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Infinite Series

I We know that finite sums
∑n

k=1 ak = a1 + a2 + · · ·+ an of real
numbers are well-defined due to the associativity of addition.

I Now, it is natural to ask: What is the meaning of
∑∞

n=1 an
when {an}n∈N is a real sequence?

I For example, consider
∑∞

n=1 an with an = (−1)n+1,∀n ∈ N,

i.e., consider the sum 1− 1 + 1− 1 + · · · .

I

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + · · ·
= 0 + 0 + · · · = 0

1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + · · · = 1

I This absurdity shows that we should give a ‘sensible meaning’
to
∑∞

n=1 an.
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Convergence and Sum of an infinite series

I Definition 1: Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.



Convergence and Sum of an infinite series

I Definition 1: Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.



Convergence and Sum of an infinite series

I Definition 1: Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.



Convergence and Sum of an infinite series

I Definition 1: Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.



Examples

I Example 1. Consider the infinite series
∑∞

n=1 an, where
an = c ,∀n ∈ N.

Then
∑∞

n=1 an is convergent ⇐⇒ c = 0.

(In fact, {sn}n∈N = {nc}n∈N is convergent ⇐⇒ c = 0)

I Example 2 (Geometric series).

1 + r + r2 + · · · =
1

1− r
for |r | < 1.

(In fact, sn = 1 + r + r2 + · · ·+ rn−1 = 1−rn
1−r →

1
1−r for

|r | < 1)

I Example 3 (Harmonic series).

∞∑
n=1

1

n
is divergent, as

{
n∑

k=1

1

k

}
n∈N

is not bounded above.
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I Example 4.
The infinite series

∑∞
n=1

1
n2

is convergent.

Proof: Let {sn}n∈N be the sequence of partial sums of∑∞
n=1

1
n2

. Look at the subsequence {s2n−1}n∈N.

s21−1 = 1

s22−1 = 1 +

(
1

22
+

1

32

)
≤ 1 +

(
2

22

)
= 1 +

1

2

s23−1 = 1 +

(
1

22
+

1

32

)
+

(
1

42
+

1

52
+

1

62
+

1

72

)
≤ 1 +

1

2
+

(
4

42

)
= 1 +

1

2
+

(
1

2

)2

...

s2n−1 ≤ 1 +
1

2
+

(
1

2

)2

+ · · ·+
(

1

2

)n−1
=: tn, ∀n ∈ N,

where {tn}n∈N is the sequence of partial sums of
∑∞

n=1(12)n−1.
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=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



=⇒ s2n−1 ≤ tn ≤ 2, ∀n ∈ N.

=⇒ sn ≤ 2, ∀n ∈ N (why?).

Therefore {sn}n∈N is convergent, being an increasing sequence.

Hence
∑∞

n=1
1
n2

is convergent. �

I Note: In fact, it can be proved that
∑∞

n=1
1
n2

= π2

6 (see Basel
problem).

I Exercise: Prove that the infinite series
∑∞

n=1
1
np is convergent

for all p ∈ N \ {1}.

I Theorem 1 (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that

|an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .

I Theorem 2 (nth term test). If a series
∑∞

n=1 an converges,
then lim

n→∞
an = 0.



Algebra of convergent series

Theorem 3. Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series with
sums x and y , respectively. Then

(i)
∑∞

n=1(an + bn) = x + y ;

(ii)
∑∞

n=1(can) = cx for all c ∈ R.

Sketch of the proof:

(i) Let {sn}n∈N and {tn}n∈N be the sequence of partial sums of∑∞
n=1 an and

∑∞
n=1 bn, respectively.

Similarly, let {un}n∈N be the sequence of partial sums of∑∞
n=1(an + bn).

Then

un =
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk = sn + tn → x + y as n→∞.

(ii) Similar �
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Cauchy product

I Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

I Recall that given two convergent sequences {an}n∈N and
{ab}n∈N, we defined their product as the sequence {anbn}n∈N
and the product converges to the product
( lim
n→∞

an) · ( lim
n→∞

bn).

I So, given two series
∑∞

n=1 an and
∑∞

n=1 bn, one may think of
defining their product as

∑∞
n=1 cn, where cn = anbn.

I But, this is not a good definition.

I In fact, even for n = 2, the equality
(a1 + a2)(b1 + b2) = a1b1 + a2b2 is not true in general.

I Recall that we have used distributivity while computing
(a1 + a2)(b1 + b2)

I Indeed (a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2
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I Can we use distributivity for an infinite sum?

I If we look at two polynomials

P(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n

and
Q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then their product is a polynomial

c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,
and in general

cn = a0bn+a1nn−1+a2bn−2+· · ·+an−1b1+anb0 =
n∑

k=0

akbn−k .

I This suggests the following definition.



I Can we use distributivity for an infinite sum?

I If we look at two polynomials

P(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n

and
Q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then their product is a polynomial

c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,
and in general

cn = a0bn+a1nn−1+a2bn−2+· · ·+an−1b1+anb0 =
n∑

k=0

akbn−k .

I This suggests the following definition.



I Can we use distributivity for an infinite sum?

I If we look at two polynomials

P(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n

and
Q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then their product is a polynomial

c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,
and in general

cn = a0bn+a1nn−1+a2bn−2+· · ·+an−1b1+anb0 =
n∑

k=0

akbn−k .

I This suggests the following definition.



I Definition 2. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark: In spite of this intuitive idea, in general, the Cauchy
product of two convergent series need not be convergent.

Example 5.
Consider the series

∑∞
n=0 an and

∑∞
n=0 bn, where

an = bn =
(−1)n√
n + 1

, ∀n ∈ N ∪ {0}.

