A Characterization

I Theorem 20.6: Let {an}n∈N be a bounded sequence of real
numbers and suppose z = lim supn→∞ an. Then for every
ε > 0, the set

S+(z , ε) = {n : an > z + ε} is finite. (∗)

and the set

S−(z , ε) = {n : an > z − ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with z
replaced by v , then v = z .
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replaced by v , then v = z .



Limit superior as a limit point

I Theorem 20.7: Suppose {an}n∈N is a bounded sequence of
real numbers. Then lim supn→∞ an is a limit point of {an}n∈N
and if y is any limit point of {an}n∈N, then
y ≤ lim supn→∞ an.

I In other words, limsup is the largest limit point of a bounded
sequence.

I Proof: Take z = lim supn→∞ an.

I By the previous characterization,
{m : z − ε < am < z + ε} = S−(z , ε)\(S+(z , ε)

⋃
{z + ε}) is

infinite.

I Hence z is a limit point of {an}n∈N.

I The fact that z is the largest limit point is also clear from the
characterization for if z < v , then taking ε = v−z

2 ,
(v − ε, v + ε) ⊆ S+(z , ε) has finitely many terms of the
sequence.
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Limit inferior

I Results similar to that of limsup hold for liminf. These can be
proved by similar methods or by observing that

lim inf
n→∞

an = − lim sup
n→∞

(−an).

I Theorem 21.1: Let {an}n∈N be a bounded sequence of real
numbers and suppose w = lim infn→∞ an. Then for every
ε > 0, the set

T−(w , ε) = {n : an < w − ε} is finite. (∗)

and the set

T+(w , ε) = {n : an < w + ε} is infinite. (∗∗)

I Conversely if v ∈ R satisfies (∗), (∗∗) for every ε > 0, with w
replaced by v , then v = w = lim infn→∞ an.

I Similarly liminf is the smallest limit point of a bounded
sequence.
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Limit points

I Consequently, the set of limit points of a bounded sequence
{an}n∈N is a subset of [w , z ] where w = lim infn→∞ an and
z = lim supn→∞ an.

I Theorem 21.2: Let {an}n∈N be a bounded sequence of real
numbers. Then it is convergent if and only if

lim inf
n→∞

an = lim sup
n→∞

an.

I Proof. If the sequence is convergent then the set of limit
points is a singleton. Now as liminf and limsup are limit
points they have to be equal.

I If liminf and limsup are equal. Then as we have

cn ≤ an ≤ bn, ∀n ∈ N

the result follows by the squeeze theorem.
I This shows that when we do not know whether a sequence is

convergent or not, we may try to compute its liminf and
limsup and see whether they are equal or not.
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Properly divergent sequences

I Definition 21.3: Let {an}n∈N be a sequence of real numbers.
Then it is said to properly diverge to +∞ if for every M ∈ R
there exists K ∈ N such that

an ≥ M, ∀n ≥ K .

This is written as:
lim
n→∞

an = +∞.
or as

lim
n→∞

an =∞.

I A sequence {an}n∈N is said to properly diverge to −∞, if for
every M ∈ R there exists K ∈ N such that an < M for all
n ≥ K . This is expressed as: limn→∞ an = −∞.

I A sequence is said to properly diverge if it properly diverges to
+∞ or −∞.

I Here +∞ and −∞ are not real numbers. It is just convenient
notation.
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Continuation

I It is clear that a properly divergent sequence is unbounded.

I Some textbooks may write ”{an}n∈N converges to ∞” to
mean that {an}n∈N properly diverges to +∞ (Similarly, for
−∞).

I However, it should be kept in mind that such sequences are
not convergent sequences in a proper sense as +∞ and −∞
are not real numbers.

I Example 21.4: Define:

an = n2, ∀n ∈ N.

bn =

{
5 if n is odd.
n if n is even.

cn =

{
5 if n is odd.
6 if n is even.

Here {an}n∈N is properly divergent to +∞, {bn}n∈N is
unbounded and divergent but it is not properly divergent,
{cn}n∈N is bounded and divergent but not properly divergent.
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Basic properties

I Theorem 21.5: Let {an}n∈N and {bn}n∈N be sequences of real
numbers properly diverging to +∞.

I For c ∈ R, {can}n∈N properly diverges to +∞ if c > 0,
properly diverges to −∞ if c < 0 and converges to 0 if c = 0.

I {an + bn}n∈N properly diverges to +∞.
I {an − bn}n∈N may or maynot diverge.

I {anbn}n∈N properly diverges to +∞.
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Continuation

I Proof: Without loss of generality, take M > 0. There exists
K1 ∈ N such that an ≥ M for n ≥ K1.

I There exists K2 ∈ N such that bn ≥ 1 for for n ≥ K2.

I Take K = max{K1,K2}. For n ≥ K ,

an + bn ≥ M + 1 > M.

I Hence {an + bn} properly diverges to +∞.
I Also for n ≥ K , anbn ≥ M.1 = M. Therefore, {anbn} properly

diverges to +∞.
I Proofs of other claims are left out as exercises.
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Some more properties

I Theorem 21.6: Let {an}n∈N be a sequences of real numbers
properly diverging to +∞ and let {bn}n∈N be a sequence
converging to some real number x .

I (i) {an + bn}n∈N properly diverges to +∞.
I (ii) If x > 0, {anbn}n∈N properly diverges to +∞. If x < 0,
{anbn}n∈N properly diverges to −∞.

I (iii) If x > 0 and bn 6= 0 for every n, then { anbn } properly
diverges to ∞. If x < 0 and bn 6= 0 for every n, then { anbn }
properly diverges to −∞.

I (iv) If an 6= 0 for every n, then {bnan } converges to 0.
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Continuation

I If {an}n∈N and {bn}n∈N properly diverge to +∞,
{an − bn}n→∞ may not converge. Similarly { anbn }n∈N need not
converge.

I If {an}n∈N properly diverges to ∞ and {bn}n∈N converges to
0, then {anbn}n∈N may not converge to 0 or to any other real
number.

I Give examples to illustrate such phenomenon.

I END OF LECTURE 21



Continuation

I If {an}n∈N and {bn}n∈N properly diverge to +∞,
{an − bn}n→∞ may not converge. Similarly { anbn }n∈N need not
converge.

I If {an}n∈N properly diverges to ∞ and {bn}n∈N converges to
0, then {anbn}n∈N may not converge to 0 or to any other real
number.

I Give examples to illustrate such phenomenon.

I END OF LECTURE 21



Continuation

I If {an}n∈N and {bn}n∈N properly diverge to +∞,
{an − bn}n→∞ may not converge. Similarly { anbn }n∈N need not
converge.

I If {an}n∈N properly diverges to ∞ and {bn}n∈N converges to
0, then {anbn}n∈N may not converge to 0 or to any other real
number.

I Give examples to illustrate such phenomenon.

I END OF LECTURE 21



Continuation

I If {an}n∈N and {bn}n∈N properly diverge to +∞,
{an − bn}n→∞ may not converge. Similarly { anbn }n∈N need not
converge.

I If {an}n∈N properly diverges to ∞ and {bn}n∈N converges to
0, then {anbn}n∈N may not converge to 0 or to any other real
number.

I Give examples to illustrate such phenomenon.

I END OF LECTURE 21



Lecture 22. Continuous functions

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I Informally, for continuity of f at c , we want f (x) to be close
to f (c), whenever x is in A and is sufficiently close to c .

I Example 22.2: Let f : [0, 1]→ R be the function,

f (x) = x2, ∀x ∈ [0, 1].

I Fix c ∈ [0, 1]. We want to show that f is continuous at c . For
ε > 0, take δ = ε

2 .
I Now for x ∈ (c − δ, c + δ)

⋂
[0, 1], note that |x − c | < δ = ε

2 .
Hence

|f (x)−f (c)| ≤ |x2−c2| = |x−c||x+c| < ε

2
.(|x |+|c |) ≤ ε

2
.2 = ε.

I Therefore f is continuous at c .
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Discontinuous functions

I Example 22.3: Define f : [0, 1]→ R by

f (x) =

{
0 if 0 ≤ x < 1
5 if x = 1.

I Then f is not continuous at 1.

I For any ε < 5, there is no δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

[0, 1].
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Sequential form of continuity

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I Proof: Suppose f is continuous at c.
I Let {xn}n∈N be a sequence in A, converging to c .
I For ε > 0, choose δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I As {xn} is converging to c , there exists K ∈ N such that

|xn − c | < δ, ∀n ≥ K .

I Hence for n ≥ K , xn ∈ (c − δ, c + δ)
⋂
A. Hence

|f (xn)− f (c)| < ε, ∀n ≥ K .

I This shows that {f (xn)}n∈N converges to f (c).
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Continuation

I Now to prove the only if part, suppose that f is not
continuous at c.

I Then for some ε0 > 0

|f (x)− f (c)| < ε0, ∀x ∈ (c − δ, c + δ)
⋂

A

is not true for any δ > 0.
I In particular, for all n ∈ N,

|f (x)− f (c)| < ε0, ∀x ∈ (c − 1

n
, c +

1

n
)
⋂

A

is not true.
I This means that for every n ∈ N we can choose

xn ∈ (c − 1
n , c + 1

n )
⋂
A such that

|f (xn)− f (c)| ≥ ε0.
I As c − 1

n < xn < c + 1
n , for every n, limn→∞ xn = c .

I However, as |f (xn)− f (c)| ≥ ε0, for every n, {f (xn)} does not
converge to f (c).

I This completes the proof.
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More Examples

I Example 22.5: Suppose A = {1}
⋃

[2, 3] and g : A→ R is
defined by

g(x) =

{
0 if x = 1;
7 if x ∈ [2, 3].

I Is g continuous at 1?

I Ans: Yes.

I This is because there are no ‘non-trivial’ sequences in A
converging to 1.

I Definition 22.6: Let A be a subset of R and suppose c ∈ A.
Then c is said to be isolated in A, if there exists δ > 0 such
that

(c − δ, c + δ)
⋂

A = {c}.

I Remark 22.6: Suppose A ⊂ R and c ∈ A is isolated in A.
Then every function f : A→ R is continuous at c .
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Continuous functions

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.

I Example 22.8: The function f (x) = x2, defined on [0, 1] is
continuous.

I Exmaple 22.9: Any function on N is continuous as every point
of N is isolated.

I Exercise 22.10: Give an example of a function on [0, 1] which
is discontinuous at every point of [0, 1].

I END OF LECTURE 22
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Lecture 23. Algebraic operations of Continuous functions

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Linear combinations, products, ratios

I Theorem 23.1: Let A ⊆ R and let c ∈ A. Let f : A→ R and
g : A→ R be functions continuous at c .

I (i) For a, b ∈ R, af + bg defined by

(af + bg)(x) = af (x) + bg(x), ∀x ∈ A,

is continuous at c .

I (ii) fg defined by

fg(x) = f (x)g(x), ∀x ∈ A

is continuous at c .

I (iii) If g(x) 6= 0, ∀x ∈ A, then f
g defined by

f

g
(x) =

f (x)

g(x)
, ∀x ∈ A,

is continuous at c .
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First Proof

I Proof. (i) For ε > 0, using continuity of f at c , choose
δ1 > 0, such that

|f (x)− f (c)| < ε

2
, ∀x ∈ (c − δ1, c + δ1)

⋂
A.

I Similarly using continuity of g at c , choose δ2 > 0 such that

|g(x)− g(c)| < ε

2
, x ∈ (c − δ2, c + δ2)

⋂
A.

I Now take δ = min{δ1, δ2}. Then for x ∈ (c − δ, c + δ)
⋂

A,
we get

|f (x)+g(x)−f (c)−g(c)| ≤ |f (x)−f (c)|+|g(x)−g(c)| < ε

2
+
ε

2
= ε.

I Therefore f + g is continuous at c .

I It is easy to see that if f is continuous at c , af is continuous
at c . Similarly bg is continuous at c . Combining with the
previous result, af + bg is continuous at c .
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Alternative Proof

I Alternative Proof: Suppose {xn}n∈N is a sequence in A
converging to c .

I As f , g are continuous at c, {f (xn)}, {g(xn)} converge to
f (c), g(c) respectively.

I Hence, {af (xn) + bg(xn)}n∈N converges to af (c) + bg(c).

I This proves that af + bg is continuous.

I Similarly, {f (xn)g(xn)} converges to f (c)g(c) and if g(x) 6= 0

for every x , { f (xn)g(xn)
} converges to f (c)

g(c) .

I Hence fg and f
g are continuous. This completes the proof.
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Algebra of continuous functions

I Theorem 23.2: Let A ⊆ R. Let f : A→ R and g : A→ R be
continuous functions.

I (i) For a, b ∈ R, af + bg defined by

(af + bg)(x) = af (x) + bg(x), ∀x ∈ A,

is continuous.
I (ii) fg defined by

fg(x) = f (x)g(x), ∀x ∈ R

is continuous.
I (iii) If g(x) 6= 0, ∀x ∈ A, then f

g defined by

f

g
(x) =

f (x)

g(x)
, ∀x ∈ A,

is continuous.
I Proof: This is clear from the previous theorem and the

definition of continuous functions.
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Restrictions of continuous functions

I Theorem 23.3: Let A ⊆ R and let B be a subset of A and let
c ∈ B. Suppose f : A→ R is a function continuous at c.
Then g : B → R defined by

g(x) = f (x), ∀x ∈ B,

is continuous at c . If f is continuous, then g is continuous.

I Proof: This is obvious from the definition of continuity.

I Notation: The function g of this theorem is called the
restriction of f to B and is denoted by f |B .
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Continuity of polynomials

I Theorem 23.4: Let p : R→ R be a polynomial defined by

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n, ∀x ∈ R,

I where n ∈ N
⋃
{0} and a0, a1, . . . , an are real numbers. Then

p is continuous.
I Proof: It is easy to see that the constant function

p0(x) = a0, x ∈ R

and the identity function,

p1(x) = x , x ∈ R

are continuous. Now by (ii) of Theorem 23.2, and
mathematical induction, the polynomials

pk(x) = xk , ∀x ∈ R

k ∈ N, are continuous. The proof is complete by a simple
application of (i) of Theorem 23.2.
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Rational functions

I Corollary 23.5: For any non-empty subset B of R and any real
polynomial p, p|B , defined by

p|B(x) = p(x), x ∈ B

is continuous.

I If q is another polynomial such that q(x) 6= 0 for x ∈ B, then
p|B
q|B is a continuous function on B.

I Such functions are known as rational functions.

I Example 23.6: The function g : R\{0} → R defined by
g(x) = 1

x , ∀x ∈ R\{0} is continuous.
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Composition of continuous functions

I Theorem 23.7: Let A,B be subsets of R and c ∈ A. Suppose
f , g are real valued functions on A,B respectively and
f (A) ⊆ B. Suppose f is continuous at c and g is continuous
at f (c). Then h = g ◦ f is continuous at c .

