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Theorem (Cauchy’s Root Test).
Let {an}nen be a real sequence and suppose that
. 1
r:= lim |ap|n
n—oo

exists in R.

(i) If r <1, then the series > a, is absolutely convergent.
(i) If r > 1, then the series Y, a, is divergent.
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» Theorem (D’Alembert Ratio Test).
Let {an}nen be a sequence of nonzero real numbers and
suppose that

an+1
an

r:= lim
n—oo

exists in R.

(i) If r <1, then the series > | a, is absolutely convergent.
(i) If r > 1, then the series > | a, is divergent.

> Definition. Given two series Y " a, and >~ by, their
Cauchy product is the series Y2 ; ¢,, where
Cn =D p_oakbn—k.

» Remark. The Cauchy product of two convergent series need
not be convergent.
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Convergence of Cauchy product

» Theorem (Mertens' Theorem). Let > 7 a, be absolutely
convergent and )" b, be convergent. If Y7 ja, = a and
> 02 o bn = b, then their Cauchy product Y12 ¢, is
convergent and > 7 ¢, = ab.

Proof: Let {sp}nen, {tn}nen and {un}nen be the sequence of
partial sums of Y 0% g an, > .07 bp, and Y07, s, respectively.
Then for all n € NU {0}, we have
up=c+c+---+cp
= (apho) + (aob1 + a1bg) + - - - + (aobn + a1bp—1 + - -+ + anbo)
=ao(bo + -+ 4 bn) +ar(bo + -+ by—1) + -+ -+ anbo
= aptp + aith—1+ -+ + anto

n
= agtp + arth—1 + - -+ anto — (Z ak> b+ s,b
k=0

= ag(tn — b) + a1(tn—1 — b) + - - - + an(to — b) + spb,
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ne NU{0}.
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cn = ao(tn — b) + a1(ta—1 — b) + - + an(to — b) + spb
= v, + spb, (1)

where v, = ao(t, — b) + a1(tn—1 — b) + - - - + an(to — b) for all
n e NU{0}.
Now, since I|m snb = ab, in view of (1), to prove that

lim ¢, = ab |t suffices to prove that lim v, =0.
n—oo n—o0

Proof of the claim that lim v, = 0: Let ¢ > 0 be arbitrary.

n—oo

Since Ii_)m (tn — b) = 0, there exists K1 € N such that

|th — b| <€, Vn > Kj.
Since {t, — b}penuqoy is bounded, there exists M > 0 such that

Ity — b| < M, ¥n € N.



Since > 7, an is absolutely convergent, say Y~ |an| = a,by
Cauchy criterion there exists K> € N such that

lanst1| + |ant2| + - |lam| < €, Vm > n > Ks.



Since > 7, an is absolutely convergent, say Y~ |an| = a,by
Cauchy criterion there exists K> € N such that

lanst1| + |ant2| + - |lam| < €, Vm > n > Ks.

Let K := max{Ki, K2}.



Since > 7, an is absolutely convergent, say Y~ |an| = a,by
Cauchy criterion there exists K> € N such that
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Let K := max{Ki, K2}. Then for all n > 2K, we have
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< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]

= |aol|tn — b| + |a1[tn—1 = bl + -+ + [an—k|[tn4+k — b]
+ lan—k41lltar k-1 — b + -+ +|anl|to — b

< (lao| + |a1] + - + |an—k]|)e
+ (lan—k+1] + -+~ +[an)M

< ae+eM

= (a+ M)e.



Since > 7, an is absolutely convergent, say Y~ |an| = a,by
Cauchy criterion there exists K> € N such that

lant1] + |ans2| + - |am| <€, Ym > n > K.
Let K := max{Ki, K2}. Then for all n > 2K, we have

|V,,| = ]ao(t,, — b) + al(t,,,l — b) +---+ a,,(to — b)|

< lao|[tn — b| + |a1||th—1 — b| + - - - + |an|[to — b]

= |aol|tn — b| + |a1[tn—1 = bl + -+ + [an—k|[tn4+k — b]
+ lan—k41lltar k-1 — b + -+ +|anl|to — b

< (lao| + |a1] + - + |an—k]|)e
+ (lan—k+1] + -+~ +[an)M

< ae+eM

= (a+ M)e.

Since € > 0 is arbitrary, it follows that lim v, = 0. This completes
n—oo

the proof.
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Tests for conditional convergence

» Definition. A sequence {an}nen of non-negative real numbers
is said to be alternating if (—1)"*1a, is non-negative for all
neN.

If {an}nen is an alternating sequence, then the series 220:1 an
generated by it is called an alternating series.