Then
∑∞

n=0 an and
∑∞

n=0 bn are convergent by the following
result.
(Result: The series

∑∞
n=1(−1)n+1an, where {an}n∈N is a

decreasing sequence of positive reals, is convergent if and only
if lim

n→∞
an = 0.)
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Claim: Their Cauchy product
∑∞

n=0 cn is divergent.

We have

cn =
n∑

k=0

akbn−k = (−1)n
n∑

k=0

1√
(k + 1)(n − k + 1)

.

For 0 ≤ k ≤ n,

(k + 1)(n − k + 1) =
(n

2
+ 1
)2
−
(n

2
− k
)2
≤
(n

2
+ 1
)2
.

=⇒ 1√
(k + 1)(n − k + 1)

≥ 2

n + 2
, for all 0 ≤ k ≤ n

=⇒ |cn| =
n∑

k=0

1√
(k + 1)(n − k + 1)

≥ 2(n + 1)

n + 2
=

2(1 + 1
n )

1 + 2
n

→ 2.

Therefore, it follows that
∑∞

n=0 cn is not convergent.

I However, things are not that bad. We will revisit this and see
when can we assure that the Cauchy product of two series is
convergent.
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Tests for convergence of series

I nth term test–already seen.

I Theorem 4. Let
∑∞

n=1 an be a series of non-negative real
numbers. Then it is convergent if and only if its sequence of
partial sums {sn}n∈N is bounded above. In this case

∞∑
n=1

an = sup{sn : n ∈ N}.

Proof: Exercise
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I Theorem 5 (Comparison test). Let {an}n∈N and {bn}n∈N be
real sequences, and suppose that there exists N ∈ N such that

0 ≤ an ≤ bn, ∀n ≥ N.

(i) If
∑∞

n=1 bn is convergent, then so is
∑∞

n=1 an.
(ii) If

∑∞
n=1 an is divergent, then so is

∑∞
n=1 bn.

Proof: (i) Let ε > 0 be arbitrary. Since
∑∞

n=1 bn is
convergent, by Cauchy criterion, for the ε there exists K ∈ N
such that

|bn+1 + bn+2 + · · ·+ bm| < ε, ∀m > n ≥ K .

Then

0 ≤ an+1+an+2+· · ·+am ≤ bn+1+bn+2+· · ·+bm < ε, ∀m > n ≥ M,

where M := max{N,K}. Since ε > 0 is arbitrary, again by
Cauchy criterion, it follows that

∑∞
n=1 an is convergent.

(ii) Follows from (i). �
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I Example 6. Test the convergence of the series
∑∞

n=1
1

n(n+1) .

The series is convergent by result (i) of the comparison test.
In fact, we have

0 ≤ 1

n(n + 1)
≤ 1

n2
, ∀n ≥ 1

and
∑∞

n=1
1
n2

is convergent.

Alternative proof: Let {sn}n∈N be the sequence of partial
sums of

∑∞
n=1

1
n(n+1) . Then

sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
= 1− 1

n + 1
, ∀n ∈ N.

=⇒ lim
n→∞

sn = 1.

Therefore
∑∞

n=1
1

n(n+1) = 1
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I Exercise: A series
∑∞

k=1 bn is said to be a telescoping series if
there exists a sequence {an}n∈N such that bn = an+1 − an for
all n ∈ N. Show that

∑∞
n=1 bn is convergent if and only if

lim
n→∞

an exists. In such a case, find the sum.

I Example 7. Consider the series
∑∞

n=1
1
n! .

The series is convergent by result (i) of the comparison test.
In fact, we have

0 ≤ 1

n!
≤ 1

n2
, ∀n ≥ 4

and
∑∞

n=1
1
n2

is convergent.

Note: It can be proved that
∑∞

n=1
1
n! = e (Euler number).

I Exercise: Test the convergence of the series
∑∞

n=1
1√
n

.
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I Theorem 6 (Limit comparison test): Let {an}n∈N and
{bn}n∈N be strictly positive sequences.
(i) If lim

n→∞
an
bn

= c and c > 0, then
∑∞

n=1 bn is convergent if

and only if
∑∞

n=1 an is convergent.

(ii) If lim
n→∞

an
bn

= 0 and
∑∞

n=1 bn is convergent, then
∑∞

n=1 an

is convergent.
(iii) If lim

n→∞
an
bn

=∞ and
∑∞

n=1 bn is divergent, then
∑∞

n=1 an

is divergent.

Proof: (i) Since c > 0, there exists K ∈ N such that∣∣∣∣anbn − c

∣∣∣∣ < c

2
, ∀n ≥ K .

=⇒ −c

2
<

an
bn
− c <

c

2
, ∀n ≥ K .

=⇒
(c

2

)
bn < an <

(
3c

2

)
bn, ∀n ≥ K .

Therefore, by comparison test, the result follows.
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(ii) There exists K ∈ N such that

0 <
an
bn

< 1, ∀n ≥ K .

=⇒ 0 < an < bn, ∀n ≥ K .

Therefore, again by comparison test, the result follows.
(iii) Similar �

Example 8. Test the convergence of the following series.
(i)

∑∞
n=1

2n+1
n2+2n+1

(ii)
∑∞

n=1
1

2n−1

Solution: (i) Let an = 2n+1
n2+2n+1

and bn = 1
n for all n ∈ N. Then

lim
n→∞

an
bn

= lim
n→∞

2n2 + n

n2 + 2n + 1
= 2.

Since
∑∞

n=1 bn is divergent, by result (i) of Limit comparison test,
it follows that

∑∞
n=1 an is divergent.(ii) Exercise. (Hint: Compare

with { 1
2n }n∈N).
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Therefore, again by comparison test, the result follows.
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