I Proof: Suppose {xn}n∈N in A converges to c . Then as f is
continuous, {f (xn)} converges to f (c).

I As f (A) ⊆ B, {f (xn)} is a sequence in B.

I Now as g is continuous at f (c), {g(f (xn)} converges to
g(f (c)).

I In other words {h(xn)} converges to h(c). This proves that h
is continuous at c .

I Exercise 23.8: Prove the previous theorem directly using the
definition of continuity.
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Composition of continuous functions

I Theorem 23.9: Let A,B be subsets of R. Suppose f , g are
continuous real valued functions on A,B respectively and
f (A) ⊆ B. Then h = g ◦ f is a continuous function.

I Proof: Clear from the previous theorem.
I Example 23.10 (Dirichlet function): Define d : R→ R by

d(x) =

{
1 if x is rational;
0 if x is irrational.

I Then d is discontinuous at every x ∈ R.
I Example 23.11: Define g : [1, 2]→ R by

g(x) =


0 if x is irrational;

1
q if x = p

q , p, q ∈ N
p, q relatively prime.

Then g is continuous at irrational points in [1, 2], but is
discontinuous at rational points in [1, 2].

I END OF LECTURE 23.
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Lecture 24. Continuous functions on intervals

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Boundedness of functions

I Definition 24.1: Let A be a non-empty set and let f : A→ R
be a function. Then f is said to be bounded if

|f (x)| ≤ M, ∀x ∈ A.

In such a case M said to be a bound for f .

I If f : A→ R is a bounded function,

sup(f ) := sup{f (x) : x ∈ A},

inf(f ) = inf{f (x) : x ∈ A}.

I sup(f ) is said to be a maximum if there exists x0 ∈ A such
that f (x0) = sup(f ).

I Similarly, inf(f ) is said to be a minimum if there exists x1 ∈ A
such that f (x1) = inf(f ).
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Examples

I Example 24.2: Let f : [0, 1)→ R be the function
f (x) = x , ∀x ∈ [0, 1). Then f is bounded with bound 1.
sup(f ) is not a maximum. However, inf is a minimum with
inf(f ) = f (0).

I Example 24.3: Let g : (0, 1)→ R be the function
g(x) = 1

x , x ∈ (0, 1). Then f is continuous but not bounded.
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Continuous functions on intervals

I Now we focus on the study of continuous functions on
intervals.

I In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

I Theorem 24.4: Let f : [a, b]→ R be a continuous function.
Then it is bounded.

I Proof: Suppose f : [a, b]→ R is not bounded. We want to
arrive at a contradiction.

I As f is not bounded, for every n ∈ N there exists some xn in
[a, b] such that |f (xn)| ≥ n.

I Now {xn}n∈N is a sequence in [a, b].

I Then by Bolzano-Weierstrass theorem there exists a
convergent subsequence {xnk}k∈N.
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Continuation

I Suppose {xnk}k∈N converges to c ∈ [a, b].

I Then by the continuity of f , {f (xnk )}k∈N converges to f (c).

I In particular, {f (xnk}k∈N is a bounded sequence.

I This contradicts with |f (xnk )| ≥ nk ≥ k, which makes
{f (xnk}k∈N unbounded.

I This is a contradiction and this completes the proof.

I We have already seen that continuous functions on open
intervals need not be bounded. Also examples, such as
f (x) = x , show that continuous functions on R need not be
bounded.
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Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.

I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,
sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.
I Now for n ∈ N, as M − 1

n is not an upper bound of this set,
there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.



Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,

sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.
I Now for n ∈ N, as M − 1

n is not an upper bound of this set,
there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.



Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,

sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.

I Now for n ∈ N, as M − 1
n is not an upper bound of this set,

there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.



Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,

sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.
I Now for n ∈ N, as M − 1

n is not an upper bound of this set,
there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.



Maximum and minimum

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
I Proof: Since {f (x) : x ∈ [a, b]} is a non-empty bounded set,

sup{f (x) : x ∈ [a, b]} exists.

I Take M = sup{f (x) : x ∈ [a, b]}.
I Now for n ∈ N, as M − 1

n is not an upper bound of this set,
there exists xn ∈ [a, b] such that

M − 1

n
< f (xn) ≤ M.

I By squeeze theorem,

lim
n→∞

f (xn) = M.



Continuation

I As xn ∈ [a, b] for every n, {xn}n∈N is a bounded sequence.

I By Bolzano-Weierstrass theorem, {xn} has a convergent
sequence, say {xnk}k∈N.

I Take c = limk→∞ xnk .
I Now as limn→∞ f (xn) = M, taking limit along the

subsequence, limk→∞ f (xnk ) = M.
I Then by continuity of f at c ,

f (c) = lim
k→∞

f (xnk ) = M.

I Hence f (c) = sup{f (x) : x ∈ [a, b]}.
I Similar proof works to show the existence of a d such that

f (d) = inf{f (x) : x ∈ [a, b]}, or one may use the continuity of
f and the fact

inf{f (x) : x ∈ [a, b]} = − sup{−f (x) : x ∈ [a, b]}.

I END OF LECTURE 24.
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I Then by continuity of f at c ,

f (c) = lim
k→∞

f (xnk ) = M.

I Hence f (c) = sup{f (x) : x ∈ [a, b]}.
I Similar proof works to show the existence of a d such that

f (d) = inf{f (x) : x ∈ [a, b]}, or one may use the continuity of
f and the fact

inf{f (x) : x ∈ [a, b]} = − sup{−f (x) : x ∈ [a, b]}.
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Lecture 25. Intermediate value theorem

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Maximum and minimum

I Now we focus on the study of continuous functions on
intervals.

I In the following a, b are real numbers with a < b and we look
at continuous functions on [a, b].

I Theorem 24.4: Let f : [a, b]→ R be a continuous function.
Then it is bounded.

I Theorem 24.5: Let f : [a, b]→ R be a continuous function.
Then there exists c , d in [a, b] such that

f (c) = sup{f (x) : x ∈ [a, b]};

f (d) = inf{f (x) : x ∈ [a, b]}.
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Existence of roots: Bisection method

I Theorem 25.1: Let f : [a, b]→ R be a continuous function.
Suppose f (a) < 0 < f (b). Then there exists c ∈ (a, b) such
that f (c) = 0.

I Proof: Take a1 = a and b1 = b and I1 = [a1, b1].

I Consider the value of f at the mid-point a1+b1
2 .

I If f (a1+b1
2 ) = 0, we can take c = a1+b1

2 , and we are done.

I If f (a1+b1
2 ) > 0, take a2 = a1 and b2 = a1+b1

2 .

I On the other hand, if f (a1+b1
2 ) < 0, take a2 = a1+b1

2 and
b2 = b1.
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Continuation

I In either case, we have f (a2) < 0 < f (b2) and with
I2 = [a2, b2], I1 ⊃ I2.

I Now consider the value of f at a2+b2
2 .

I If f (a2+b2
2 ) = 0, we can take c = a2+b2

2 , and we are done.

I If f (a2+b2
2 ) > 0, take a3 = a2 and b3 = a2+b2

2 .

I On the other hand, if f (a2+b2
2 ) < 0, take a3 = a2+b2

2 and
b3 = b2.

I In either case, we have f (a3) < 0 < f (b3) and with
I3 = [a3, b3], I1 ⊃ I2 ⊃ I3.
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Continuation

I Continuing this way, after choosing In = [an, bn], either
f (an+bn

2 ) = 0 or we have In+1 = [an+1, bn+1], in such a way
that In ⊃ In+1 with (bn+1 − an+1) = 1

2(bn − an).

I Assuming that, this inductive process has not terminated after
finite number of steps, we have a nested sequence of intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

I where for every n, In = [an, bn], f (an) < 0 < f (bn).

I By nested intervals property
⋂

n∈N In is non-empty. In fact, as

inf{bn − an : n ∈ N} = inf{ b−a
2n−1 : n ∈ N} = 0, this

intersection is a singleton.

I Suppose {c} =
⋂

n∈N In.

I We clearly have limn→∞ an = c = limn→∞ bn.
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⋂

n∈N In.

I We clearly have limn→∞ an = c = limn→∞ bn.



Continuation

I Then by continuity of f , f (c) = limn→∞ f (an). As f (an) < 0
for every n, we get f (c) ≤ 0.

I Similarly as f (bn) > 0 for every n, we get f (c) ≥ 0.

I Combining the last two statements we have f (c) = 0 and this
completes the proof.

I Remark: Any point x such that f (x) = 0 is some times,
especially when f is a polynomial, is called a root of f or zero
of f .

I In this proof we have seen a way of locating the root by
successively bisecting the interval.
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Intermediate value theorem

I Theorem 25.2: Let f : [a, b]→ R be a continuous function.
Suppose f (a) < z < f (b) or f (a) > z > f (b), then there
exists c ∈ (a, b) such that f (c) = z .

I Proof: Suppose f (a) < z < f (b). Define g : [a, b]→ R by

g(x) = f (x)− z , x ∈ [a, b].

I Then clearly g is continuous and g(a) < 0 < g(b).

I By the previous theorem, there exists c ∈ (a, b) such that
g(c) = 0.

I That is, f (c)− z = 0 or f (c) = z .

I If f (a) > z > f (b), consider g defined by

g(x) = z − f (x), x ∈ [a, b]

and similar proof works.
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Existence of n-th root

I The intermediate value theorem is a very important theorem
and has many applications. We see a few.

I Theorem 25.3 (Existence of nth roots): Let t be a positive
real number and suppose n ∈ N. Then there exists unique
positive real number s such that sn = t.

I We call the s of previous theorem as nth root of t and denote

it by t
1
n .

I Proof: Consider the function p : [0,∞)→ [0,∞) defined by

p(x) = xn, ∀x ∈ [0,∞).

I Clearly, p is continuous and is unbounded.

I Therefore, we can get a b such that t < p(b). (Exercise: We
may take b = t + 1.)
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Continuation

I Let f : [0, b]→ R be the function,

f (x) = xn, ∀x ∈ [0, b].

I Clearly f is continuous. We have f (0) < t < f (b).

I Then by intermediate value theorem there exists s ∈ (0, b)
such that f (s) = t, or sn = t.

I For 0 < c < d ,

dn − cn = (d − c)(dn−1 + cdn−2 + c2dn−s + · · ·+ cn−1)

= (d − c)(
n−1∑
j=0

c jdn−1−j)) > 0.

I In other words if 0 < c < d , we have cn < dn and so we can’t
have cn = dn.. This shows the uniqueness of positive nth root
of t.
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Roots of polynomials

I Example 25.4: Consider the polynomial p(x) = x3 − 2x2 − 1.
Show that there exists a real number λ such that 0 < λ < 3
and p(λ) = 0.

I Proof: Any polynomial is a continuous function. Now
p(0) = −1 < 0 and p(3) = 27− 18− 1 = 8 > 0. Hence the
result follows from the intermediate value theorem.

I Exercise 25.5: Suppose p is an odd degree real polynomial.
Show that there exists a real number λ such that p(λ) = 0.
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Continuous image of an interval

I Theorem 25.6: Let f : [a, b]→ R be a continuous function.
Then

f ([a, b]) = [s, t]

where

s = inf{f (x) : x ∈ [a, b]}, t = sup{f (x) : x ∈ [a, b].

I Note: Here if s = t, then [s, t] is to be interpreted as {s}.
I Proof: From the definitions of s, t it is clear that for every

x ∈ [a, b], s ≤ f (x) ≤ t.

I Hence f ([a, b]) ⊆ [s, t].

I If s = t, f is a constant function and there is nothing to show.

I If s < t, and s < z < t, we want to show that there exists
e ∈ [a, b] such that f (e) = z .

I But this is clear from the inter mediate value theorem as there
exist c , d in [a, b] such that f (c) = s and f (d) = t.
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Continuous images of arbitrary intervals

I In the following consider singleton subsets of R also as
intervals.

I Theorem 25.7: Suppose I ⊆ R is an interval, and f : I → R is
a continuous function. Then f (I ) is an interval.

I Recall that intervals are sets of the form
{a}, [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b), (−∞,∞),
with a, b ∈ R, a < b.

I Exercise 25.8: Show that a non-empty subset S of R is an
interval if and only if x , y ∈ S with x < y implies [x , y ] ⊆ S .

I Now the proof of Theorem 25.7 follows easily from the inter
mediate value theorem.
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Antipodal points

I Claim: At any time there are two antipodal points on the
equator with equal temperature.

I Sketch of proof:

I We model the equator by a circle, or by the interval [0, 1],
where we identify the points 0 and 1.
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Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Continuation

I Suppose f (t) denotes the temperature at point t in [0, 1].

I Define g : [0, 12 ]→ R, by g(t) = f (t)− f (t + 1
2).

I Then g(12) = −g(0). In other words g(0) and g(12) have
opposite signs.

I If g(0) = 0, 0 and 1
2 are antipodal points with equal

temperature. So we may assume g(0) 6= 0.

I Assume that g is continuous. Then by intermediate value
theorem there exists c ∈ [0, 12 ] such that g(c) = 0.

I This means that f (c)− f (c + 1
2) = 0 or

f (c) = f (c +
1

2
).

I This proves the claim (Why?).

I END OF LECTURE 25.



Lecture 26. Uniform continuity and monotonicity

I We recall:

I Definition 22.1: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is said to be continuous at c , if for every ε > 0
there exists δ > 0 such that

|f (x)− f (c)| < ε, ∀x ∈ (c − δ, c + δ)
⋂

A.

I This is commonly known as ε− δ form of continuity.

I Theorem 22.4: Let A ⊆ R and let c ∈ A. Then a function
f : A→ R is continuous at c , if and only if for every sequence
{xn}n∈N in A, converging to c ,

lim
n→∞

f (xn) = f (c).

I This is known as sequential form of continuity.

I Definition 22.7: Let A ⊆ R. Then a function f : A→ R is said
to be continuous if f is continuous at every c ∈ A.
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Uniform continuity

I Suppose f : A→ R is continuous at every y in A. Then we
have for every ε > 0, there exists δ, depending on y , such that

|f (x)− f (y)| < ε,

for all x in A with |x − y | < δ.

I Definition 26.1: Let A be a non-empty subset of R and let
f : A→ R be a function.

I Then f is said to be uniformly continuous if for every ε > 0
there exists δ > 0 such that

|f (x)− f (y)| < ε

for all x , y ∈ A with |x − y | < δ.

I It is important here that the δ here depends only on ε and not
on x or y .
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Examples

I Example 26.2: Let g : R→ R, be the function

g(x) = 4 + 5x , ∀x ∈ R.

Then g is uniformly continuous.

I For ε > 0, take δ = ε
5 .

I Then for |x − y | < δ, we have

|g(x)− g(y)| = |5x − 5y | = 5|x − y | < 5δ = 5
ε

5
= ε.

