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Recall

I Definition. Let {an}n∈N be a sequence of real numbers.

An expression of the form
∑∞

n=1 an is called an infinite series.

For each n ∈ N, the finite sum sn =
∑n

k=1 ak is called the nth

partial sum of
∑∞

n=1 an.

The infinite series
∑∞

n=1 an is said to be convergent if {sn}n∈N
is convergent.

In such a case, the limit s := lim
n→∞

sn is called the sum of the

series, and we denote this fact by the symbol
∑∞

n=1 an = s.

The infinite series
∑∞

n=1 an is said to be divergent if {sn}n∈N
is divergent.

I Theorem (Cauchy criterion). An infinite series
∑∞

n=1 an is
convergent if and only if for every ε > 0 there exists K ∈ N
such that |an+1 + an+2 + · · ·+ am| < ε, ∀m > n ≥ K .
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I Theorem (nth term test). If a series
∑∞

n=1 an converges, then
lim
n→∞

an = 0.

I Theorem. A series
∑∞

n=1 an of non-negative reals is
convergent if and only if its sequence of partial sums {sn}n∈N
is bounded above. In this case

∑∞
n=1 an = sup{sn : n ∈ N}.

I Theorem (Comparison test). Let {an}n∈N and {bn}n∈N be
real sequences, and suppose that there exists N ∈ N such that

0 ≤ an ≤ bn, ∀n ≥ N.

(i) If
∑∞

n=1 bn is convergent, then so is
∑∞

n=1 an.
(ii) If

∑∞
n=1 an is divergent, then so is

∑∞
n=1 bn.

I Theorem 6 (Limit comparison test): Let {an}n∈N and
{bn}n∈N be strictly positive sequences.
(i) If lim

n→∞
an
bn

= c and c > 0, then
∑∞

n=1 bn is convergent if

and only if
∑∞

n=1 an is convergent.
(ii) If lim

n→∞
an
bn

= 0 and
∑∞

n=1 bn is convergent, then
∑∞

n=1 an

is convergent.
(iii) If lim

n→∞
an
bn

=∞ and
∑∞

n=1 bn is divergent, then
∑∞

n=1 an

is divergent.
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Absolute and Conditional convergence

I We have seen that
∑∞

n=1
(−1)n+1

n is convergent whereas∑∞
n=1

1
n is divergent.

I Thus, a series
∑∞

n=1 an may be convergent, but the series∑∞
n=1 |an| obtained by taking the absolute values of the terms

may be divergent.

I This observation leads to the following definition.
I Definition. Let {an}n∈N be a sequence of real numbers. We

say that
∑∞

n=1 an is
(i) absolutely convergent if

∑∞
n=1 |an| is convergent;

(ii) conditionally convergent if it is convergent, but not absolutely
convergent.

I Examples:

(i)
∑∞

n=1
(−1)n+1

n2 is absolutely convergent.

(ii)
∑∞

n=1
(−1)n+1

n is conditionally convergent.

(iii)
∑∞

n=1(−1)n+1 is neither absolutely convergent nor
conditionally convergent.
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I Immediate observation: A series of non-negative reals is
convergent if and only if it is absolutely convergent.

I Theorem. Every absolutely convergent series is convergent.

Proof: Let
∑∞

n=1 an be absolutely convergent.
Them, by definition,

∑∞
n=1 |an| is convergent.

To prove the convergence of
∑∞

n=1 an, we make use of Cauchy
criterion.
Let ε > 0 be given.
Since

∑∞
n=1 |an| is convergent, by Cauchy criterion, there

exists K ∈ N such that

||an+1|+ |an+2|+ · · ·+ |am|| < ε, ∀m > n ≥ K .

Then for all m > n ≤ K , we have

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|
= ||an+1|+ |an+2|+ · · ·+ |am|| < ε.

Since ε > 0 is arbitrary, Cauchy criterion implies that
∑∞

n=1 an
is convergent. �
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Tests for absolute convergence

I Theorem (Cauchy’s Root Test). Let {an}n∈N be a real
sequence.

