

ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

Recall

- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an **infinite series**.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} **partial sum** of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be **convergent** if $\{s_n\}_{n \in \mathbb{N}}$ is convergent.

In such a case, the limit $s := \lim_{n \rightarrow \infty} s_n$ is called the **sum of the series**, and we denote this fact by the symbol $\sum_{n=1}^{\infty} a_n = s$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be **divergent** if $\{s_n\}_{n \in \mathbb{N}}$ is divergent.

Recall

► **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an **infinite series**.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} **partial sum** of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be **convergent** if $\{s_n\}_{n \in \mathbb{N}}$ is convergent.

In such a case, the limit $s := \lim_{n \rightarrow \infty} s_n$ is called the **sum of the series**, and we denote this fact by the symbol $\sum_{n=1}^{\infty} a_n = s$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be **divergent** if $\{s_n\}_{n \in \mathbb{N}}$ is divergent.

► **Theorem (Cauchy criterion).** An infinite series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$ there exists $K \in \mathbb{N}$ such that $|a_{n+1} + a_{n+2} + \cdots + a_m| < \epsilon$, $\forall m > n \geq K$.

► **Theorem (n^{th} term test).** If a series $\sum_{n=1}^{\infty} a_n$ converges, then

$$\lim_{n \rightarrow \infty} a_n = 0.$$

- **Theorem (n^{th} term test).** If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \rightarrow \infty} a_n = 0$.
- **Theorem.** A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.

- **Theorem (n^{th} term test).** If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \rightarrow \infty} a_n = 0$.
- **Theorem.** A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.
- **Theorem (Comparison test).** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be real sequences, and suppose that there exists $N \in \mathbb{N}$ such that

$$0 \leq a_n \leq b_n, \quad \forall n \geq N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

- **Theorem (n^{th} term test).** If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \rightarrow \infty} a_n = 0$.
- **Theorem.** A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.
- **Theorem (Comparison test).** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be real sequences, and suppose that there exists $N \in \mathbb{N}$ such that

$$0 \leq a_n \leq b_n, \quad \forall n \geq N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.
- **Theorem 6 (Limit comparison test):** Let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = c$ and $c > 0$, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (ii) If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Absolute and Conditional convergence

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.
- ▶ **Examples:**
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.
- ▶ **Examples:**
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
 - (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

Absolute and Conditional convergence

- ▶ We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.
- ▶ **Examples:**
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
 - (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.
 - (iii) $\sum_{n=1}^{\infty} (-1)^{n+1}$ is neither absolutely convergent nor conditionally convergent.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.
Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \geq K.$$

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \geq K.$$

Then for all $m > n \leq K$, we have

$$|a_{n+1} + a_{n+2} + \cdots + a_m| \leq |a_{n+1}| + |a_{n+2}| + \cdots + |a_m|$$

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \geq K.$$

Then for all $m > n \leq K$, we have

$$\begin{aligned} |a_{n+1} + a_{n+2} + \cdots + a_m| &\leq |a_{n+1}| + |a_{n+2}| + \cdots + |a_m| \\ &= ||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon. \end{aligned}$$

- ▶ **Immediate observation:** A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent.

Then, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \geq K.$$

Then for all $m > n \leq K$, we have

$$\begin{aligned} |a_{n+1} + a_{n+2} + \cdots + a_m| &\leq |a_{n+1}| + |a_{n+2}| + \cdots + |a_m| \\ &= ||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, Cauchy criterion implies that $\sum_{n=1}^{\infty} a_n$ is convergent.

Tests for absolute convergence

- **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

- (i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Tests for absolute convergence

- **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

- (i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- (ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Tests for absolute convergence

- **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

- (i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- (ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Tests for absolute convergence

► **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

(i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

Tests for absolute convergence

► **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

(i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Tests for absolute convergence

► **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

(i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \geq 1^n = 1, \quad \forall n \geq K$.

Tests for absolute convergence

► **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

(i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \geq 1^n = 1, \quad \forall n \geq K$.

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$.

Tests for absolute convergence

► **Theorem (Cauchy's Root Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence.