I Clearly all uniformly continuous functions are continuous. The
converse is not true.

I Example 26.3: Let h : R→ R be the function,

h(x) = x2, ∀x ∈ R.

I Then h is not uniformly continuous.
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Continuation

I Proof: Take ε = 1.

I Suppose h is uniformly continuous. Then there exists δ > 0,
such that

|x2 − y2| < 1, ∀|x − y | < δ.

I Take x = y + δ
2 . We get

|(y +
δ

2
)2 − y2| < 1

for all y .
I That is |yδ + δ2

4 | < 1 for all y . Clearly this is not true, for
instance, we can take y = 2

δ , and we get 2 < 1, which is a
contradiction. �

I Exercise 26.4: Show that f : (0, 1)→ (0, 1) defined by

f (x) =
1

x
, ∀x ∈ (0, 1),

is not uniformly continuous.
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Uniform continuity

I Theorem 26.5 (uniform continuity): Let f : [a, b]→ R be a
continuous function, where a, b ∈ R with a < b. Then f is
uniformly continuous.

I Proof: Suppose not.

I Then there exists ε0 > 0 such that for no δ > 0,

|f (x)− f (y)| < ε0, |x − y | < δ, x , y ∈ [a, b]

holds.

I In particular, this inequality does not hold for δ = 1
n for every

n ∈ N.

I This means that there exist xn, yn in [a, b] such that
|xn − yn| < 1

n and

|f (xn)− f (yn)| ≥ ε0.
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Continuation

I By Bolzano-Weierstass theorem {xn}n∈N has a convergent
subsequence. Say {xnk}k∈N converges to some z in [a, b].

I Now |xnk − ynk | < 1
nk
≤ 1

k as nk ≥ k for every k .

I Take zk = xnk and wk = ynk . Then we have

I (i) {zk}k∈N converges to z .

I (ii) |zk − wk | < 1
k for every k ∈ N.

I (iii) |f (zk)− f (wk)| ≥ ε0 for all k ∈ N.
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Continuation

I From (ii),

zk −
1

k
≤ wk ≤ zk +

1

k
, ∀k ∈ N.

I Then by (i), limk→∞(zk − 1
k ) = z = limk→∞(zk + 1

k ), and by
squeeze theorem,

lim
k→∞

wk = z .

I Therefore both {zk}k∈N and {wk}k∈N converge to the same
real number z in [a, b].

I By continuity of f , {f (zk)}k∈N and {f (wk)}k∈N converge to
the same value f (z).

I This contradicts, (iii), as we can choose, K1 such that

|f (zk)− f (z)| < ε0
2
, ∀k ≥ K1.

I Similarly there exists K2 such that,

|f (wk)− f (z)| < ε0
2
, ∀k ≥ K2.
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Continuation

I Take K = max{K1,K2}. Then by triangle inequality we have,

|f (zK )−f (wK )| ≤ |f (zK )−f (z)|+|f (z)−f (wK )| < ε0
2

+
ε0
2

= ε0

I Hence |f (zk)− f (wK )| < ε0, contradicting (iii).

I Therefore f is uniformly continuous.
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Monotonicity

I Definition 26.6: Let A be a non-empty subset of R and let
f : A→ R be a function.

I Then (i) f is said to be increasing (or non-decreasing) if
f (x) ≤ f (y) for all x , y ∈ A with x ≤ y .

I (ii) f is said to be strictly increasing if f (x) < f (y) for all
x , y ∈ A with x < y .

I (iii) f is said to be decreasing (or non-increasing) if
f (x) ≥ f (y) for all x , y ∈ A with x ≤ y .

I (iv) f is said to be strictly decreasing if f (x) > f (y) for all
x , y ∈ A with x < y .
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Continuous bijections

I Theorem 26.7: Let a, b, a′, b′ be real numbers with a < b and
a′ < b′. If f : [a, b]→ [a′, b′] is a continuous bijection then
either f is strictly increasing with f (a) = a′ and f (b) = b′ or
f is strictly decreasing with f (a) = b′ and f (b) = a′

I Proof: We know that any continuous function f on [a, b]
maps [a, b] onto [s, t] where

s = inf{f (x) : x ∈ [a, b]}
and

t = sup{f (x) : x ∈ [a, b]}.
I Hence we must have s = a′ and t = b′.
I Also as the infimum and supremum are attained there exist,

c , d in [a, b] such that f (c) = s = a′ and f (d) = t = b′.
I We claim that if c < d , then f is strictly increasing. By

intermediate value theorem, f ([c, d ]) = [a′, b′]. Now the
bijectivity of f forces c = a and d = b, so that f (a) = a′ and
f (b) = b′.
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Continuation

I If f is not strictly increasing, there exist x , y in [a, b] such that
x < y and f (x) > f (y) (Since f is injective f (x) = f (y) is
ruled out.)

I Since f (a) = a′ and f (x) > f (y), x = a is not possible.

I So we have a < x < y ≤ b and f (a) = a′, and
f (x) > f (y) > a′

I On applying intermediate value theorem to f |[a,x] there must
be some z ∈ [a, x ] such that f (z) = f (y). This contradicts
injectivity of f .

I Therefore if c < d , then f is strictly increasing and
f (a) = a′, f (b) = b′.

I Similarly if d < c, f is strictly decreasing and
f (a) = b′, f (b) = a′.

I Finally c = d is not possible as f can’t be a constant function
due to injectivity of f . �

I END OF LECTURE 26.
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Lecture 27. Limits to cluster points

I Definition 27.1: Let A ⊆ R and let c ∈ R. Then c is said to
be a cluster point (or accumulation point) of A if for every
δ > 0

(c − δ, c + δ)
⋂

A\{c} 6= ∅.

I Note that here c may or may not be an element of A.

I Example 27.2: The set of cluster points of [0, 1) is given by
[0, 1]. The set of cluster points of N is empty. The set of
cluster points of [0, 1]

⋃
{2, 3} is [0, 1].

I Proposition 27.3: Let A ⊆ R and let c ∈ R. Then c is a
cluster point of A if and only if there exists a sequence
{xn}n∈N in A\{c} converging to c .

I Note that we are excluding c from these sequences.
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Limits of functions to cluster points

I Definition 27.4: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then f is said to have a limit at
c if there exists z ∈ R such that for every ε > 0, there exists
δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Note that in this definition it does not matter whether c is in
A or not. Even if c is in A, f (c) has no role to play.

I Remark: It should be clear that if f has a limit at c , then it is
unique.

I Notation: If z is the limit of f at c, we write

lim
x→c

f (x) = z .
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Sequential version

I Proposition 27.5: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then z is limit of f at c if and
only if for every sequence {xn}n∈N in A\{c} converging to c ,
{f (xn)}n∈N converges to z .

I Proof. Suppose f has limit z at c . Now for ε > 0, there exists
a δ > 0, such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Suppose {xn}n∈N is a sequence in A\{c} converging to c.
Since δ > 0, there exists K ∈ N such that,

|xn − c | < δ, ∀n ≥ K .

I Then for n ≥ K , xn ∈ (c − δ, c + δ)
⋂

(A\{c}) and hence
|f (xn)− z | < ε, ∀n ≥ K .

I Therefore {f (xn)}n∈N converges to f (c).
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Continuation

I Now suppose z is not a limit of f at c . Then there exists
ε0 > 0 such that for no δ > 0

|f (x)− z | < ε0, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c})

holds.

I In particular for every n, the inequality does not hold for some
xn ∈ (c − 1

n , c + 1
n )
⋂

(A\{c}).
I That is,

|f (xn)− z | ≥ ε0.

I Clearly then {xn}n∈N converges to c , but {f (xn)} does not
converge to z . �.
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Example

I Example 27.6: Define h : [0, 2)
⋃

(2, 3]→ R by

h(x) =

{
2x if x ∈ [0, 2)

(x3−2x2)
x−2 if x ∈ (2, 3]

extends to a continuous function h̃ on [0, 3] by taking
h̃(x) = h(x) for x ∈ [0, 2)

⋃
(2, 3] and h̃(2) = 4.

I Remark: Suppose c is a cluster point of a set A ⊆ R and
f ;A→ R is a function. Suppose limx→c f (x) = z , then
f̃ : A

⋃
{c} → R defined by

f̃ (x) =

{
f (x) if x ∈ A\{c}
z if x = c

is continuous at c .
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Left and right hand cluster points

I Definition 27.7: Let A ⊆ R and let c ∈ R. Then c is said to
be a right cluster point of A if for every δ > 0

(c , c + δ)
⋂

A 6= ∅.

Similarly c is said to be a left cluster point of A if for every
δ > 0

(c − δ, c)
⋂

A 6= ∅.

I Proposition 27.8: Let A ⊆ R and let c ∈ R. Then the
following are equivalent:

I (i) c is a right cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(c ,∞) converging to
c .

I (iii) There exists a strictly decreasing sequence {xn} in A
converging to c .
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Continuation

I Similarly, the following are equivalent:

I (i) c is a left cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(−∞, c) converging
to c .

I (iii) There exists a strictly increasing sequence {xn} in A
converging to c .

I Proof. Exercise.
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Left and right hand limits

I Definition 27.9: Let c be a right cluster point of a subset A of
R. Let f : A→ R be a function. Then f is said to have a
right hand limit at c if there exists z ∈ R such that for every
ε > 0, there exists δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c , c + δ)
⋂

A.

I Clearly if such a limit exists, then it is unique and we write

lim
x→c+

f (x) = z .

I Observe that,
lim

x→c+
f (x) = z

iff for every decreasing sequence {xn}n∈N in A converging to
c , {f (xn)} converges to z .

I Some texts may have the notation: limx↓c f (x) = z .
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Left hand limits

I Definition 27.10: Let c be a left cluster point of a subset A of
R. Let f : A→ R be a function. Then f is said to have a left
hand limit at c if there exists z ∈ R such that for every ε > 0,
there exists δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c)
⋂

A.

I Clearly if such a limit exists, then it is unique and we write

lim
x→c−

f (x) = z .

I Observe that,
lim

x→c−
f (x) = z

iff for every increasing sequence {xn}n∈N in A converging to c ,
{f (xn)} converges to z .

I Some texts may have the notation: limx↑c f (x) = z .
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Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).
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Continuation
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Continuation

I Proof. (i) Suppose f is increasing and c ∈ (a, b].
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I Taking δ = c − d we have (d , c) = (c − δ, c) and
I |z − f (x)| < ε for all x ∈ (c − δ, c).
I This proves that

z = sup{f (x) : x ∈ [a, c)}.
I The proofs of other claims are similar.
I END OF LECTURE 27.
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Lecture 28. Inverses of continuous bijections and
extensions of functions

I Definition 27.1: Let A ⊆ R and let c ∈ R. Then c is said to
be a cluster point (or accumulation point) of A if for every
δ > 0

(c − δ, c + δ)
⋂

A\{c} 6= ∅.

I Note that here c may or may not be an element of A.

I Proposition 27.3: Let A ⊆ R and let c ∈ R. Then c is a
cluster point of A if and only if there exists a sequence
{xn}n∈N in A\{c} converging to c .

I Note that we are excluding c from these sequences.
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Limits of functions at cluster points

I Definition 27.4: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then f is said to have a limit at
c if there exists z ∈ R such that for every ε > 0, there exists
δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c − δ, c + δ)
⋂

(A\{c}).

I Proposition 27.5: Let c be a cluster point of a subset A of R.
Let f : A→ R be a function. Then z is limit of f at c if and
only if for every sequence {xn}n∈N in A\{c} converging to c ,
{f (xn)}n∈N converges to z .
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Left and right hand cluster points

I Definition 27.7: Let A ⊆ R and let c ∈ R. Then c is said to
be a right cluster point of A if for every δ > 0

(c , c + δ)
⋂

A 6= ∅.

Similarly c is said to be a left cluster point of A if for every
δ > 0

(c − δ, c)
⋂

A 6= ∅.

I Proposition 27.8: Let A ⊆ R and let c ∈ R. Then the
following are equivalent:

I (i) c is a right cluster point of A.

I (ii) There exists a sequence {xn} in A
⋂

(c ,∞) converging to
c .

I (iii) There exists a strictly decreasing sequence {xn} in A
converging to c .
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Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).



Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).



Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).



Monotonic functions

I Theorem 27.11: Let a, b ∈ R with a < b. Let f : [a, b]→ R
be a function. Suppose f is increasing then the following hold.

I (i) For every c ∈ (a, b],

lim
x→c−

f (x) = sup{f (x) : x ∈ [a, c)}.

I (ii) For every c ∈ [a, b),

lim
x→c+

f (x) = inf{f (x) : x ∈ (c , b]}.

I (iii) For every c ∈ (a, b)

lim
x→c−

f (x) ≤ f (c) ≤ lim
x→c+

f (x).

Therefore f is continuous at c if and only if

lim
x→c−

f (x) = lim
x→c+

f (x).



Inverses of monotone continuous functions

I Theorem 28.1: Let a, b, a′, b′ be real numbers with a < b and
a′ < b′. Let f : [a, b]→ [a′, b′] be a continuous bijection with
f (a) = a′ and f (b) = b′. Then f −1 : [a′, b′]→ [a, b] is a
continuous bijection.

I Proof. Note that f −1 is well-defined and is a bijection as f is
assumed to be a bijection.

I Also f −1(a′) = a and f −1(b′) = b.

I Further, we know that f is strictly increasing.

I This implies, that f −1 is also strictly increasing as for y < y ′

if f −1(y) ≥ f −1(y ′), on applying f we get y ≥ y ′,
contradicting y < y ′.
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Continuation

I Then for any c ′ ∈ (a′, b′]

x1 := lim
y→c ′−

f −1(y) = sup{f −1(y) : y ∈ [a′, c ′)}.

I Take c = f −1(c ′).

I Consider f restricted to [a, c]. As f is increasing,
f ([a, c]) ⊆ [a′, c ′]. By intermediate value theorem, every
z ∈ [a′, c ′] is in the range of f |[a,c].

I Therefore f |[a,c] : [a, c]→ [a′, c ′] is a bijection.

I In particular, f −1([a′, c ′]) = [a, c]. By injectivity of f it follows
that f −1([a′, c ′)) = [a, c). Therefore
x1 = sup{f −1(y) : y ∈ [a′, c ′)} = sup([a, c)) = c = f −1(c ′).

I Hence, limy→c ′− f
−1(y) = f −1(c).

I Similarly, for every c ′ ∈ [a′, b′), limy→c+ f −1(y) = f −1(c ′).

I Therefore f −1 is continuous.
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nth-root function

I Example 28.2: For any n ∈ N, and any T > 0, the function
p : [0,T ]→ [0,T n] defined by p(x) = xn is a continuous
bijection.

I Hence q = p−1 : [0,T n]→ [0,T ] defined by q(y) = y
1
n is a

continuous bijection.