(i) If there exist r ∈ R with r < 1 and K ∈ N such that

|an|
1
n ≤ r , ∀n ≥ K , (1)

then the series
∑∞

n=1 an is absolutely convergent.

(ii) If there exists K ∈ N such that

|an|
1
n ≥ 1, ∀n ≥ K , (2)

then the series
∑∞

n=1 an is divergent.

Proof: (i) Since (1) holds, we have |an| ≤ rn, ∀n ≥ K .
Now, since r < 1, the geometric series

∑∞
n=1 r

n is convergent.
Therefore, by comparison test, the series

∑∞
n=1 |an| is

convergent.
(ii) Since (2) holds, we have |an| ≥ 1n = 1, ∀n ≥ K .
This implies that an 9 0 as n→∞.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �
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I Corollary (Cauchy’s Root Test–another version).
Let {an}n∈N be a real sequence and suppose that

r := lim
n→∞

|an|
1
n (3)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.

(ii) If r > 1, then the series
∑∞

n=1 an is divergent.

Proof: (i) Since r < 1, we can choose s ∈ R such that
r < s < 1.
Since (3) holds, there exists K ∈ N such that∣∣∣|an| 1n − r

∣∣∣ < s − r , ∀n ≥ K .

=⇒ |an|
1
n − r < s − r , ∀n ≥ K .

=⇒ |an|
1
n < s, ∀n ≥ K .

Since s < 1, by (i) of the previous theorem, it follows that∑∞
n=1 an is absolutely convergent.
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(ii) Since r > 1, we can choose s ∈ R such that r > s > 1.

Since (3) holds, there exists K ∈ N such that∣∣∣|an| 1n − r
∣∣∣ < r − s, ∀n ≥ K .
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1
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1
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is divergent. �
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I Example: Test the absolute convergence of the following
series.
(i)

∑∞
n=1

n2

2n (ii)
∑∞

n=1
(−3)n
n2021

Solution: (i)
∑∞

n=1
n2

2n converges absolutely by root test,

because n

√
n2

2n =
n√
n2

n√2n = ( n√n)2
2 → 12

2 = 1
2 < 1.

(ii)
∑∞

n=1
(−3)n
n2021

is divergent by root test, because

n

√∣∣∣ (−3)nn2021

∣∣∣ = n

√
3n

n2021
=

n√3n
n√
n2021

= 3
( n√n)2021 →

3
12021

= 3 > 1.

I Remark: The test is inconclusive if r = 1.

For
∑∞

n=1
1
n : n

√
1
n = 1

n√n →
1
1 = 1

For
∑∞

n=1
1
n2

: n

√
1
n2

= 1
n√
n2

= 1
( n√n)2 →

1
12

= 1
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I Theorem (D’Alembert Ratio Test). Let {an}n∈N be a
sequence of nonzero real numbers.

(i) If there exist r ∈ R with 0 < r < 1 and K ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ ≤ r , ∀n ≥ K , (4)

then the series
∑∞

n=1 an is absolutely convergent.

(ii) If there exists K ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ ≥ 1, ∀n ≥ K , (5)

then the series
∑∞

n=1 an is divergent.

Proof: (i) Since (4) holds, we have |an+1| ≤ r |an|, ∀n ≥ K .

=⇒ |an+K | ≤ |aK |rn =
|aK |
rK

rn+K , ∀n ∈ N.

=⇒ |an| ≤
|aK |
rK

rn, ∀n ≥ K + 1.

Now, since r < 1, the geometric series
∑∞

n=1 r
n is convergent.

This implies that the series
∑∞

n=1
|aK |
rK

rn is convergent.
Therefore, by comparison test,

∑∞
n=1 |an| is convergent.
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I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.

=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.

Therefore, by nth term test, the series
∑∞

n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.

(ii) If r > 1, then the series
∑∞

n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I (ii) Since (5) holds, we have |an+1| ≥ |an|, ∀n ≥ K .

=⇒ |an+K | ≥ |aK |, ∀n ∈ N.
=⇒ |an| ≥ |aK |, ∀n ≥ K + 1.