(i) If there exist $r \in \mathbb{R}$ with $r < 1$ and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \leq r, \quad \forall n \geq K, \quad (1)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \geq 1, \quad \forall n \geq K, \quad (2)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \leq r^n, \quad \forall n \geq K$.

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \geq 1^n = 1, \quad \forall n \geq K$.

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

(i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since $r < 1$, we can choose $s \in \mathbb{R}$ such that
 $r < s < 1$.

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since $r < 1$, we can choose $s \in \mathbb{R}$ such that
 $r < s < 1$.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < s - r, \quad \forall n \geq K.$$

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since $r < 1$, we can choose $s \in \mathbb{R}$ such that
 $r < s < 1$.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < s - r, \quad \forall n \geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \quad \forall n \geq K.$$

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since $r < 1$, we can choose $s \in \mathbb{R}$ such that $r < s < 1$.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < s - r, \quad \forall n \geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \quad \forall n \geq K.$$

$$\implies |a_n|^{\frac{1}{n}} < s, \quad \forall n \geq K.$$

► Corollary (Cauchy's Root Test–another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}} \quad (3)$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since $r < 1$, we can choose $s \in \mathbb{R}$ such that $r < s < 1$.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < s - r, \quad \forall n \geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \quad \forall n \geq K.$$

$$\implies |a_n|^{\frac{1}{n}} < s, \quad \forall n \geq K.$$

Since $s < 1$, by (i) of the previous theorem, it follows that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) Since $r > 1$, we can choose $s \in \mathbb{R}$ such that $r > s > 1$.

(ii) Since $r > 1$, we can choose $s \in \mathbb{R}$ such that $r > s > 1$.
Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \quad \forall n \geq K.$$

(ii) Since $r > 1$, we can choose $s \in \mathbb{R}$ such that $r > s > 1$.
Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \quad \forall n \geq K.$$

$$\implies -(r - s) < |a_n|^{\frac{1}{n}} - r, \quad \forall n \geq K.$$

(ii) Since $r > 1$, we can choose $s \in \mathbb{R}$ such that $r > s > 1$.
Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \quad \forall n \geq K.$$

$$\implies -(r - s) < |a_n|^{\frac{1}{n}} - r, \quad \forall n \geq K.$$

$$\implies s < |a_n|^{\frac{1}{n}}, \quad \forall n \geq K.$$

(ii) Since $r > 1$, we can choose $s \in \mathbb{R}$ such that $r > s > 1$.
Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \quad \forall n \geq K.$$

$$\implies -(r - s) < |a_n|^{\frac{1}{n}} - r, \quad \forall n \geq K.$$

$$\implies s < |a_n|^{\frac{1}{n}}, \quad \forall n \geq K.$$

Since $s > 1$, by (ii) of the previous theorem, we get that $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test,

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \rightarrow \frac{1^2}{2} = \frac{1}{2} < 1$.

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \rightarrow \frac{1^2}{2} = \frac{1}{2} < 1$.

(ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test,

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \rightarrow \frac{1^2}{2} = \frac{1}{2} < 1$.

(ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test, because

$$\sqrt[n]{\left| \frac{(-3)^n}{n^{2021}} \right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \rightarrow \frac{3}{1^{2021}} = 3 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \rightarrow \frac{1^2}{2} = \frac{1}{2} < 1$.

(ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test, because

$$\sqrt[n]{\left| \frac{(-3)^n}{n^{2021}} \right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \rightarrow \frac{3}{1^{2021}} = 3 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

For $\sum_{n=1}^{\infty} \frac{1}{n}$: $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \rightarrow \frac{1}{1} = 1$

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \rightarrow \frac{1^2}{2} = \frac{1}{2} < 1$.

(ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test, because

$$\sqrt[n]{\left| \frac{(-3)^n}{n^{2021}} \right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \rightarrow \frac{3}{1^{2021}} = 3 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

For $\sum_{n=1}^{\infty} \frac{1}{n}$: $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \rightarrow \frac{1}{1} = 1$

For $\sum_{n=1}^{\infty} \frac{1}{n^2}$: $\sqrt[n]{\frac{1}{n^2}} = \frac{1}{\sqrt[n]{n^2}} = \frac{1}{(\sqrt[n]{n})^2} \rightarrow \frac{1}{1^2} = 1$

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K.$

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K.$

$$\implies |a_{n+K}| \leq |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \quad \forall n \in \mathbb{N}.$$

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K$.

$$\implies |a_{n+K}| \leq |a_K|r^n = \frac{|a_K|}{r^K}r^{n+K}, \quad \forall n \in \mathbb{N}.$$

$$\implies |a_n| \leq \frac{|a_K|}{r^K}r^n, \quad \forall n \geq K+1.$$

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K$.

$$\implies |a_{n+K}| \leq |a_K|r^n = \frac{|a_K|}{r^K}r^{n+K}, \quad \forall n \in \mathbb{N}.$$

$$\implies |a_n| \leq \frac{|a_K|}{r^K}r^n, \quad \forall n \geq K+1.$$

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K$.

$$\implies |a_{n+K}| \leq |a_K|r^n = \frac{|a_K|}{r^K}r^{n+K}, \quad \forall n \in \mathbb{N}.$$

$$\implies |a_n| \leq \frac{|a_K|}{r^K}r^n, \quad \forall n \geq K+1.$$

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

This implies that the series $\sum_{n=1}^{\infty} \frac{|a_K|}{r^K}r^n$ is convergent.

► **Theorem (D'Alembert Ratio Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers.

(i) If there exist $r \in \mathbb{R}$ with $0 < r < 1$ and $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \leq r, \quad \forall n \geq K, \quad (4)$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| \geq 1, \quad \forall n \geq K, \quad (5)$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \leq r|a_n|, \quad \forall n \geq K$.

$$\implies |a_{n+K}| \leq |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \quad \forall n \in \mathbb{N}.$$

$$\implies |a_n| \leq \frac{|a_K|}{r^K} r^n, \quad \forall n \geq K + 1.$$

Now, since $r < 1$, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

This implies that the series $\sum_{n=1}^{\infty} \frac{|a_K|}{r^K} r^n$ is convergent.

Therefore, by comparison test, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

- (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$, since $|a_K| > 0$.

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$, since $|a_K| > 0$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$, since $|a_K| > 0$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► Corollary (D'Alembert Ratio Test—another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

(i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$, since $|a_K| > 0$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► Corollary (D'Alembert Ratio Test—another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \forall n \geq K$.

$$\implies |a_{n+K}| \geq |a_K|, \forall n \in \mathbb{N}.$$

$$\implies |a_n| \geq |a_K|, \forall n \geq K + 1.$$

This implies that $a_n \not\rightarrow 0$ as $n \rightarrow \infty$, since $|a_K| > 0$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent. ■

► Corollary (D'Alembert Ratio Test—another version).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: Exercise.

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1} + 7}{5^{n+1}}}{\frac{2^n + 7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1} + 7}{2^n + 7} = \frac{1}{5} \cdot \frac{2 + \frac{7}{2^n}}{1 + \frac{7}{2^n}} \rightarrow \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1} + 7}{5^{n+1}}}{\frac{2^n + 7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1} + 7}{2^n + 7} = \frac{1}{5} \cdot \frac{2 + \frac{7}{2^n}}{1 + \frac{7}{2^n}} \rightarrow \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4 + \frac{2}{n}}{1 + \frac{1}{n}} \rightarrow 4 > 1.$$

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1} + 7}{5^{n+1}}}{\frac{2^n + 7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1} + 7}{2^n + 7} = \frac{1}{5} \cdot \frac{2 + \frac{7}{2^n}}{1 + \frac{7}{2^n}} \rightarrow \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4 + \frac{2}{n}}{1 + \frac{1}{n}} \rightarrow 4 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1} + 7}{5^{n+1}}}{\frac{2^n + 7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1} + 7}{2^n + 7} = \frac{1}{5} \cdot \frac{2 + \frac{7}{2^n}}{1 + \frac{7}{2^n}} \rightarrow \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4 + \frac{2}{n}}{1 + \frac{1}{n}} \rightarrow 4 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