I It follows that q : [0,∞)→ [0,∞) defined by q(x) = x
1
n is a

continuous bijection.
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Extensions of uniformly continuous functions

I Theorem 28.3: Let a, b ∈ R with a < b. Let f : (a, b)→ R be
a function. Then there exists unique continuous function
f̃ : [a, b]→ R such that f̃ (x) = f (x), ∀x ∈ (a, b) if and only
if f is uniformly continuous.

I We call f̃ as the continuous extension of f .

I Proof. If f̃ exists as above, then f̃ is uniformly continuous.

I This clearly implies that f = f̃ |(a,b) is uniformly continuous.

I To prove the converse we need a lemma which is of
independent interest.
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Cauchy property

I Lemma 28.4: Let A ⊆ R and let f : A→ R be uniformly
continuous. Suppose {xn}n∈N is a Cauchy sequence in A.
Then {f (xn)}n∈N is a Cauchy sequence.

I In other words, uniformly continuous functions map Cauchy
sequences to Cauchy sequences.

I Proof. Consider ε > 0.
I Then as f is uniformly continuous, there exists δ > 0 such that

|f (x)− f (y)| < ε, ∀x , y ∈ A, with |x − y | < δ

I Now as {xn} is Cauchy, there exists K ∈ N such that

|xm − xn| < δ, ∀m, n ≥ K .

I Consequently

|f (xm)− f (xn)| < ε,∀m, n ≥ K .

I This proves that {f (xn)} is Cauchy.
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Continuation of proof

I Now suppose f : (a, b)→ R is uniformly continuous. We want
to have an extension f̃ : [a, b]→ R which is continuous.

I This means that we need to determine f̃ (a) and f̃ (b).

I Suppose {xn}n∈N and {yn}n∈N are two sequences in (a, b)
converging to a.

I Since they are convergent, by the previous Lemma {f (xn)}
and {f (yn)} are Cauchy.

I Now since all Cauchy sequences in R are convergent these
sequences are convergent.

I Take c = limn→∞ f (xn) and d = limn→∞ f (yn).

I We claim c = d .
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Continuation

I Consider the sequence

zn =

{
xn if n is odd;
yn if n is even.

I As both {xn} and {yn} converge to the same value (namely
a), {zn} is also convergent and it converges to a (Show this).

I It follows that {f (zn)} is also convergent.
I It has two subsequences {f (z2n−1)} and {f (z2n)} converging

to c , d respectively. Hence c = d = limn→∞ f (zn).
I We have shown that whenever a sequence {xn} converges to

a, {f (xn)} is convergent and the limit is independent of the
sequence chosen. Take this limit as the value of f̃ (a).

I By the sequential criterion it is clear that f̃ defined this way is
continuous at a. Similar proof works for the other cluster
point b.

I The uniqueness of extension is obvious.
I END OF LECTURE 28.
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sequence chosen. Take this limit as the value of f̃ (a).

I By the sequential criterion it is clear that f̃ defined this way is
continuous at a. Similar proof works for the other cluster
point b.

I The uniqueness of extension is obvious.
I END OF LECTURE 28.



Lecture 29. Differentiation

I Here is an infinite series formula for π.

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+

1

9
· · ·

I This is known as Madhava Series.

I Madhava of Kerala school of Mathematics found this and
some other such formulae for trigonometric quantities several
centuries before Calculus was developed by Newton, Leibniz
and others in Europe.

I More information on Madhava series:
https://en.wikipedia.org/wiki/Madhava series

I Here is link for more on ancient Indian mathematics:
https://core.ac.uk/download/pdf/326681788.pdf
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Differentiation

I Let A ⊆ R. Fix c ∈ A. Assume that c is a cluster point of A.
Let f : A→ R be a function. Then define fc : A\{c} → R by

fc(x) =
f (x)− f (c)

x − c
, x ∈ A\{c}.

I We would like to take:

f ′(c) = lim
x→c

fc(x)

I Note that here fc is not defined at c and we do not need it to
consider this limit.

I More formally, we have the following definition.
I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.

Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.
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Example

I Example 29.2 Let f : [0, 2]→ R be the function

f (x) = x3, x ∈ [0, 2].

Then f is differentiable at c = 1 and f ′(1) = 3.

I Proof: We have,

lim
x→1

f (x)− f (1)

x − 1
= lim

x→1

x3 − 1

x − 1

= lim
x→1

(x − 1)(x2 + x + 1)

x − 1

= lim
x→1

(x2 + x + 1)

= 3.

I Remark: We may also write limx→c
f (x)−f (c)

x−c as

lim
h→0

f (c + h)− f (c)

h
.
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Differentiability implies continuity

I In the following, for simplicity, we would take domain A as
(non-singleton) interval and will just denote it as I .

I Theorem 29.3: Let f : I → R be a function where I is an
interval. Fix c ∈ I . If f is differentiable at c then f is
continuous at c. The converse is not true.

I Proof: We have

f ′(c) = lim
x→c

f (x)− f (c)

x − c
.

I Hence

lim
x→c

(f (x)− f (c)) = lim
x→c

f (x)− f (c)

x − c
.(x − c)

exists and equals f ′(c).0 = 0.
I Hence f is continuous at c .
I The function g(x) = |x |, x ∈ R is continuous at 0, but is not

differentiable at 0 (Why?). �
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Algebra of differentiation

I Theorem 29.4: Let I be an interval and suppose c ∈ I . Let
f : I → R and g : I → R be functions differentiable at c .
Then the following hold:

I (i) For a, b ∈ R, af + bg defined by (af + bg)(x) =
af (x) + bg(x), x ∈ I is differentiable at c and,

(af + bg)′(c) = af ′(c) + bg ′(c).

I (ii) The product fg defined by fg(x) = f (x)g(x), x ∈ I , is
differentiable at c and

(fg)′(c) = f (c)g ′(c) + f ′(c)g(c).

I (iii) If g(c) 6= 0, then f
g where f

g (x) = f (x)
g(x) is defined for

some interval J ⊆ I containing c and

(
f

g
)′(c) =

f ′(c)g(c)− f (c)g ′(c)

g(c)2
.

I Proof. (i) The proof is clear.
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Continuation

I (ii) We have

f (x)g(x)− f (c)g(c)

x − c
=

f (x)(g(x)− g(c)) + (f (x)− f (c))g(c)

x − c

= f (x).
g(x)− g(c)

x − c
+

f (x)− f (c)

x − c
.g(c).

I Recall that differentiability of f at c gives continuity of f at c
and hence limx→c f (x) = f (c).

I Now taking limit as x tends to c in the previous equation, we
see that (fg) is differentiable at c and

(fg)′(c) = f (c)g ′(c) + f ′(c)g(c).

I (iii) As g is continuous at c and g(c) 6= 0, g(x) 6= 0 for some
interval J containing c . Hence f

g is defined in this interval.
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Continuation

I Now

f (x)
g(x) −

f (c)
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x − c
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Polynomials

I Theorem 29.5: Let p : R→ R be a real polynomial:

p(x) = a0 + a1x + · · ·+ anx
n, x ∈ R

for some n ∈ N, a0, a1, . . . , an ∈ R.

I Then at any c ∈ R p is differentiable at c and

p′(c) = a1 + 2a2c + 3a3c
2 + · · ·+ nanc

(n−1).

I Proof. This can be proved using (i) and (ii) of previous
theorem and induction. More directly:

p′(c)

= lim
h→0

p(h + c)− p(h)

h

= lim
h→0

1

h
[a1.h + a2((h + c)2 − c2)) + a3(h + c)3 − c3)

+ · · ·+ an((h + c)n − cn)

= a1 + 2a2c + 3a3c
2 + · · ·+ nanc

(n−1).
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for some n ∈ N, a0, a1, . . . , an ∈ R.
I Then at any c ∈ R p is differentiable at c and
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2 + · · ·+ nanc
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theorem and induction. More directly:
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Differentiable functions

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.

I END OF LECTURE 29.
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Lecture 30. Chain Rule and Rolle’s theorem

I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.
Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.



Chain rule

I Theorem 30.1 Let I , J be intervals and let f : I → R and
g : J → R be functions such that f (I ) ⊆ J and h = g ◦ f .
Consider c ∈ I . Suppose f is differentiable at c and g is
differentiable at f (c). Then h is differentiable at c and

h′(c) = (g ◦ f )′(c) = g ′(f (c))f ′(c).

I Rough computation:

g ◦ f (x)− g ◦ f (c)

x − c
=

g ◦ f (x)− g ◦ f (c)

f (x)− f (c)
.
f (x)− f (c)

x − c

I Taking limit as x tends to c we should get the answer as f (x)
converges to f (c).

I However, there is a problem here as we can’t ensure that
f (x)− f (c) 6= 0.
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Caratheodory’s theorem

I Here is a characterization of differentiability.

I Theorem 30.2: Let f : I → R be a function where I is an
interval. Fix c ∈ I . Then f is differentiable at c if and only if
there exists a function u : I → R such that

f (x)− f (c) = (x − c)u(x), ∀x ∈ I (∗)

and u is continuous at c . In such a case, u(c) = f ′(c).
I Proof: If f is differentiable at c , take

u(x) =

{
f (x)−f (c)

x−c if x 6= c , x ∈ I

f ′(c) if x = c .

I Then it is easy to see that (∗) is satisfied and u is continuous
at c .

I Conversely if u exists satisfying (∗) and u is continuous at c

I From (∗), u(x) = f (x)−f (c)
x−c for x 6= c . Taking limit as x tends

to c , using continuity of u at c, f is differentiable at c , and
u(c) = f ′(c). �
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Proof of chain rule

I Proof: Consider f , g as in the hypothesis of the theorem.

I As f is differentiable at c , there exists a function u on I ,
continuous at c such that

f (x)− f (c) = (x − c)u(x), ∀x ∈ I .

I As g is differentiable at f (c), there exists a function v on J,
continuous at f (c) such that

g(y)− g(f (c)) = (y − f (c))v(y), ∀y ∈ J.

I Since f (I ) ⊆ J, this equation is also true at y = f (x) and so
we get

g(f (x))− g(f (c)) = (f (x)− f (c))v(f (x)), ∀x ∈ I .
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Continuation

I Now using the previous equation, we have

g(f (x))− g(f (c)) = (x − c)u(x)v(f (x)), ∀x ∈ I .

I Note that as v is continuous at f (c) and f is continuous at c ,
v ◦ f is continuous at c . Consequently, x 7→ u(x)v(f (x)) is
continuous at c.

I Hence by Caratheodory’s theorem, g ◦ f is differentiable at c
and

(g ◦ f )′(c) = u(c)v(f (c)) = f ′(c)g ′(f (c)).

I In other words h′(c) = g ′(f (c))f ′(c). �.
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Derivative of inverse -I

I Theorem 30.3: Let I , J be intervals and let f : I → J be a
bijection. Suppose f is differentiable at c ∈ I and g := f −1 is
differentiable at f (c). Then

g ′(f (c)) =
1

f ′(c)
.

I Proof: Take h = g ◦ f . As g = f −1, h is the identity map on
I . In particular h′(c) = 1 for every c ∈ I .

I Now by the chain rule we get 1 = h′(c) = f ′(c)g ′(f (c)).

I Consequently, g ′(f (c)) = 1
f ′(c) .�

I Note that this in particular means that in this Theorem,
f ′(c) = 0 is not possible.
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Derivative of inverse -II

I Theorem 30.4: Let I , J be intervals and let f : I → J be a
bijection. Suppose f is differentiable at c ∈ I and f ′(c) 6= 0.
Also assume that f −1 is continuous at f (c). Then g := f −1 is
differentiable at f (c) and g ′(f (c)) = 1

f ′(c) .

I Proof: By Caratheodory’s theorem, there exists a function u
on I , which is continuous at c and

f (x)− f (c) = (x − c)u(x), ∀x ∈ I .

I First we note that u(x) 6= 0 for every x . Indeed, for x 6= c ,
f (x) 6= f (c) as f is injective and hence u(x) 6= 0. At x = c ,
u(c) = f ′(c), which is not zero by hypothesis.

I Now take y = f (x) and d = f (c) in the equation above, to
get

y − d = (f −1(x)− f −1(d))u(f −1(y))
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Continuation

I Since f is surjective, this equation is true for every y ∈ J and
we get

g(y)− g(d) = (y − d)(
1

u(g(y))
).

I Finally note that since g = f −1 is continuous at d and u is
continuous at c, y 7→ 1

u(g(y)) is continuous at d .

I Therefore by Caratheodory’s theorem g is differentiable at d ,
and the result follows.

I Example 30.5: For n ∈ N the function g : (0,∞)→ (0,∞)
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Local extremums

I Definition 30.6: Let f : I → R be a function and suppose
c ∈ I . Then c is said to be a local maximum of f if there
exists δ > 0 such that

f (c) ≥ f (x), ∀x ∈ (c − δ, c + δ)
⋂

I .

I Similarly c is said to be a local minimum if there exists δ > 0
such that

f (c) ≤ f (x), ∀x ∈ (c − δ, c + δ)
⋂

I .

I If c is a local maximum or local minimum it is said to be a
local extremum.
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Global extremums

I Definition 30.7: Let f : I → R be a function and suppose
c ∈ I . Then c is said to be a global maximum of f if

f (c) ≥ f (x), ∀x ∈ I .

I Similarly c is said to be a global minimum of f if

f (c) ≤ f (x), ∀x ∈ I .
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Interior extremum theorem

I Definition 30.8: Let I be an interval and let c ∈ I . Then c is
said to be an interior point of I if there exists δ > 0 such that

(c − δ, c + δ) ⊆ I .

I Theorem 30.9: Let f : I → R be a function. Suppose c is an
interior point of I and suppose c is a local extremum of f . If
f is differentiable at c then

f ′(c) = 0.

I Proof. Given that c is an interior point of f .
I So there exists δ1 > 0 such that (c − δ1, c + δ1) ⊆ I .
I Suppose that c is a local maximum of f . Then there exists
δ2 > 0 such that

f (c) ≥ f (x) ∀x ∈ (c − δ2, c + δ2)
⋂

I .

I Taking δ = min{δ1, δ2}, we have (c − δ, c + δ) ⊆ I and

f (c) ≥ f (x), ∀x ∈ (c − δ, c + δ).
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Continuation

I Assume that f is differentiable at c .

I Suppose {xn}n∈N is a sequence in (c , c + δ) converging to c
(For instance, we can take xn = c + δ

2n .)

I Then for every n, xn > c and f (xn) ≤ f (c) and hence

f (xn)− f (c)

xn − c
≤ 0 (1)

I Taking limit as n→∞, we get

f ′(c) ≤ 0.
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Continuation

I Now suppose {yn}n∈N is a sequence in (c − δ, c) converging
to c (For instance, we can take yn = c − δ

2n .)