This implies that an 9 0 as n→∞, since |aK | > 0.
Therefore, by nth term test, the series

∑∞
n=1 an is divergent. �

I Corollary (D’Alembert Ratio Test–another version).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

Proof: Exercise.



I Example: Test the absolute convergence of the following
series.
(i)

∑∞
n=1

2n+7
5n (ii)

∑∞
n=1

(2n)!
(n!)2

Solution: (i)
∑∞

n=1
2n+7
5n converges absolutely by ratio test,

because

2n+1+7
5n+1

2n+7
5n

=
1

5
· 2n+1 + 7

2n + 7
=

1

5
·

2 + 7
2n

1 + 7
2n
→ 1

5
· 2

1
=

2

5
< 1.

(ii)
∑∞

n=1
(2n)!
(n!)2

is divergent by ratio test, because

(2n+2)!
(n+1)!(n+1)!

(2n)!
n!n!

=
(2n + 2)(2n + 1)

(n + 1)(n + 1)
=

4n + 2

n + 1
=

4 + 2
n

1 + 1
n

→ 4 > 1.

I Remark: The test is inconclusive if r = 1.

For
∑∞

n=1
1
n :

1
n+1
1
n

= n
n+1 → 1

For
∑∞

n=1
1
n2

:
1

(n+1)2

1
n2

=
(

n
n+1

)2 → 12 = 1
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Recall

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.

Example.
Consider the series

∑∞
n=0 an and

∑∞
n=0 bn, where

an = bn =
(−1)n√
n + 1

, ∀n ∈ N ∪ {0}.

Then their Cauchy product is not convergent.
I Observe that both

∑∞
n=0 an and

∑∞
n=0 bn are not absolutely

convergent.
I Question: Can we have a similar example where one of the

series is absolutely convergent?
I The answer is NO, as seen from the next result.
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Convergence of Cauchy product

I Theorem (Mertens’ Theorem). Let
∑∞

n=0 an be absolutely
convergent and

∑∞
n=0 bn be convergent. If

∑∞
n=0 an = a and∑∞

n=0 bn = b, then their Cauchy product
∑∞

n=0 cn is
convergent and

∑∞
n=0 cn = ab.

Proof: Let {sn}n∈N, {tn}n∈N and {un}n∈N be the sequence of
partial sums of

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn, respectively.

Then for all n ∈ N ∪ {0}, we have

un = c0 + c1 + · · ·+ cn

= (a0b0) + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0(b0 + · · ·+ bn) + a1(b0 + · · ·+ bn−1) + · · ·+ anb0

= a0tn + a1tn−1 + · · ·+ ant0

= a0tn + a1tn−1 + · · ·+ ant0 −

(
n∑

k=0

ak

)
b + snb

= a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb,
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i.e.,

cn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb

= vn + snb, (7)

where vn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) for all
n ∈ N ∪ {0}.

Now, since lim
n→∞

snb = ab, in view of (7), to prove that

lim
n→∞

cn = ab, it suffices to prove that lim
n→∞

vn = 0.

Proof of the claim that lim
n→∞

vn = 0: Let ε > 0 be arbitrary.

Since lim
n→∞

(tn − b) = 0, there exists K1 ∈ N such that

|tn − b| < ε, ∀n ≥ K1.

Since {tn − b}n∈N∪{0} is bounded, there exists M > 0 such that

|tn − b| ≤ M, ∀n ∈ N.
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Since
∑∞

n=1 an is absolutely convergent, say
∑∞

n=1 |an| = α,by
Cauchy criterion there exists K2 ∈ N such that

|an+1|+ |an+2|+ · · · |am| < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}. Then for all n ≥ 2K , we have

|vn| = |a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b)|
≤ |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an||t0 − b|
= |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an−K ||tn+K − b|

+ |an−K+1||tn+K−1 − b|+ · · ·+ |an||t0 − b|
≤ (|a0|+ |a1|+ · · ·+ |an−K |)ε

+ (|an−K+1|+ · · ·+ |an|)M
≤ αε+ εM

= (α + M)ε.

Since ε > 0 is arbitrary, it follows that lim
n→∞

vn = 0. This completes

the proof.
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