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Infinite Series

» We know that finite sums >} _; ax = a1+ a» + - - -+ a, of real
numbers are well-defined due to the associativity of addition.

» Now, it is natural to ask: What is the meaning of Y77 a,
when {a,}nen is a real sequence?

» For example, consider >_°°, a, with a, = (—1)"*1,Vn e N,

i.e., consider thesum 1—-1+1—-1+---.

>
1-1+1—-1+4- = (1-1)+1-1)+---
= 0+0+---=0
1-141-1+4-+ = 14(-14+1)+(-141)+---
= 140+0+---=1

» This absurdity shows that we should give a ‘sensible meaning’
to > 2, an.
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» Definition 1: Let {a,}nen be a sequence of real numbers.
An expression of the form "7, a, is called an infinite series.

For each n € N, the finite sum s, = >_7_; ax is called the n'
partial sum of > "7, a,.

The infinite series Y > ; a, is said to be convergent if {s,}nen
is convergent.

In such a case, the limit s := lim s, is called the sum of the
n—oo

series, and we denote this fact by the symbol 77, a, = s.

The infinite series Y, a, is said to be divergent if {sp}nen
is divergent.
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Examples

» Example 1. Consider the infinite series Y~ ; a,, where
a,=c,VnéeN.

Then Y07 a, is convergent <= ¢ =0.
(In fact, {sp}nen = {nc}nen is convergent <= ¢ =0)

» Example 2 (Geometric series).

14r+rP4...=

17rfor]r|<1.

1—r"

‘(ITfac’c),sn:1+r+r2+..._|_,n1: 14_)%&”
rl <1

» Example 3 (Harmonic series).

[e.9]

1 "1
Z - is divergent, as {Z k} is not bounded above.
n=1 k=1 neN



> Example 4.
1

The infinite series ), =5 is convergent.



> Example 4.
1

The infinite series ), =5 is convergent.

Proof: Let {s,},en be the sequence of partial sums of

pIpeRy-2



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.

So1_1 = 1



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.

So1_1 = 1

1 1 2 1
Sp2_1 = 1+ ?4_? Sl—i‘ 27 :1+§



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.

So1_1 = 1

52271 = 1 + <

B 1 1 1 1
2 = Il tp)t gtetet s



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.

So1_1 = 1

52271 = 1 +

Sy3_1 = 1 + <
1
2



> Example 4.
The infinite series >7° | 1 is convergent.

Proof: Let {s,},en be the sequence of partial sums of
>0 7. Look at the subsequence {syn_1}nen.

So1_1 = 1

52271 = 1 +

Sy3_1 = 1 + <
1
2

IN
[ay
_|_

A

1 1 2 1 n—1
Son_1 < 1—|—+<> +"'+<> =t,, VnéeN,

where {t,} nen is the sequence of partial sums of >0 1 (3)" .
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= s 1<t <2, VneN.
= s, <2, VneN (why?).
Therefore {sp}nen is convergent, being an increasing sequence.

Hence 0%, & is convergent. O

1
2

2
_
5 = & (see Basel

» Note: In fact, it can be proved that ) 77,
problem).

> Exercise: Prove that the infinite series 37 ; L is convergent
for all p e N\ {1}.

» Theorem 1 (Cauchy criterion). An infinite series Y 7" ap is
convergent if and only if for every € > 0 there exists K € N
such that

lant1 + ang2 + -+ am| <€, Ym>n> K.

» Theorem 2 (nth term test). If a series Y °°, a, converges,
then lim a, =0.
n—o00
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Algebra of convergent series

Theorem 3. Let > 72, a, and Y 72 ; b, be convergent series with
sums x and y, respectively. Then

(i) 2on=1(an + bn) = x +y;
(it) >0 1(can) = cx for all c € R.
Sketch of the proof:
(i) Let {sp}nen and {t,}nen be the sequence of partial sums of
> 1 an and > 07 by, respectively.
Similarly, let {un}nen be the sequence of partial sums of
> ne1(an =+ bp).
Then

n

n n
Un:Z(ak‘i‘bk)Zzak+2bk:sn+tn—>x+yasn—>oo.

(i) Similar O
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Cauchy product

» Now it is natural to ask: Does the ‘product’ of two
convergent series is convergent?