I Then for every n, yn < c and f (yn) ≤ f (c) and hence

f (yn)− f (c)
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I Taking limit as n→∞, we get

f ′(c) ≥ 0. (2)

I Combining inequalities (1) and (2) we get f ′(c) = 0 as
required. �
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Rolle’s theorem

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Proof: Since f is continuous on [a, b], f attains global
maximum and global minimum in [a, b].

I Suppose there exists some t ∈ (a, b) such that f (t) > 0, then
as f (a) = f (b) = 0, the global maximum of f is attained at
some c ∈ (a, b).

I In particular, c is a local extremum and by the interior
extremum theorem, f ′(c) = 0 and we are done.

I Similarly, if there exists s ∈ (a, b) such that f (s) < 0 then
global minimum is attained in (a, b) and if d is one such
point, then f ′(d) = 0.

I The only other possibility is f (x) = 0 for all x ∈ [a, b] and in
such a case f ′(x) = 0 for all x ∈ (a, b) and we are done. �.
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Example

I Example 30.11: Consider f : [−1, 1]→ R defined by

f (x) =
√

1− x2, x ∈ [−1, 1].

I This function f satisfies the hypothesis of Rolle’s theorem.

I It is to be noted that f is not differentiable at −1 and +1, but
is differentiable on (−1, 1).

I Of course we get f ′(0) = 0 and so conclusion of Rolle’s
theorem holds.

I END OF LECTURE 30
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Lecture 31. Mean value theorem

I We recall:

I Definition 29.1: Let A ⊆ R. Let c ∈ A be a cluster point of A.
Let f : A→ R be a function. Then f is said to be
differentiable at c if

lim
x→c

f (x)− f (c)

x − c

exists. In such a case, f ′(c) is defined as this limit. If the limit
does not exist f is said to be not differentiable at c.
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Interior Extremum theorem and Rolle’s theorem

I Theorem 30.9 (Interior Extremum theorem): Let f : I → R be
a function. Suppose c is an interior point of I and suppose c
is a local extremum of f . If f is differentiable at c then

f ′(c) = 0.

I Sketch of proof.

I Suppose {xn}n∈N is a sequence decreasing to c. Then

f ′(c) = lim
n→∞

f (xn)− f (c)

xn − c
≤ 0.

I Similarly if {yn}n∈N is a sequence increasing to c ,

f ′(c) = lim
n→∞

f (yn)− f (c)

yn − c
≥ 0

I Combining two inequalities we get f ′(c) = 0.
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Rolle’s theorem

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Sketch of proof.

I If f is non-zero it attains either supremum or infimum at some
interior point c in (a, b).

I Then by interior extremum theorem f ′(c) = 0.
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Mean value theorem (MVT)

I Theorem 31.1 (Mean value theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Then
there exists c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).

I Proof: Define g : [a, b]→ R by

g(x) = f (x)− f (a)− f (b)− f (a)

b − a
(x − a).

I Then clearly g is continuous on [a, b] and is differentiable on
(a, b). Also

g(a) = g(b) = 0.

I Hence Rolle’s theorem is applicable to g , and we get
c ∈ (a, b) such that g ′(c) = 0.
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Continuation

I Using linearity of differentiation,

g ′(c) = f ′(c)− 0− f (b)− f (a)

b − a
.1 = 0.

I Hence,
f ′(c)(b − a) = f (b)− f (a).

I Note that Rolle’s theorem is a special case of mean value
theorem.
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Cauchy’s mean value theorem

I Theorem 31.2 (Cauchy’s Mean value theorem): Let
f , g : [a, b]→ R be continuous functions which are
differentiable on (a, b). Then there exists c ∈ (a, b) such that

(f (b)− f (a))g ′(c) = f ′(c)(g(b)− g(a)).

I Proof: Consider f , g as in the hypothesis of the theorem.

I Define h : [a, b]→ R by

h(x) = (f (b)−f (a))g(x)−f (x)(g(b)−g(a))−f (b)g(a)+f (a)g(b)

for x ∈ [a, b].
I Then h is continuous on [a, b], differentiable on (a, b) and

h(a) = h(b) = 0.
I Therefore Rolle’s theorem is applicable.
I So we get c ∈ (a, b) such that h′(c) = 0 and that gives the

result.
I Note that mean value theorem is a special case of Cauchy’s

mean value theorem with g(x) = x , x ∈ [a, b].
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Applications of mean value theorem

I Corollary 31.3: Let f : [a, b]→ R be a function continuous on
[a, b] and differentiable on (a, b). Suppose f ′(x) = 0 for all
x ∈ (a, b). Then f is a constant.

I Proof: Fix any t ∈ (a, b] and consider f restricted to [a, t].

I Clearly mean value theorem is applicable to this function and
we get

f (t)− f (a) = 0.(t − a) = 0.

I Therefore f (t) = f (a).

I In other words f (t) = f (a) for every t ∈ [a, b].�
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Equal derivatives

I Corollary 31.4: Let f , g : [a, b]→ R be continuous functions
differentiable on (a, b). Suppose f ′(x) = g ′(x) for all
x ∈ (a, b). Then f (x) = g(x) +C , x ∈ [a, b] for some C ∈ R.

I Proof: This is clear from the previous corollary, by considering
the function, h : [a, b]→ R defined by

h(x) = f (x)− g(x), x ∈ [a, b].
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Monotonicity

I Recall that a function f : [a, b]→ R is said to be increasing
(respectively decreasing) if f (x) ≤ f (y) (respectively
f (x) ≥ f (y) ) for all x , y in [a, b] with x ≤ y .

I Theorem 31.5: Let f : [a, b]→ R be a continuous function
which is differentiable on (a, b).

I (i) f is increasing on [a, b] if and only if f ′(x) ≥ 0 for all
x ∈ (a, b).

I (ii) f is decreasing on [a, b] if and only if f ′(x) ≤ 0 for all
x ∈ (a, b).

I Proof: (i) Suppose f is increasing and x ∈ (a, b).

I Consider any sequence {xn} in (a, b) with x < xn ≤ b,
converging to x . Then f (xn)− f (x) ≥ 0 for all n and we get

f ′(x) = lim
n→∞

f (xn)− f (x)

xn − x
≥ 0.
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Continuation

I Conversely suppose f ′(x) ≥ 0 for all x ∈ (a, b).

I For any x , y in [a, b] with x < y , consider f restricted to [x , y ]

I Then f is continuous on [x , y ] and is differntiable on (x , y)
and hence mean value theorem is applicable.

I So we get
f (y)− f (x) = f ′(z)(y − x)

I for some z ∈ [x , y ]. Then by the hypothesis, f ′(z) ≥ 0 and
therefore f (y)− f (x) ≥ 0 or f (y) ≥ f (x).

I Proof of (ii) is similar. �
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Strictly increasing functions

I Suppose f : [a, b]→ R is continuous on [a, b] and
differentiable on (a, b). Suppose f ′(x) > 0 for all x ∈ (a, b)
then by mean value theorem it is easy to see that f is strictly
increasing.

I However, the converse is not true.

I Example 31.6: Consider f : [−1, 1]→ R defined by

f (x) = x3, x ∈ [−1, 1].

I Then f is strictly increasing but f ′(0) = 0.

I Remark 31.7: In this Example, 0 is a point which is never
picked up by the mean value theorem. That is, for no
x , y ∈ [−1, 1] with x < y , f (y)− f (x) = f ′(0)(y − x). Can we
characterize such points?

I END OF LECTURE 31.
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Lecture 32. Taylor’s theorem

I We recall:

I Theorem 30.9 (Interior Extremum theorem): Let f : I → R be
a function. Suppose c is an interior point of I and suppose c
is a local extremum of f . If f is differentiable at c then

f ′(c) = 0.

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Theorem 31.1 (Mean value theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Then
there exists c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).
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Continuation

I Note that, for a ≤ x0 ≤ x ≤ b, by considering f restricted to
[x0, x ], by mean value theorem we get

f (x) = f (x0) + f ′(c)(x − x0).

I Taylor’s theorem gives similar result for higher order
derivatives.
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Higher derivatives

I We recall a few definitions.

I Definition 29.6: A function f : I → R is said to be
differentiable if it is differentiable at every c ∈ I . If f : I → R
is differentiable then the function f ′ : I → R is called the first
derivative of f .

I If f ′ is differentiable then f (2) := (f ′)′ is called the second
derivative of f .

I Inductively if f (n−1) is differentiable, then f (n), the n-th
derivative of f is the derivative of f (n−1).

I By f (0)(x) we would mean simply f (x).

I f is said to be infinitely differentiable if it has n-th derivative
for every n ∈ N.

I We can see that polynomials are infinitely differentiable.
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Taylor’s polynomial

I Definition 32.1: Let f : [a, b]→ R be a function. Fix
x0 ∈ [a, b]. Assume f (1)(x0), f (2)(x0), . . . , f (n)(x0) exist. Then
the polynomial Pn defined by Pn(x) =

f (x0)+f (1)(x0)(x−x0)+
f (2)(x0)

2!
(x−x0)2+· · ·+ f (n)(x0)

n!
(x−x0)n

I is known as n-th degree Taylor polynomial of f centered at x0.
I Remark 32.2: It is easy to see that Pn is the unique n-th

degree polynomial such that

P
(k)
n (x0) = f (k)(x0), 0 ≤ k ≤ n.

I Given f as above, we wish to say that Pn approximates f . We
write Rn(x) = f (x)− Pn(x), x ∈ [a, b] or equivalently,

f (x) = Pn(x) + Rn(x), x ∈ [a, b].

I Here Rn is known as the remainder term or the error term.
The main problem here is to get a suitable formula for Rn and
to estimate it.
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Taylor’s theorem

I Theorem 32.3 (Taylor’s theorem): Let f : [a, b]→ R be a
function. Fix x0 ∈ [a, b]. Suppose for some n ∈ N,
f (1), f (2), . . . , f (n) exist and are continuous on [a, b], and
further f (n+1) exists on (a, b). Then for any x ∈ [a, b], there
exists c strictly in between x0 and x such that

f (x) = f (x0) + f (1)(x0)(x − x0) +
f (2)(x0)

2!
(x − x0)2 + · · ·

+
f (n)(x0)

n!
(x − x0)n +

f (n+1)(c)

(n + 1)!
(x − x0)(n+1).

I In other words, the remainder term is given by

f (n+1)(c)

(n + 1)!
(x − x0)(n+1)

for some c .
I This is known as the Lagrange form of the remainder.
I Here c is in (x0, x) if x0 < x and it is in (x , x0) if x < x0. If

x = x0, the equation above is a triviality for any c .



Taylor’s theorem

I Theorem 32.3 (Taylor’s theorem): Let f : [a, b]→ R be a
function. Fix x0 ∈ [a, b]. Suppose for some n ∈ N,
f (1), f (2), . . . , f (n) exist and are continuous on [a, b], and
further f (n+1) exists on (a, b). Then for any x ∈ [a, b], there
exists c strictly in between x0 and x such that

f (x) = f (x0) + f (1)(x0)(x − x0) +
f (2)(x0)

2!
(x − x0)2 + · · ·

+
f (n)(x0)

n!
(x − x0)n +

f (n+1)(c)

(n + 1)!
(x − x0)(n+1).

I In other words, the remainder term is given by

f (n+1)(c)

(n + 1)!
(x − x0)(n+1)

for some c .

I This is known as the Lagrange form of the remainder.
I Here c is in (x0, x) if x0 < x and it is in (x , x0) if x < x0. If

x = x0, the equation above is a triviality for any c .



Taylor’s theorem

I Theorem 32.3 (Taylor’s theorem): Let f : [a, b]→ R be a
function. Fix x0 ∈ [a, b]. Suppose for some n ∈ N,
f (1), f (2), . . . , f (n) exist and are continuous on [a, b], and
further f (n+1) exists on (a, b). Then for any x ∈ [a, b], there
exists c strictly in between x0 and x such that

f (x) = f (x0) + f (1)(x0)(x − x0) +
f (2)(x0)

2!
(x − x0)2 + · · ·

+
f (n)(x0)

n!
(x − x0)n +

f (n+1)(c)

(n + 1)!
(x − x0)(n+1).

I In other words, the remainder term is given by

f (n+1)(c)

(n + 1)!
(x − x0)(n+1)

for some c .
I This is known as the Lagrange form of the remainder.

I Here c is in (x0, x) if x0 < x and it is in (x , x0) if x < x0. If
x = x0, the equation above is a triviality for any c .



Taylor’s theorem

I Theorem 32.3 (Taylor’s theorem): Let f : [a, b]→ R be a
function. Fix x0 ∈ [a, b]. Suppose for some n ∈ N,
f (1), f (2), . . . , f (n) exist and are continuous on [a, b], and
further f (n+1) exists on (a, b). Then for any x ∈ [a, b], there
exists c strictly in between x0 and x such that

f (x) = f (x0) + f (1)(x0)(x − x0) +
f (2)(x0)

2!
(x − x0)2 + · · ·

+
f (n)(x0)

n!
(x − x0)n +

f (n+1)(c)

(n + 1)!
(x − x0)(n+1).

I In other words, the remainder term is given by

f (n+1)(c)

(n + 1)!
(x − x0)(n+1)

for some c .
I This is known as the Lagrange form of the remainder.
I Here c is in (x0, x) if x0 < x and it is in (x , x0) if x < x0. If

x = x0, the equation above is a triviality for any c .



Proof of Taylor’s theorem

I Proof: We take x0 < x . Similar proof works if x < x0.

I Define a function h : [x0, x ]→ R by

h(t) = f (x)− f (t)−
n∑

k=1

f (k)(t)

k!
(x − t)k , t ∈ [x0, x ]

I We observe h(x0) is the remainder term we are interested in
and h(x) = 0.

I Moreover, for every t ∈ (x0, x)

h′(t) = −f ′(t)−
n∑

k=1

[
f (k+1)(t)

k!
(x−t)k− f (k)(t)

k!
.k(x−t)(k−1)].

I This is a telescopic sum. So we get
I

h′(t) = − f (n+1)(t)

n!
(x − t)n (1).
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Continuation

I Consider g : [x0, x ]→ R defined by

g(t) = h(t)−
(

x − t

x − x0

)(n+1)

h(x0), t ∈ [x0, x ].

I Then g is continuous on [x0, x ], differentiable on (x0, x).
Moreover, g(x0) = 0 and g(x) = h(x) = 0.

I Hence we may apply Rolle’s theorem.
I By Rolle’s theorem, there exists c ∈ (x0, x) such that
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First derivative test for extrema

I Theorem 32.4: Let f : [a, b]→ R be continuous and let
c ∈ (a, b).

I (i) Assume that there exists δ > 0 such that f is differentiable
on (c − δ, c)

⋃
(c , c + δ) and

f ′(x) ≥ 0, ∀x ∈ (c − δ, c);

f ′(x) ≤ 0, ∀x ∈ (c , c + δ).

Then f has local maxima at c .

