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Recall

» Definition. Let {a,}nen be a sequence of real numbers.
An expression of the form "7, a, is called an infinite series.

For each n € N, the finite sum s, = 22:1 ay is called the nth
partial sum of > 77 a,.

The infinite series Y > ; a, is said to be convergent if {s,}nen
is convergent.

In such a case, the limit s := lim s, is called the sum of the
n—oo

series, and we denote this fact by the symbol "7, a, = s.

The infinite series ) 77| a, is said to be divergent if {s,}nen
is divergent.
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series, and we denote this fact by the symbol "7, a, = s.

The infinite series ) 77| a, is said to be divergent if {s,}nen
is divergent.

» Theorem (Cauchy criterion). An infinite series Y >, ap is
convergent if and only if for every € > 0 there exists K € N
such that |ap11+ api2 + -+ am| <e, Vm>n> K.
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Theorem. A series > ° , a, of non-negative reals is
convergent if and only if its sequence of partial sums {s,}pen
is bounded above. In this case > - ; a, = sup{s, : n € N}.
Theorem (Comparison test). Let {a,}nen and {bp}ren be

real sequences, and suppose that there exists N € N such that
0<a,< b, Vn>N.

(i) If >0 b is convergent, then so is > 2, ap.

(i) If >°02 1 ap is divergent, then so is > 2 ; by.

Theorem 6 (Limit comparison test): Let {a,}nen and

{bn}nen be strictly positive sequences.

i) If lim 22 =cand ¢ > 0, then > °° | b, is convergent if

() 1f fim 3, > 2n=1bn g

and only if Y7 aj is convergent.

(ii) If nI|_>rrgo > =0and ) .2, b, is convergent, then > 7%, a,

is convergent.

(i) If lim_ 2 =ocand )2, b, is divergent, then > 7%, a,

is divergent.
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Absolute and Conditional convergence

> We have seen that > °, (713”1 is convergent whereas
S50, L is divergent.

» Thus, a series Y >, a, may be convergent, but the series
3221 |an| obtained by taking the absolute values of the terms

may be divergent.
» This observation leads to the following definition.
» Definition. Let {a,}nen be a sequence of real numbers. We
say that >0, ap is
(i) absolutely convergent if > 7 |a,| is convergent;

(ii) conditionally convergent if it is convergent, but not absolutely
convergent.

> Examples:

(i) > (7,1!“ is absolutely convergent.

n=1

_1ym .
(i) 302, EU s conditionally convergent.

(i) 207, (—1)"1 is neither absolutely convergent nor
conditionally convergent.
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convergent if and only if it is absolutely convergent.

Theorem. Every absolutely convergent series is convergent.

Proof: Let Y 77 a, be absolutely convergent.

Them, by definition, > 72, |a,| is convergent.
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Immediate observation: A series of non-negative reals is
convergent if and only if it is absolutely convergent.

Theorem. Every absolutely convergent series is convergent.

Proof: Let Y 77 a, be absolutely convergent.

Them, by definition, > 72, |a,| is convergent.

To prove the convergence of )77, a,, we make use of Cauchy
criterion.

Let € > 0 be given.

Since Y7, |an| is convergent, by Cauchy criterion, there
exists K € N such that

l|ant1| + |ant2| + -+ |aml|| <€, Vm>n> K.

Then for all m > n < K, we have

= llantal +lanta[ + - +laml| <e

lant1 +anp2 + -+ am| < langa| + |ang2| + -+ |aml

Since € > 0 is arbitrary, Cauchy criterion implies that Y7 ; an
is convergent. |
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. 1
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exists in R.
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> Example: Test the absolute convergence of the following
series.

() S, o (i) X, G

. . 2
Solution: (i) 3.5, 25 converges absolutely by root test,

n=1
n? _ ({n)? 2 _1
= 2 —>2—2<1.

nfn? _ ¥

because o =

s
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Foer,o:l%: ”% f%f 1

ForZ(;OZI%: n#:\”lf (f)2_>2_1
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— | n‘<: V > K'+’1

Now, since r < 1, the geometric series 220:1 r" is convergent.
This implies that the series >, ":—,’E‘r” is convergent.



» Theorem (D'Alembert Ratio Test). Let {a,}nen be a
sequence of nonzero real numbers.
(i) If there exist r € R with 0 < r < 1 and K € N such that

an+1
an

<r, Vn>K, (4)

then the series > | a, is absolutely convergent.
(i) If there exists K € N such that

an+1
an

>1, Vn> K, (5)

then the series > | a, is divergent.
Proof: (i) Since (4) holds, we have |ap+1| < r|an|, Vn > K.

aK
= |apek| < ak|r" = |rK|rn+K, Vn e N.
lak| K!
= |a,| < , Vn> K+ 1.

Now, since r < 1, the geometric series Y 02, r is convergent.

This implies that the series >, ":—,’E‘r” is convergent.
Therefore, by comparison test, >~ ; |a,| is convergent.
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» (ii) Since (5) holds, we have |a,t+1]| > |an|, Vn > K.

= |anyk| > lak|, VneN.
= |an| > |ak]|, Vn > K +1.

This implies that a, - 0 as n — oo, since |ak| > 0.
Therefore, by nt" term test, the series Yo% 1 an is divergent. W

» Corollary (D'Alembert Ratio Test—another version).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

dn+1
dn

r:= lim
n—o0

exists in R.

(i) If r <1, then the series > | a, is absolutely convergent.
(i) If r > 1, then the series Y2, a, is divergent.