» Recall that given two convergent sequences {a,}nen and
{ap}nen, we defined their product as the sequence {a,bn}nen
and the product converges to the product

(i, 2n) - (150, B
> So, given two series Y ", a, and > 7, by, one may think of
defining their product as 2211 ¢n, Where ¢, = a,bp,.
» But, this is not a good definition.
» In fact, even for n = 2, the equality
(31 + 32)(b1 + b2) = a;b1 + axbo is not true in general.
P Recall that we have used distributivity while computing
(a1 + a2)(b1 + b2)

» Indeed (81 + 32)(/31 + bg) = aib; + ai1by + axb; 4+ as by
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> If we look at two polynomials
P(X)=ap+arX + aX2+ -+ a,X"

and
Q(X) = bg+ b1 X + boX> + -+ + b X",

then their product is a polynomial
F+aX+oaX?+ o+ cpmX™m,

where ¢y = agbg, ¢1 = agb1 + ai1bg, ¢ = agby + a1by + ax by,
and in general

n
Cp = aobp+ainy,_1+axby, o+ -+ap_1b1+apnby = Z akbn_k.
k=0

» This suggests the following definition.
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» Definition 2. Given two series > 1 a, and Y b, their
Cauchy product is the series Z?OZO Cn, Where
Ch = ZZ:O akbn_k.

» Remark: In spite of this intuitive idea, in general, the Cauchy
product of two convergent series need not be convergent.

Example 5.
Consider the series Y7 ;a, and > "7 by, where

(=1)"
n— bn = )
? vn+1

Then > 77y an and Y7 b, are convergent by the following
result.

(Result: The series >"°°,(—1)"1a,, where {a,} ey is a
decreasing sequence of positive reals, is convergent if and only
if lim a,=0.)

n—o0

Vn e NU {0}.
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Claim: Their Cauchy product > ° ; ¢, is divergent.
We have

C”_;)akb”k__ Z\/k+ n—k+1)
For 0 < k < n,
(k+1)(n—k+1):(g+1>2—<g—k)2§(g+1)2.

1

> , forall0< k<n
\/(k+1)(n—k+1) n+2

J2nt1) 20147

— Chl|l = =
lenl = Z\/k+1 Yn—k+1) ~ n+2 1+2

Therefore, it follows that ZZ‘;O cp is not convergent.
P> However, things are not that bad. We will revisit this and see
when can we assure that the Cauchy product of two series is
convergent.
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> nt" term test-already seen.

» Theorem 4. Let > 7, a, be a series of non-negative real
numbers. Then it is convergent if and only if its sequence of
partial sums {s,},cn is bounded above. In this case

o0
Z anp = sup{s, : n € N}.
n=1

Proof: Exercise
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» Theorem 5 (Comparison test). Let {a,}nen and {bn}nen be
real sequences, and suppose that there exists N € N such that

0<a,<b, Vn>N.
(i) If >°72 b is convergent, then sois >~ °, ap.
(i) If >°02 ap is divergent, then so is > 2 by.

Proof: (i) Let € > 0 be arbitrary. Since Y 7 b, is
convergent, by Cauchy criterion, for the € there exists K € N
such that

|bn+1+bn+2+"'+bm| <e, Vm>n> K.
Then

0 < appitantot - +am < bpp1+bppo+- - +bm <€, Vm>n> M,

where M := max{N, K}. Since ¢ > 0 is arbitrary, again by
Cauchy criterion, it follows that Y ; a, is convergent.
(i) Follows from (i). O
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The series is convergent by result (i) of the comparison test.
In fact, we have

and Y72, % is convergent.

Alternative proof Let {sn}nen be the sequence of partial

sums of > 07, n(n+1) Then

n

n
1 11 1
_ e T R
o ;k(kﬂ) kz_;(k k+1) nr1 NS

= lim s, =1.

n—oo

Therefore >>° =1

n=1 n n+1)
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all n € N. Show that 77, b, is convergent if and only if
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> Exercise: Test the convergence of the series Y 7 ;
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» Theorem 6 (Limit comparison test): Let {a,}nen and
{bn}nen be strictly positive sequences.
(i) If nllﬁrr;O 2 =cand c >0, then 377, b, is convergent if
and only if Y 77 a, is convergent.
(i) If [lim 2 =0 and Y021 bn is convergent, then "7 a,
is convergent.
(iii) If nILngo o =ocand )2, b, is divergent, then 2, a,
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Proof: (i) Since ¢ > 0, there exists K € N such that
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Therefore, by comparison test, the result follows.
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. 00 2n+1 .. 00 1

(i) Zn:1 n2+nz,,+1 (ii) Zn:1 11

Solution: (i) Let a, = ni”;il and b, = X for all n € N. Then
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Since >, by is divergent, by result (i) of Limit comparison test,
it follows that > 7°, a, is divergent.



(i) There exists K € N such that
0< 8 <1, ¥n>K.
= 0<a,<b, Vn>K.

Therefore, again by comparison test, the result follows.
(iii) Similar O

Example 8. Test the convergence of the following series.
: oo _2n41 - o 1
(i) Zn:1 P+2ntl (ii) Zn:1 11

Solution: (i) Let a, = 22— and b, = % for all n € N. Then
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Since >, by is divergent, by result (i) of Limit comparison test,
it'follov;/s that )77 a, is divergent.(ii) Exercise. (Hint: Compare
with {ﬁ}neN).