I (ii) Assume that there exists δ > 0 such that f is
differentiable on (c − δ, c)

⋃
(c , c + δ) and

f ′(x) ≤ 0, ∀x ∈ (c − δ, c);

f ′(x) ≥ 0, ∀x ∈ (c , c + δ).

Then f has local minima at c .
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Continuation

I Proof: (i) For c − δ < x < c , by considering f restricted to
[x , c], by mean value theorem we get

f (c)− f (x) = f ′(d)(c − x)

I for some d ∈ (x , c) ⊆ (c − δ, c). Hence f ′(d) ≥ 0. So
f (c)− f (x) ≥ 0 or f (c) ≥ f (x).

I Similarly, if x ∈ (c , c + δ), consider f restricted to [c , x ]. By
mean value theorem,

f (x)− f (c) = f ′(d)(x − c)

for some d ∈ (c, x) ⊆ (c, c + δ). Hence f (x)− f (c) ≤ 0 or
f (x) ≤ f (c).

I We have seen that f (c) ≥ f (x) for all x ∈ (c − δ, c + δ),
proving that f has local maxima at c .

I The proof of (ii) is similar. �.
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Higher order tests for extrema

I Theorem 32.5: Let f : [a, b]→ R be continuous and let
x0 ∈ (a, b).

I Assume that there exists δ > 0 such that f (1), f (2), . . . , f (n)

exist and are continuous in (x0 − δ, x0 + δ). Suppose

f (1)(x0) = f (2)(x0) = · · · = f (n−1)(x0) = 0

and f (n)(x0) 6= 0.

I (i) If n is even and f (n)(x0) > 0 then f has local minimum at
x0.

I (ii) If n is even and f (n)(x0) < 0 then f has local maximum at
x0.

I (iii) If n is odd then f has neither local maximum nor local
minimum at x0.
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Continuation

I Proof. (i) Assume n is even and f (n)(x0) > 0.

I As f (n) is continuous and f (n)(x0) > 0 by choosing a smaller δ
if necessary we may assume f (n)(c) > 0 for all
c ∈ (x0 − δ, x0 + δ).

I Since f (1)(x0) = · · · = f (n−1)(x0) = 0, by Taylor’s theorem,
for x ∈ (x0 − δ, x0 + δ),

f (x) = f (x0) +
f (n)(c)

n!
(x − x0)n

for some c ∈ (x0 − δ, x0 + δ).

I As n is even (x − x0)n ≥ 0. We also have f (n)(c) > 0.
Consequently f (x) ≥ f (x0). This shows that f has local
minimum at x0.

I (ii) This is similar.
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Continuation

I (iii) Now as n is odd, (x − x0)n is either positive or negative
depending upon x > x0 or x < x0.

I Like before by continuity f (n)(c) has fixed sign, namely the
sign of f (n)(x0) in an open interval around x0.

I By Taylor’s theorem,

f (x) = f (x0) +
f (n)(c)

n!
(x − x0)n,

I and we see that f (x)− f (x0) has different signs for x > x0
and x < x0 in an open interval around x0. �.

I END OF LECTURE 32.
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Lecture 33. L’Hospital’s rules

I We recall:

I Theorem 30.9 (Interior Extremum theorem): Let f : I → R be
a function. Suppose c is an interior point of I and suppose c
is a local extremum of f . If f is differentiable at c then

f ′(c) = 0.

I Theorem 30.10 (Rolle’s theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Suppose
f (a) = f (b) = 0. Then there exists c ∈ (a, b) such that

f ′(c) = 0.

I Theorem 31.1 (Mean value theorem): Let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Then
there exists c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).
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Limits to cluster points

I We recall:

I Definition 27.9: Let c be a right cluster point of a subset A of
R. Let f : A→ R be a function. Then f is said to have a
right hand limit at c if there exists z ∈ R such that for every
ε > 0, there exists δ > 0 such that

|f (x)− z | < ε, ∀x ∈ (c , c + δ)
⋂

A.

I Clearly if such a limit exists, then it is unique and we write

lim
x→c+

f (x) = z .

I Observe that,
lim

x→c+
f (x) = z

iff for every decreasing sequence {xn}n∈N in A converging to
c , {f (xn)} converges to z .

I Some texts may have the notation: limx↓c f (x) = z .
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L’Hospital’s rule -0

I Theorem 33.1: Let f , g : [a, b]→ R be functions differentiable
at a, with f (a) = g(a) = 0, g(x) 6= 0 for x 6= 0 and g ′(a) 6= 0.

I Then limx→a+
f (x)
g(x) exists and

lim
x→a+

f (x)

g(x)
=

f ′(a)

g ′(a)
.

I Proof:
f (x)

g(x)
=

f (x)− f (a)

x − a
.

x − a

g(x)− g(a)
.

I Hence the limit as x tends to a exists and equals f ′(a)
g ′(a) . �
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L’Hospital’s rule I(a)

I Theorem 33.2 (L’Hospital’s rule I (a):) Let f , g : (a, b)→ R
be differentiable functions. Suppose g ′(x) 6= 0 for every
x ∈ (a, b). Assume

lim
x→a+

f (x) = 0 = lim
x→a+

g(x).

I If limx→a+
f ′(x)
g ′(x) = L ∈ R then

lim
x→a+

f (x)

g(x)
= L.

I Proof. We use Cauchy’s mean value theorem.

I For ε > 0, choose δ > 0 such that

| f
′(x)

g ′(x)
− L| < ε

for a < x < a + δ.



L’Hospital’s rule I(a)
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L’Hospital’s rule I(a)
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Continuation

I Now for any a < y < x < a + δ, by Cauchy’s mean value
theorem

(f (x)− f (y))g ′(c) = f ′(c)(g(x)− g(y))

for some c ∈ (y , x) ⊆ (a, a + δ).

I Since g ′(c) 6= 0, we may write this as,

f (x)− f (y) =
f ′(c)

g ′(c)
(g(x)− g(y)).

I Also, by mean value theorem g(x) 6= g(y) (Otherwise,
g ′(z) = 0 for some z .)

I Hence,
f (x)− f (y)

g(x)− g(y)
=

f ′(c)

g ′(c)
.
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Continuation

I In particular,

L− ε < f (x)− f (y)

g(x)− g(y)
< L + ε.

I Taking limit as y converges to a, we get

L− ε ≤ f (x)

g(x)
≤ L + ε,

for all x ∈ (a, a + δ).

I This proves that

lim
x→a+

f (x)

g(x)
= L.
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L’Hospital’s rule I(b)

I Theorem 33.2 (L’Hospital’s rule I (b)): Let f , g : (a, b)→ R
be differentiable functions. Suppose g ′(x) 6= 0 for every
x ∈ (a, b). Assume

lim
x→a+

f (x) = 0 = lim
x→a+

g(x).

I If limx→a+
f ′(x)
g ′(x) = L ∈ {+∞,−∞} then

lim
x→a+

f (x)

g(x)
= L.

I Proof. Consider the case L =∞. (Similar proof works when
L = −∞.

I Now for M ∈ R, there exists δ > 0 such that

f ′(x)

g ′(x)
> M

for x ∈ (a, a + δ).
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L’Hospital’s rule II

I Theorem 33.3(L’Hospital’s rule II:Let f , g : (a, b)→ R be
differentiable functions. Suppose g ′(x) 6= 0 for every
x ∈ (a, b). Assume limx→a+ g(x) = ±∞.

I (a) If limx→a+
f ′(x)
g ′(x) = L ∈ R then

lim
x→a+

f (x)

g(x)
= L.

I (b) If limx→a+
f ′(x)
g ′(x) = L ∈ {+∞,−∞}

lim
x→a+

f (x)

g(x)
= L.

I Proof. Omitted. (See the book of Bartle and Sherbert.)
I INFINITE SERIES LECTURES BY CHAITANYA APPENDED

BELOW
I THANK YOU FOR LISTENING AND BEST WISHES FOR

YOUR EXAMINATIONS.
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Infinite Series L1

I We know that finite sums
∑n

k=1 ak = a1 + a2 + · · ·+ an of real
numbers are well-defined due to the associativity of addition.

I Now, it is natural to ask: What is the meaning of
∑∞

n=1 an
when {an}n∈N is a real sequence?

I For example, consider
∑∞

n=1 an with an = (−1)n+1,∀n ∈ N,

i.e., consider the sum 1− 1 + 1− 1 + · · · .

I

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + · · ·
= 0 + 0 + · · · = 0

1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + · · · = 1

I This absurdity shows that we should give a ‘sensible meaning’
to
∑∞

n=1 an.
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∑∞

n=1 an with an = (−1)n+1,∀n ∈ N,

i.e., consider the sum 1− 1 + 1− 1 + · · · .

I

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + · · ·
= 0 + 0 + · · · = 0

1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + · · · = 1

I This absurdity shows that we should give a ‘sensible meaning’
to
∑∞

n=1 an.
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Convergence and Sum of an infinite series

I Definition 1: Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.
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Examples

I Example 1. Consider the infinite series
∑∞

n=1 an, where
an = c ,∀n ∈ N.

Then
∑∞

n=1 an is convergent ⇐⇒ c = 0.

(In fact, {sn}n∈N = {nc}n∈N is convergent ⇐⇒ c = 0)

I Example 2 (Geometric series).

1 + r + r2 + · · · =
1

1− r
for |r | < 1.

(In fact, sn = 1 + r + r2 + · · ·+ rn−1 = 1−rn
1−r →

1
1−r for

|r | < 1)

I Example 3 (Harmonic series).

∞∑
n=1

1

n
is divergent, as

{
n∑

k=1

1

k

}
n∈N

is not bounded above.
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I Example 4.
The infinite series

∑∞
n=1

1
n2

is convergent.

Proof: Let {sn}n∈N be the sequence of partial sums of∑∞
n=1

1
n2

. Look at the subsequence {s2n−1}n∈N.

s21−1 = 1

s22−1 = 1 +

(
1

22
+

1

32

)
≤ 1 +

(
2

22

)
= 1 +

1

2

s23−1 = 1 +

(
1

22
+

1

32

)
+

(
1

42
+

1

52
+

1

62
+

1

72

)
≤ 1 +

1

2
+

(
4

42

)
= 1 +

1

2
+

(
1

2

)2

...

s2n−1 ≤ 1 +
1

2
+

(
1

2

)2

+ · · ·+
(

1

2

)n−1
=: tn, ∀n ∈ N,

where {tn}n∈N is the sequence of partial sums of
∑∞

n=1(12)n−1.
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=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.
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Algebra of convergent series

Theorem 3. Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series with
sums x and y , respectively. Then

(i)
∑∞

n=1(an + bn) = x + y ;

(ii)
∑∞

n=1(can) = cx for all c ∈ R.

Sketch of the proof:

(i) Let {sn}n∈N and {tn}n∈N be the sequence of partial sums of∑∞
n=1 an and

∑∞
n=1 bn, respectively.

Similarly, let {un}n∈N be the sequence of partial sums of∑∞
n=1(an + bn).

Then

un =
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk = sn + tn → x + y as n→∞.

(ii) Similar �
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Cauchy product

I Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

I Recall that given two convergent sequences {an}n∈N and
{ab}n∈N, we defined their product as the sequence {anbn}n∈N
and the product converges to the product
( lim
n→∞

an) · ( lim
n→∞

bn).

I So, given two series
∑∞

n=1 an and
∑∞

n=1 bn, one may think of
defining their product as

∑∞
n=1 cn, where cn = anbn.

I But, this is not a good definition.

I In fact, even for n = 2, the equality
(a1 + a2)(b1 + b2) = a1b1 + a2b2 is not true in general.

I Recall that we have used distributivity while computing
(a1 + a2)(b1 + b2)

I Indeed (a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2
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I Can we use distributivity for an infinite sum?

I If we look at two polynomials

P(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n

and
Q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then their product is a polynomial

c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,
and in general

cn = a0bn+a1nn−1+a2bn−2+· · ·+an−1b1+anb0 =
n∑

k=0

akbn−k .

I This suggests the following definition.
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I Definition 2. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark: In spite of this intuitive idea, in general, the Cauchy
product of two convergent series need not be convergent.

Example 5.
Consider the series

∑∞
n=0 an and

∑∞
n=0 bn, where

an = bn =
(−1)n√
n + 1

, ∀n ∈ N ∪ {0}.

Then
∑∞

n=0 an and
∑∞

n=0 bn are convergent by the following
result.
(Result: The series

∑∞
n=1(−1)n+1an, where {an}n∈N is a

decreasing sequence of positive reals, is convergent if and only
if lim

n→∞
an = 0.)
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Claim: Their Cauchy product
∑∞

n=0 cn is divergent.

We have

cn =
n∑

k=0

akbn−k = (−1)n
n∑

k=0

1√
(k + 1)(n − k + 1)

.

For 0 ≤ k ≤ n,

(k + 1)(n − k + 1) =
(n

2
+ 1
)2
−
(n

2
− k
)2
≤
(n

2
+ 1
)2
.

=⇒ 1√
(k + 1)(n − k + 1)

≥ 2

n + 2
, for all 0 ≤ k ≤ n

=⇒ |cn| =
n∑

k=0

1√
(k + 1)(n − k + 1)

≥ 2(n + 1)

n + 2
=

2(1 + 1
n )

1 + 2
n

→ 2.

Therefore, it follows that
∑∞

n=0 cn is not convergent.

I However, things are not that bad. We will revisit this and see
when can we assure that the Cauchy product of two series is
convergent.
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Tests for convergence of series

I nth term test–already seen.

I Theorem 4. Let
∑∞

n=1 an be a series of non-negative real
numbers. Then it is convergent if and only if its sequence of
partial sums {sn}n∈N is bounded above. In this case

∞∑
n=1

an = sup{sn : n ∈ N}.

Proof: Exercise
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I Theorem 5 (Comparison test). Let {an}n∈N and {bn}n∈N be
real sequences, and suppose that there exists N ∈ N such that

0 ≤ an ≤ bn, ∀n ≥ N.

(i) If
∑∞

n=1 bn is convergent, then so is
∑∞

n=1 an.
(ii) If

∑∞
n=1 an is divergent, then so is

∑∞
n=1 bn.

Proof: (i) Let ε > 0 be arbitrary. Since
∑∞

n=1 bn is
convergent, by Cauchy criterion, for the ε there exists K ∈ N
such that

|bn+1 + bn+2 + · · ·+ bm| < ε, ∀m > n ≥ K .

Then

0 ≤ an+1+an+2+· · ·+am ≤ bn+1+bn+2+· · ·+bm < ε, ∀m > n ≥ M,

where M := max{N,K}. Since ε > 0 is arbitrary, again by
Cauchy criterion, it follows that

∑∞
n=1 an is convergent.

(ii) Follows from (i). �
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I Example 6. Test the convergence of the series
∑∞

n=1
1

n(n+1) .