Proof: Exercise.
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> Example: Test the absolute convergence of the following
series.
. 2n47 . 2n)!
() oo Z5 (i) o2y B
Solution: (i) Y72, 2';;7 converges absolutely by ratio test,
because

it 1 2047 1244 12 2

247 "5 247 5 14+L 51 5
(i) 02, EZT)); is divergent by ratio test, because

(2n+2)!
m_(2n+2)(2n+1)_4n+2_4+%_>4>1

(2n)! ~ (n+1)(n+1)  n+1 _1—1-% ’

n!n!



> Example: Test the absolute convergence of the following
series.

() S B () o, &

Solution: (i) 320°, 25T converges absolutely by ratio test,

5’7
because
et 1 2747 1244 12 2 -1
247 "5 247 5 14+L 51 5
(i) 02, E2f))2' is divergent by ratio test, because
(2n+2)!
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» Remark: The test is inconclusive if r = 1.



> Example: Test the absolute convergence of the following
series.

() S B () o, &

Solution: (i) 320°, 25T converges absolutely by ratio test,

5’7
because
et 1 2m™ie7 1244 1 2_2_,
247 "5 274+7 5 14+% 51 5
(i) 02, E2f))2' is divergent by ratio test, because
(2n+2)!
m (2n+2)2n+1) 4n+2 442
s = - == 4>l
27 (n+1)(n+1) n+ 1+

» Remark: The test is inconclusive if r = 1.
co 1. ntl
For > 02 s = n+1 —1
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> Example: Test the absolute convergence of the following
series.

() S B () o, &

Solution: (i) 32°°, ZH7 converges absolutely by ratio test,

n=1 5n
because
et 1 2m™ie7 1244 1 2_2_,
247 T 5 2747 5 1+L "5 1 5 7
(i) 02, E2f))2' is divergent by ratio test, because
(2n+2)!
m (2n+2)2n+1) 4n+2 442
s = - == 4>l
27 (n+1)(n+1) n+ 1+

» Remark: The test is inconclusive if r = 1.
co 1. ntl
For > 02 s = n+1 —1

For 00, L: 02 — (Ln)? 492
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Recall

Definition. Given two series Y ° 5 a, and >~ by, their
Cauchy product is the series Y °  cn, where
Ch = ZZ:O akb,,,k.

Remark. The Cauchy product of two convergent series need
not be convergent.

Example.
Consider the series Y7 ;a, and > 77 by, where

(=1)"
Vn+1
Then their Cauchy product is not convergent.

Observe that both Y°7° ;a, and >_;” b, are not absolutely
convergent.

Question: Can we have a similar example where one of the
series is absolutely convergent?

The answer is NO, as seen from the next result.

Vn e NU{0}.

an = b, =
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» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
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> 02 o bn = b, then their Cauchy product Y12 ¢, is
convergent and > 7 ¢, = ab.



Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )" b, be convergent. If Y7 ja, = a and
> 02 o bn = b, then their Cauchy product Y12 ¢, is
convergent and > 7 ¢, = ab.

Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of Y 0% g an, > .07 bp, and Y07, s, respectively.



Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )" b, be convergent. If Y7 ja, = a and
> 02 o bn = b, then their Cauchy product Y12 ¢, is
convergent and > 7 ¢, = ab.

Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of Y 0% g an, > .07 bp, and Y07, s, respectively.
Then for all n € NU {0}, we have
up=c+c+---+cp
= (apho) + (aob1 + a1bg) + - - - + (aobn + a1bp—1 + - -+ + anbo)
=ao(bo + -+ 4 bn) +ar(bo + -+ by—1) + -+ -+ anbo
= aptp + aith—1+ -+ + anto

n
= agtp + arth—1 + - -+ anto — (Z ak> b+ s,b
k=0

= ag(tn — b) + a1(tn—1 — b) + - - - + an(to — b) + spb,



c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.
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where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.
Now, since I|m spb = ab, in view of (7), to prove that

lim ¢, = ab |t suffices to prove that I|m vp = 0.
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c,,—ao( —b)+31(tn 1—b)+--'+an(t0—b)+s,,b
= v, + spb, (7)

where v, = ag(t, — b) + a1(tn—1 — b) + - -~ + an(to — b) for all
n e NU{0}.

Now, since I|m spb = ab, in view of (7), to prove that

I|_>m Ch = ab |t suffices to prove that I|m vp = 0.

Proof of the claim that I|m vp = 0: Let € > 0 be arbitrary.
Since I|ﬂm (tn — b) =0, there exists K1 € N such that

‘tn— b’ <e Vn> Ki.
Since {t, — b}penu{oy is bounded, there exists M > 0 such that

|tn_b|§M, Vn € N.
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Since > 7, a, is absolutely convergent, say Y " |an| = a,by

Cauchy criterion there exists K> € N such that

lant1] + |ant2| + - lam| <€, Vm > n > Ks.

Let K := max{Ki, K2}. Then for all n > 2K, we have

|| = |ao(tn — b) + a1(th—1 — b) + - - - + an(to — b)|

< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]
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Since > 7, a, is absolutely convergent, say Y " |an| = a,by

Cauchy criterion there exists K> € N such that

lant1| + |ant2| + - |am| < €, Vm > n> Ks.

Let K := max{Ki, K2}. Then for all n > 2K, we have

|| = |ao(tn — b) + a1(th—1 — b) + - - - + an(to — b)|

< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]

= |aol|tn — b| + |a1[tn—1 = bl + -+ + [an—k ][tk — b]
+ |an—k+1lltnyk—1 — b| + - - + |an|[to — b]

< (fao| + [ar] + -+ + [an—k|)e
+ (lan—k+41] + -+ [an)M

<ae+eM

= (a+ M)e.

Since € > 0 is arbitrary, it follows that lim v, = 0. This completes
n—o00

the proof.