For $\sum_{n=1}^{\infty} \frac{1}{n}$: $\frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \rightarrow 1$

► **Example:** Test the absolute convergence of the following series.

$$(i) \sum_{n=1}^{\infty} \frac{2^n + 7}{5^n} \quad (ii) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1} + 7}{5^{n+1}}}{\frac{2^n + 7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1} + 7}{2^n + 7} = \frac{1}{5} \cdot \frac{2 + \frac{7}{2^n}}{1 + \frac{7}{2^n}} \rightarrow \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4 + \frac{2}{n}}{1 + \frac{1}{n}} \rightarrow 4 > 1.$$

► **Remark:** The test is inconclusive if $r = 1$.

For $\sum_{n=1}^{\infty} \frac{1}{n}$: $\frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \rightarrow 1$

For $\sum_{n=1}^{\infty} \frac{1}{n^2}$: $\frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \left(\frac{n}{n+1}\right)^2 \rightarrow 1^2 = 1$

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Then their Cauchy product is not convergent.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.
- ▶ **Question:** Can we have a similar example where one of the series is absolutely convergent?

Recall

- ▶ **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- ▶ **Remark.** The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.
- ▶ **Question:** Can we have a similar example where one of the series is absolutely convergent?
- ▶ The answer is NO, as seen from the next result.

Convergence of Cauchy product

- **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Convergence of Cauchy product

► **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$ and $\{u_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively.

Convergence of Cauchy product

► **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$ and $\{u_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively. Then for all $n \in \mathbb{N} \cup \{0\}$, we have

$$\begin{aligned} u_n &= c_0 + c_1 + \cdots + c_n \\ &= (a_0 b_0) + (a_0 b_1 + a_1 b_0) + \cdots + (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) \\ &= a_0(b_0 + \cdots + b_n) + a_1(b_0 + \cdots + b_{n-1}) + \cdots + a_n b_0 \\ &= a_0 t_n + a_1 t_{n-1} + \cdots + a_n t_0 \\ &= a_0 t_n + a_1 t_{n-1} + \cdots + a_n t_0 - \left(\sum_{k=0}^n a_k \right) b + s_n b \\ &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b, \end{aligned}$$

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

i.e.,

$$\begin{aligned} c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\ &= v_n + s_n b, \end{aligned} \tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (7), to prove that $\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (7), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$:

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (7), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (7), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n - b| < \epsilon, \quad \forall n \geq K_1.$$

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{7}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (7), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n - b| < \epsilon, \quad \forall n \geq K_1.$$

Since $\{t_n - b\}_{n \in \mathbb{N} \cup \{0\}}$ is bounded, there exists $M > 0$ such that

$$|t_n - b| \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$.

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \geq 2K$, we have

$$\begin{aligned} |v_n| &= |a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)| \\ &\leq |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_n||t_0 - b| \\ &= |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_{n-K}||t_{n+K} - b| \\ &\quad + |a_{n-K+1}||t_{n+K-1} - b| + \cdots + |a_n||t_0 - b| \\ &\leq (|a_0| + |a_1| + \cdots + |a_{n-K}|)\epsilon \\ &\quad + (|a_{n-K+1}| + \cdots + |a_n|)M \\ &\leq \alpha\epsilon + \epsilon M \\ &= (\alpha + M)\epsilon. \end{aligned}$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \geq 2K$, we have

$$\begin{aligned} |v_n| &= |a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)| \\ &\leq |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_n||t_0 - b| \\ &= |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_{n-K}||t_{n+K} - b| \\ &\quad + |a_{n-K+1}||t_{n+K-1} - b| + \cdots + |a_n||t_0 - b| \\ &\leq (|a_0| + |a_1| + \cdots + |a_{n-K}|)\epsilon \\ &\quad + (|a_{n-K+1}| + \cdots + |a_n|)M \\ &\leq \alpha\epsilon + \epsilon M \\ &= (\alpha + M)\epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, it follows that $\lim_{n \rightarrow \infty} v_n = 0$. This completes the proof.