The series is convergent by result (i) of the comparison test.
In fact, we have

0 ≤ 1

n(n + 1)
≤ 1

n2
, ∀n ≥ 1

and
∑∞

n=1
1
n2

is convergent.

Alternative proof: Let {sn}n∈N be the sequence of partial
sums of

∑∞
n=1

1
n(n+1) . Then

sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
= 1− 1

n + 1
, ∀n ∈ N.

=⇒ lim
n→∞

sn = 1.

Therefore
∑∞

n=1
1

n(n+1) = 1
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I Exercise: A series
∑∞

k=1 bn is said to be a telescoping series if
there exists a sequence {an}n∈N such that bn = an+1 − an for
all n ∈ N. Show that

∑∞
n=1 bn is convergent if and only if

lim
n→∞

an exists. In such a case, find the sum.

I Example 7. Consider the series
∑∞

n=1
1
n! .

The series is convergent by result (i) of the comparison test.
In fact, we have

0 ≤ 1

n!
≤ 1

n2
, ∀n ≥ 4

and
∑∞

n=1
1
n2

is convergent.

Note: It can be proved that
∑∞

n=1
1
n! = e (Euler number).

I Exercise: Test the convergence of the series
∑∞

n=1
1√
n

.
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I Theorem 6 (Limit comparison test): Let {an}n∈N and
{bn}n∈N be strictly positive sequences.
(i) If lim

n→∞
an
bn

= c and c > 0, then
∑∞

n=1 bn is convergent if

and only if
∑∞

n=1 an is convergent.

(ii) If lim
n→∞

an
bn

= 0 and
∑∞

n=1 bn is convergent, then
∑∞

n=1 an

is convergent.
(iii) If lim

n→∞
an
bn

=∞ and
∑∞

n=1 bn is divergent, then
∑∞

n=1 an

is divergent.

Proof: (i) Since c > 0, there exists K ∈ N such that∣∣∣∣anbn − c

∣∣∣∣ < c

2
, ∀n ≥ K .

=⇒ −c

2
<

an
bn
− c <

c

2
, ∀n ≥ K .

=⇒
(c

2

)
bn < an <

(
3c

2

)
bn, ∀n ≥ K .

Therefore, by comparison test, the result follows.
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(ii) There exists K ∈ N such that

0 <
an
bn

< 1, ∀n ≥ K .

=⇒ 0 < an < bn, ∀n ≥ K .

Therefore, again by comparison test, the result follows.
(iii) Similar �

Example 8. Test the convergence of the following series.
(i)

∑∞
n=1

2n+1
n2+2n+1

(ii)
∑∞

n=1
1

2n−1

Solution: (i) Let an = 2n+1
n2+2n+1

and bn = 1
n for all n ∈ N. Then

lim
n→∞

an
bn

= lim
n→∞

2n2 + n

n2 + 2n + 1
= 2.

Since
∑∞

n=1 bn is divergent, by result (i) of Limit comparison test,
it follows that

∑∞
n=1 an is divergent.(ii) Exercise. (Hint: Compare

with { 1
2n }n∈N).
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Infinite Series L2. Recall

I Definition. Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.

I Theorem (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that |an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .
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I Theorem (nth term test). If a series
∑∞

n=1 an converges, then
lim
n→∞

an = 0.

I Theorem. A series
∑∞

n=1 an of non-negative reals is
convergent if and only if its sequence of partial sums {sn}n∈N
is bounded above. In this case

∑∞
n=1 an = sup{sn : n ∈ N}.

I Theorem (Comparison test). Let {an}n∈N and {bn}n∈N be
real sequences, and suppose that there exists N ∈ N such that

0 ≤ an ≤ bn, ∀n ≥ N.

(i) If
∑∞

n=1 bn is convergent, then so is
∑∞

n=1 an.
(ii) If

∑∞
n=1 an is divergent, then so is

∑∞
n=1 bn.

I Theorem 6 (Limit comparison test): Let {an}n∈N and
{bn}n∈N be strictly positive sequences.
(i) If lim

n→∞
an
bn

= c and c > 0, then
∑∞

n=1 bn is convergent if

and only if
∑∞

n=1 an is convergent.
(ii) If lim

n→∞
an
bn

= 0 and
∑∞

n=1 bn is convergent, then
∑∞

n=1 an

is convergent.
(iii) If lim

n→∞
an
bn

=∞ and
∑∞

n=1 bn is divergent, then
∑∞

n=1 an

is divergent.
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Absolute and Conditional convergence

I We have seen that
∑∞

n=1
(−1)n+1

n is convergent whereas∑∞
n=1

1
n is divergent.

I Thus, a series
∑∞

n=1 an may be convergent, but the series∑∞
n=1 |an| obtained by taking the absolute values of the terms

may be divergent.

I This observation leads to the following definition.
I Definition. Let {an}n∈N be a sequence of real numbers. We

say that
∑∞

n=1 an is
(i) absolutely convergent if

∑∞
n=1 |an| is convergent;

(ii) conditionally convergent if it is convergent, but not absolutely
convergent.

I Examples:

(i)
∑∞

n=1
(−1)n+1

n2 is absolutely convergent.

(ii)
∑∞

n=1
(−1)n+1

n is conditionally convergent.

(iii)
∑∞

n=1(−1)n+1 is neither absolutely convergent nor
conditionally convergent.
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I Immediate observation: A series of non-negative reals is
convergent if and only if it is absolutely convergent.

I Theorem. Every absolutely convergent series is convergent.

Proof: Let
∑∞

n=1 an be absolutely convergent.
Them, by definition,

∑∞
n=1 |an| is convergent.

To prove the convergence of
∑∞

n=1 an, we make use of Cauchy
criterion.
Let ε > 0 be given.
Since

∑∞
n=1 |an| is convergent, by Cauchy criterion, there

exists K ∈ N such that

||an+1|+ |an+2|+ · · ·+ |am|| < ε, ∀m > n ≥ K .

Then for all m > n ≤ K , we have

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|
= ||an+1|+ |an+2|+ · · ·+ |am|| < ε.

Since ε > 0 is arbitrary, Cauchy criterion implies that
∑∞

n=1 an
is convergent. �
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n=1 an, we make use of Cauchy
criterion.
Let ε > 0 be given.
Since

∑∞
n=1 |an| is convergent, by Cauchy criterion, there

exists K ∈ N such that

||an+1|+ |an+2|+ · · ·+ |am|| < ε, ∀m > n ≥ K .

Then for all m > n ≤ K , we have

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|

= ||an+1|+ |an+2|+ · · ·+ |am|| < ε.

Since ε > 0 is arbitrary, Cauchy criterion implies that
∑∞

n=1 an
is convergent. �
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Tests for absolute convergence

I Theorem (Cauchy’s Root Test). Let {an}n∈N be a real
sequence.

(i) If there exist r ∈ R with r < 1 and K ∈ N such that

|an|
1
n ≤ r , ∀n ≥ K , (1)

then the series
∑∞

n=1 an is absolutely convergent.

(ii) If there exists K ∈ N such that

|an|
1
n ≥ 1, ∀n ≥ K , (2)

then the series
∑∞

n=1 an is divergent.

Proof: (i) Since (1) holds, we have |an| ≤ rn, ∀n ≥ K .
Now, since r < 1, the geometric series

∑∞
n=1 r

n is convergent.
Therefore, by comparison test, the series

∑∞
n=1 |an| is

convergent.
(ii) Since (2) holds, we have |an| ≥ 1n = 1, ∀n ≥ K .
This implies that an 9 0 as n→∞.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �
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I Corollary (Cauchy’s Root Test–another version).
Let {an}n∈N be a real sequence and suppose that

r := lim
n→∞

|an|
1
n (3)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.

(ii) If r > 1, then the series
∑∞

n=1 an is divergent.

Proof: (i) Since r < 1, we can choose s ∈ R such that
r < s < 1.
Since (8) holds, there exists K ∈ N such that∣∣∣|an| 1n − r

∣∣∣ < s − r , ∀n ≥ K .

=⇒ |an|
1
n − r < s − r , ∀n ≥ K .

=⇒ |an|
1
n < s, ∀n ≥ K .

Since s < 1, by (i) of the previous theorem, it follows that∑∞
n=1 an is absolutely convergent.
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(ii) Since r > 1, we can choose s ∈ R such that r > s > 1.

Since (8) holds, there exists K ∈ N such that∣∣∣|an| 1n − r
∣∣∣ < r − s, ∀n ≥ K .

=⇒ −(r − s) < |an|
1
n − r , ∀n ≥ K .

=⇒ s < |an|
1
n , ∀n ≥ K .

Since s > 1, by (ii) of the previous theorem, we get that
∑∞

n=1 an
is divergent. �
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I Example: Test the absolute convergence of the following
series.
(i)

∑∞
n=1

n2

2n (ii)
∑∞

n=1
(−3)n
n2021

Solution: (i)
∑∞

n=1
n2

2n converges absolutely by root test,

because n

√
n2

2n =
n√
n2

n√2n = ( n√n)2
2 → 12

2 = 1
2 < 1.

(ii)
∑∞

n=1
(−3)n
n2021

is divergent by root test, because

n

√∣∣∣ (−3)nn2021

∣∣∣ = n

√
3n

n2021
=

n√3n
n√
n2021

= 3
( n√n)2021 →

3
12021

= 3 > 1.

I Remark: The test is inconclusive if r = 1.

For
∑∞

n=1
1
n : n

√
1
n = 1

n√n →
1
1 = 1

For
∑∞

n=1
1
n2

: n

√
1
n2

= 1
n√
n2

= 1
( n√n)2 →

1
12

= 1
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I Theorem (D’Alembert Ratio Test). Let {an}n∈N be a
sequence of nonzero real numbers.

(i) If there exist r ∈ R with 0 < r < 1 and K ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ ≤ r , ∀n ≥ K , (4)

then the series
∑∞

n=1 an is absolutely convergent.

(ii) If there exists K ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ ≥ 1, ∀n ≥ K , (5)

then the series
∑∞

n=1 an is divergent.

Proof: (i) Since (4) holds, we have |an+1| ≤ r |an|, ∀n ≥ K .

=⇒ |an+K | ≤ |aK |rn =
|aK |
rK

rn+K , ∀n ∈ N.

=⇒ |an| ≤
|aK |
rK

rn, ∀n ≥ K + 1.

Now, since r < 1, the geometric series
∑∞

n=1 r
n is convergent.

This implies that the series
∑∞

n=1
|aK |
rK

rn is convergent.
Therefore, by comparison test,

∑∞
n=1 |an| is convergent.
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I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.
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I Example: Test the absolute convergence of the following
series.
(i)

∑∞
n=1

2n+7
5n (ii)

∑∞
n=1

(2n)!
(n!)2

Solution: (i)
∑∞

n=1
2n+7
5n converges absolutely by ratio test,

because

2n+1+7
5n+1

2n+7
5n

=
1

5
· 2n+1 + 7

2n + 7
=

1

5
·

2 + 7
2n

1 + 7
2n
→ 1

5
· 2

1
=

2

5
< 1.

(ii)
∑∞

n=1
(2n)!
(n!)2

is divergent by ratio test, because

(2n+2)!
(n+1)!(n+1)!

(2n)!
n!n!

=
(2n + 2)(2n + 1)

(n + 1)(n + 1)
=

4n + 2

n + 1
=

4 + 2
n

1 + 1
n

→ 4 > 1.

I Remark: The test is inconclusive if r = 1.

For
∑∞

n=1
1
n :

1
n+1
1
n

= n
n+1 → 1

For
∑∞

n=1
1
n2

:
1

(n+1)2

1
n2

=
(

n
n+1

)2 → 12 = 1
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Recall

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.

Example.
Consider the series

∑∞
n=0 an and

∑∞
n=0 bn, where

an = bn =
(−1)n√
n + 1

, ∀n ∈ N ∪ {0}.

Then their Cauchy product is not convergent.
I Observe that both

∑∞
n=0 an and

∑∞
n=0 bn are not absolutely

convergent.
I Question: Can we have a similar example where one of the

series is absolutely convergent?
I The answer is NO, as seen from the next result.
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Convergence of Cauchy product

I Theorem (Mertens’ Theorem). Let
∑∞

n=0 an be absolutely
convergent and

∑∞
n=0 bn be convergent. If

∑∞
n=0 an = a and∑∞

n=0 bn = b, then their Cauchy product
∑∞

n=0 cn is
convergent and

∑∞
n=0 cn = ab.

Proof: Let {sn}n∈N, {tn}n∈N and {un}n∈N be the sequence of
partial sums of

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn, respectively.

Then for all n ∈ N ∪ {0}, we have

un = c0 + c1 + · · ·+ cn

= (a0b0) + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0(b0 + · · ·+ bn) + a1(b0 + · · ·+ bn−1) + · · ·+ anb0

= a0tn + a1tn−1 + · · ·+ ant0

= a0tn + a1tn−1 + · · ·+ ant0 −

(
n∑

k=0

ak

)
b + snb

= a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb,
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i.e.,

cn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb

= vn + snb, (7)

where vn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) for all
n ∈ N ∪ {0}.

Now, since lim
n→∞

snb = ab, in view of (8), to prove that

lim
n→∞

cn = ab, it suffices to prove that lim
n→∞

vn = 0.

Proof of the claim that lim
n→∞

vn = 0: Let ε > 0 be arbitrary.

Since lim
n→∞

(tn − b) = 0, there exists K1 ∈ N such that

|tn − b| < ε, ∀n ≥ K1.

Since {tn − b}n∈N∪{0} is bounded, there exists M > 0 such that

|tn − b| ≤ M, ∀n ∈ N.
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Since
∑∞

n=1 an is absolutely convergent, say
∑∞

n=1 |an| = α,by
Cauchy criterion there exists K2 ∈ N such that

|an+1|+ |an+2|+ · · · |am| < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}. Then for all n ≥ 2K , we have

|vn| = |a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b)|
≤ |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an||t0 − b|
= |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an−K ||tn+K − b|

+ |an−K+1||tn+K−1 − b|+ · · ·+ |an||t0 − b|
≤ (|a0|+ |a1|+ · · ·+ |an−K |)ε

+ (|an−K+1|+ · · ·+ |an|)M
≤ αε+ εM

= (α + M)ε.

Since ε > 0 is arbitrary, it follows that lim
n→∞

vn = 0. This completes

the proof.
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Recall

I Definition. Let {an}n∈N be a sequence of real numbers. We
say that

∑∞
n=1 an is

(i) absolutely convergent if
∑∞

n=1 |an| is convergent;
(ii) conditionally convergent if it is convergent, but not absolutely

convergent.

I Theorem. Every absolutely convergent series is convergent.

I Theorem (Cauchy’s Root Test).
Let {an}n∈N be a real sequence and suppose that

r := lim
n→∞

|an|
1
n

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.
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I Theorem (D’Alembert Ratio Test).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.
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suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.



I Theorem (D’Alembert Ratio Test).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.