» Theorem (Alternating Series Test). Let {an}nen be a

decreasing sequence of positive reals such that lim a, = 0.
n—oo

Then the alternating series > o°;(—1)""a, is convergent.
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» Theorem (Dirichlet’'s Test). Let {a,}nen be a decreasing
sequence of reals with lim a, = 0 and let the sequence of

n—o0
partial sums {s,}nen of Y0 ; b, be bounded. Then the series
> 021 anby is convergent.
Proof: First, we prove a lemma.
Abel's Lemma. Let {a,}nen be a sequence of reals and

{Sn}nen be the sequence of partial sums of > >, b, with
sp := 0. If m > n, then

3
L

m
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» Theorem (Dirichlet’'s Test). Let {a,}nen be a decreasing
sequence of reals with lim a, = 0 and let the sequence of
n—o0

partial sums {s,}nen of Y0 ; b, be bounded. Then the series
> 021 anby is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let {a,}nen be a sequence of reals and

{Sn}nen be the sequence of partial sums of > >, b, with
sp := 0. If m > n, then

m m—1
Z akbk = (amSm — ant15n) + (ak — ak+1)sk- (2)
k=n+1 k=n+1

Proof of the lemma:

m m
E akbx = § ak(sk — Sk—1)
k=n+1 k=n+1

= —ap+1Sn + Z ax — ak+1)Sk + amsm = RHS of (2)
k=n+1
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Proof of the theorem: Let € > 0 be given. Since {s,}nen is
bounded, there exists M > 0 such that |s,| < M, Vn € N.
By Abel’s lemma, for m > n we have

m m—1
> akbi| = |(amsm — ant15n) + (aK — akt1)sk
k=n-+1 k=n+1
m—1
< |am|sm| + |an+llsn| + Z |ak — ak+1|[sk]
k=n-+1
m—1
<(am+ ant1)M + Z (ak — ak41)M
k=n+1

={(am + an+1) + (ant1 — am)}M = 22,11 M (3)

Since lim a, = 0, there exists K € N such that
n—oo
lan| < 557, Vn > K.
Therefore, by (3) we have [/ akb| <€, Vm>n> K.
Since € > 0 is arbitrary, by Cauchy criterion, it follows that
S22 1 anbp is convergent. [ |
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Theorem (Abel's Test). Let {a,}nen be a convergent monotone
sequence and let the series > ° | b, be convergent. Then the
series 220:1 apb, is convergent.

Proof:

Case (i): Let {a,}qen be decreasing with limit a.
Set u, = a, —a,Vn e N.
Then

anbp = (up + a)b, = upby + ab,, Yne N (4)

Now, {up}nen is decreasing with limit 0 and the sequence of
partial sums of "7 . b,. is bounded.

Therefore, by Dirichlet's test, the series 220:1 upb, is convergent.
This implies by (4) that the series 77, a,b, is convergent,
because by hypothesis > 7 | b, is convergent.
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Case (ii): Let {ap}qen be increasing with limit a.
Set u, = a—a,,VneN.
Then {up}nen is decreasing with limit 0 and

anbp, = (a — up) by = ab, — upby, Vn € N.

Therefore, by an argument similar to above, it follows that the
series Y 7, anby is convergent. [ |

Examples.
(i) 35 Lsin (ZF) is convergent by Dirichlet’s test.

(i) D02y % is convergent by Abel's test.
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Grouping of series

» Given a series Z‘;o:l an, We can construct many other series
32 | by by leaving the order of the terms a, fixed, but
inserting parentheses that group together finite number of
terms.

> For example, the series

1 1 1 1 1 1 1
et e )t e ete) et
is obtained by grouping the terms in the series Y72, (7}1%“
» It is an interesting fact that such grouping does not affect the

convergence or the sum of a convergent series.

> More precisely,
Theorem. If a series Y7, a, is convergent, then any series
obtained from it by grouping the terms also converges to the
same value.
Proof: Exercise
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Rearrangements of series

» Consider the alternating harmonic series > 2, %

» We know that it is convergent, say to a sum s (In fact
s =1In(2)).

P Rearrange the above series in such a way that two negative
terms follow a positive term:

11+111+ +1 1 1+
2 4 3 6 8 2n—1 4n—-2 4n

» Let s, be the nth partial sum of the original series and t, be
the nt" partial sum of this rearranged series.
» Then

S I I G L L
3n = 2 4 2n—1 4n—2 4n




t3p41 =

t3p42 =

t3n +

t3p +

1

- _%n
2n+1 2

1 1
2n+1 4n+2

1

2n+1

52n
2

3

1

1

2n+1

4n+2

)



t3n+1 = t3n+; _ 20

2n+1 2

1 1
t3n+2:t3n+2n+1 i3

» Therefore lim t, = 3.
n—o0o

1

2n+1

S2n
2

3

1

1

2n+1

4n+2

)



t —t _}_;—52” ;_)E
L= BT o1 2 2n+1 2
1 1 52,, 1 1

t =t —
2 =t o T T 0T 2 T ontl any2

» Therefore lim t, = 3.
n—oo

» Thus the rearranged series may converge to a sum different
from that of the given series.

)



L= BT o1 2 2n+1 2

1 1 52,, 1 1
on+1 4n+2 2 2n+1 4n+2

t3p42 = t3p +

» Therefore lim t, = 3.
n—oo

» Thus the rearranged series may converge to a sum different

from that of the given series.

Definition. A series Y, b, is said to be a rearrangement of
a series > 2, a, if there is a bijection f of N onto N such
that by, = ar(k) for all k € N.

)