Infinite Series L3. Convergence of Cauchy product

I Theorem (Mertens’ Theorem). Let
∑∞

n=0 an be absolutely
convergent and

∑∞
n=0 bn be convergent. If

∑∞
n=0 an = a and∑∞

n=0 bn = b, then their Cauchy product
∑∞

n=0 cn is
convergent and

∑∞
n=0 cn = ab.

Proof: Let {sn}n∈N, {tn}n∈N and {un}n∈N be the sequence of
partial sums of

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn, respectively.

Then for all n ∈ N ∪ {0}, we have

un = c0 + c1 + · · ·+ cn

= (a0b0) + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0(b0 + · · ·+ bn) + a1(b0 + · · ·+ bn−1) + · · ·+ anb0

= a0tn + a1tn−1 + · · ·+ ant0

= a0tn + a1tn−1 + · · ·+ ant0 −

(
n∑

k=0

ak

)
b + snb

= a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb,
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i.e.,

cn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb

= vn + snb, (8)

where vn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) for all
n ∈ N ∪ {0}.

Now, since lim
n→∞

snb = ab, in view of (8), to prove that

lim
n→∞

cn = ab, it suffices to prove that lim
n→∞

vn = 0.

Proof of the claim that lim
n→∞

vn = 0: Let ε > 0 be arbitrary.

Since lim
n→∞

(tn − b) = 0, there exists K1 ∈ N such that

|tn − b| < ε, ∀n ≥ K1.

Since {tn − b}n∈N∪{0} is bounded, there exists M > 0 such that

|tn − b| ≤ M, ∀n ∈ N.
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Since
∑∞

n=1 an is absolutely convergent, say
∑∞

n=1 |an| = α,by
Cauchy criterion there exists K2 ∈ N such that

|an+1|+ |an+2|+ · · · |am| < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}. Then for all n ≥ 2K , we have

|vn| = |a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b)|
≤ |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an||t0 − b|
= |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an−K ||tn+K − b|

+ |an−K+1||tn+K−1 − b|+ · · ·+ |an||t0 − b|
≤ (|a0|+ |a1|+ · · ·+ |an−K |)ε

+ (|an−K+1|+ · · ·+ |an|)M
≤ αε+ εM

= (α + M)ε.

Since ε > 0 is arbitrary, it follows that lim
n→∞

vn = 0. This completes

the proof.
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Tests for conditional convergence

I Definition. A sequence {an}n∈N of non-negative real numbers
is said to be alternating if (−1)n+1an is non-negative for all
n ∈ N.

If {an}n∈N is an alternating sequence, then the series
∑∞

n=1 an
generated by it is called an alternating series.

I Theorem (Alternating Series Test). Let {an}n∈N be a
decreasing sequence of positive reals such that lim

n→∞
an = 0.

Then the alternating series
∑∞

n=1(−1)n+1an is convergent.
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I Theorem (Dirichlet’s Test). Let {an}n∈N be a decreasing
sequence of reals with lim

n→∞
an = 0 and let the sequence of

partial sums {sn}n∈N of
∑∞

n=1 bn be bounded. Then the series∑∞
n=1 anbn is convergent.

Proof: First, we prove a lemma.

Abel’s Lemma. Let {an}n∈N be a sequence of reals and
{sn}n∈N be the sequence of partial sums of

∑∞
n=1 bn with

s0 := 0. If m > n, then

m∑
k=n+1

akbk = (amsm − an+1sn) +
m−1∑

k=n+1

(ak − ak+1)sk . (9)

Proof of the lemma:
m∑

k=n+1

akbk =
m∑

k=n+1

ak(sk − sk−1)

= −an+1sn +
m−1∑

k=n+1

(ak − ak+1)sk + amsm = RHS of (9)
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Proof of the theorem: Let ε > 0 be given.

Since {sn}n∈N is
bounded, there exists M > 0 such that |sn| ≤ M, ∀n ∈ N.
By Abel’s lemma, for m > n we have∣∣∣∣∣

m∑
k=n+1

akbk

∣∣∣∣∣ =

∣∣∣∣∣(amsm − an+1sn) +
m−1∑

k=n+1

(ak − ak+1)sk

∣∣∣∣∣
≤ |am||sm|+ |an+1||sn|+

m−1∑
k=n+1

|ak − ak+1||sk |

≤ (am + an+1)M +
m−1∑

k=n+1

(ak − ak+1)M

= {(am + an+1) + (an+1 − am)}M = 2an+1M (10)

Since lim
n→∞

an = 0, there exists K ∈ N such that

|an| < ε
2M , ∀n ≥ K .

Therefore, by (10) we have |
∑m

k=n+1 akbk | < ε, ∀m > n ≥ K .
Since ε > 0 is arbitrary, by Cauchy criterion, it follows that∑∞

n=1 anbn is convergent. �
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Theorem (Abel’s Test). Let {an}n∈N be a convergent monotone
sequence and let the series

∑∞
n=1 bn be convergent. Then the

series
∑∞

n=1 anbn is convergent.

Proof:

Case (i): Let {an}n∈N be decreasing with limit a.
Set un = an − a, ∀n ∈ N.
Then

anbn = (un + a)bn = unbn + abn, ∀n ∈ N (11)

Now, {un}n∈N is decreasing with limit 0 and the sequence of
partial sums of

∑∞
n=1 bn. is bounded.

Therefore, by Dirichlet’s test, the series
∑∞

n=1 unbn is convergent.
This implies by (11) that the series

∑∞
n=1 anbn is convergent,

because by hypothesis
∑∞

n=1 bn is convergent.
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Case (ii): Let {an}n∈N be increasing with limit a.

Set un = a− an, ∀n ∈ N.
Then {un}n∈N is decreasing with limit 0 and

anbn = (a− un)bn = abn − unbn, ∀n ∈ N.

Therefore, by an argument similar to above, it follows that the
series

∑∞
n=1 anbn is convergent. �

Examples.

(i)
∑∞

n=1
1
n sin

(
nπ
2

)
is convergent by Dirichlet’s test.

(ii)
∑∞

n=1
(−1)n+1

n
√
n

is convergent by Abel’s test.
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Grouping of series

I Given a series
∑∞

n=1 an, we can construct many other series∑∞
n=1 bn by leaving the order of the terms an fixed, but

inserting parentheses that group together finite number of
terms.

I For example, the series

1− 1

22
+

(
1

32
− 1

42

)
+

(
1

52
− 1

62
+

1

72

)
− 1

82
+ · · ·

is obtained by grouping the terms in the series
∑∞

n=1
(−1)n+1

n2
.

I It is an interesting fact that such grouping does not affect the
convergence or the sum of a convergent series.

I More precisely,
Theorem. If a series

∑∞
n=1 an is convergent, then any series

obtained from it by grouping the terms also converges to the
same value.
Proof: Exercise
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Rearrangements of series

I Consider the alternating harmonic series
∑∞

n=1
(−1)n+1

n .

I We know that it is convergent, say to a sum s (In fact
s = ln(2)).

I Rearrange the above series in such a way that two negative
terms follow a positive term:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·+ 1

2n − 1
− 1

4n − 2
− 1

4n
+ · · ·

I Let sn be the nth partial sum of the original series and tn be
the nth partial sum of this rearranged series.

I Then

t3n =

(
1− 1

2
− 1

4

)
+ · · ·+

(
1

2n − 1
− 1

4n − 2
− 1

4n

)
+ · · ·

=

(
1

2
− 1

4

)
+ · · ·+

(
1

4n − 2
− 1

4n

)
+ · · ·

=
s2n
2
→ s

2
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I

t3n+1 = t3n +
1

2n + 1
=

s2n
2

+
1

2n + 1
→ s

2

t3n+2 = t3n +
1

2n + 1
− 1

4n + 2
=

s2n
2

+
1

2n + 1
+

1

4n + 2
→ s

2

I Therefore lim
n→∞

tn = s
2 .

I Thus the rearranged series may converge to a sum different
from that of the given series.

I Definition. A series
∑∞

n=1 bn is said to be a rearrangement of
a series

∑∞
n=1 an if there is a bijection f of N onto N such

that bk = af (k) for all k ∈ N.
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Infinite Series L4. Rearrangements of series
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that bk = af (k) for all k ∈ N.
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I Thus the rearranged series may converge to a sum different
from that of the given series.

I However, things are not that bad when we deal with
absolutely convergent series.
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I Theorem (Rearrangement theorem). If
∑∞

n=1 an is absolutely
convergent, then any rearrangement

∑∞
n=1 bn of

∑∞
n=1 an

converges to the same value.

Proof: Let {sn}n∈N be the sequence of partial sums of∑∞
n=1 an and let

∑∞
n=1 an = a.

Let {tn}n∈N be the sequence of partial sums of
∑∞

n=1 bn
Claim: lim

n→∞
tn = a.

Let ε > 0 be arbitrary.
Since lim

n→∞
sn = a, there exists K1 ∈ N such that

|sn − a| < ε, ∀n ≥ K1.

Since
∑∞

n=1 |an| is convergent, by Cauchy criterion, there
exists K2 ∈ N such that

m∑
k=n+1

|ak | < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}.
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Then K ∈ N such that

|sn − a| < ε and
m∑

k=K+1

|ak | < ε for all n,m > K .

Choose M ∈ N such that all of the terms a1, a2, . . . , aK are
contained as summands in tM .
Then it follows that if l ≥ M, then tl − sK+1 is the sum of a finite
number of terms ak with index k > K .
Hence, for some m > K , we have

|tl − sK+1| ≤
m∑

k=K+1

|ak | < ε.

Therefore, if l ≥ M, we have

|tl − a| ≤ |tl − sK+1|+ |sK+1 − a| < ε+ ε = 2ε.

Since ε > 0 is arbitrary, we conclude that lim
n→∞

tn = a. �.
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I The next theorem is in contrast with the Rearrangement
theorem and it says something very dramatic and surprising.

I Theorem (Riemann’s theorem). A conditionally convergent
series can be made to converge to any arbitrary real number or
even made to diverge by a suitable rearrangement of its terms.

I Thus there are rearrangements of
∑∞

n=1
(−1)n+1

n which

converge to 1√
2

, 3
√

5, and so on.

I This theorem should convince us of the danger of
manipulating an infinite series without any attention to
rigorous analysis.

I To prove this theorem, we need the notions of positive and
negative parts of a series.
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I Given a series
∑∞

n=1 an, let

a+n := max{an, 0} and a−n := −min{an, 0}.

I We call the series
∑∞

n=1 a
+
n as the series of positive terms of∑∞

n=1 an. Similarly, we call series
∑∞

n=1 a
−
n as the series of

negative terms of
∑∞

n=1 an.

I Note that all the terms of both these series are non-negative.

I For example, if an = (−1)n+1

n , then

∞∑
n=1

a+n = 1 + 0 +
1

3
+ 0 +

1

5
+ · · ·

and
∞∑
n=1

a−n = 0 +
1

2
+ 0 +

1

4
+ 0 + · · ·
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I Proposition. If
∑∞

n=1 an is conditionally convergent, then∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n are both divergent.

Proof: Let {sn}n∈N, {tn}n∈N, {u+n }n∈N and {u−n }n∈N be the
sequence of partial sums of

∑∞
n=1 an,

∑∞
n=1 |an|,

∑∞
n=1 a

+
n

and
∑∞

n=1 a
−
n , respectively.

Note that u+n is the sum of non-negative terms in sn and −u−n
is the sum of the negative terms in sn for all n ∈ N.

Therefore we have

tn =
n∑

k=1

|ak | = u+n + u−n and sn = u+n − u−n for all n ∈ N

Let lim
n→∞

sn = s.

Observe that both {u+n }n∈N and {u−n }n∈N are increasing.

By hypothesis
∑∞

n=1 |an| is divergent, which implies that
lim
n→∞

tn =∞.
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I Sketch of the proof of Riemann’s theorem:
I Let

∑∞
n=1 an be a conditionally convergent series and let c ∈ R

be fixed.

I Then both
∑∞

n=1 a
+
n and

∑∞
n=1 a

−
n diverges to infinity.

I Choose the least K1 ∈ N such that
∑K1

n=1 a
+
n exceeds c .

I Then subtract just enough terms from {a−n } so that the
resulting sums is less than c .

I And, so on.
I These steps are possible since both

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n

diverges to infinity.
I Obviously, we obtain a rearrangement of

∑∞
n=1 an.

I Exploit the fact that an → 0 to estimate at each step how
much the sum differ from c .

I It follows that the sequence of partial sums of the rearranged
series converges to c .

I Reference: Theorem 3.54 in [Walter Rudin, Principles of
Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis,
Addison-Wesley Publishing Company, Inc., 1974]
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Infinite products

I Similar to
∑∞

n=1 an, it is natural to ask: What is the meaning
of
∏∞

n=1 an when {an}n∈N is a real sequence?

I Definition. Let {an}n∈N be a sequence of real numbers.
An expression of the form

∏∞
n=1 an is called an infinite

product.
For each n ∈ N, the finite product pn =

∏n
k=1 ak is called the

nth partial product of
∏∞

n=1 an.
For each n ∈ N, the number an is called the nth factor of∏∞

n=1 an.
The symbol

∏∞
n=N+1 an means

∏∞
n=1 aN+n.

I By analogy with infinite series, it seems natural to call the
product

∏∞
n=1 an converges if {pn}n∈N converges.

I However, this definition is inconvenient since every product
having one factor zero would converge regardless of the
behavior of the other factors.
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I Note that value of a convergent infinite product can be zero.
But this happen if and only if a finite number of factors are
zero.

I The convergence of an infinite product is not affected by
inserting or removing a finite number of factors, zero or not.

I This fact makes the above definition very convenient.

I Theorem (Cauchy criterion). The infinite product
∏∞

n=1 an is
convergent if and only if for every ε > 0, there exists an
N ∈ N such that

|an+1an+2 · · · am − 1| < ε, ∀m > n ≥ N.

I Theorem. If
∏∞

n=1 an is convergent, then lim
n→∞

an = 1.

I For this reason, the factors of a product are written as 1 + an
instead of just an. Thus, if

∏∞
n=1(1 + an) is convergent, then

lim
n→∞

an = 0.
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I Theorem. Let an > 0 for all n ∈ N. Then
∏∞

n=1(1 + an) is
convergent if and only if

∑∞
n=1 an is convergent.

I Definition. The product
∏∞

n=1(1 + an) is said to be absolutely
convergent if

∏∞
n=1(1 + |an|) is convergent.

I Theorem. If
∏∞

n=1(1 + an) is absolutely convergent, then it is
convergent.

I Theorem. The product
∏∞

n=1(1 + an) is absolutely convergent
if and only if

∑∞
n=1 an is absolutely convergent.

I Reference: pp. 206-209 of [Tom M. Apostol, Mathematical
Analysis, Addison-Wesley Publishing Company, Inc., 1974]
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