

ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

Recall

- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.

Recall

- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.

Recall

- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) **conditionally convergent** if it is convergent, but not absolutely convergent.
- ▶ **Theorem.** Every absolutely convergent series is convergent.
- ▶ **Theorem (Cauchy's Root Test).**

Let $\{a_n\}_{n \in \mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \rightarrow \infty} |a_n|^{\frac{1}{n}}$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► Theorem (D'Alembert Ratio Test).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► **Theorem (D'Alembert Ratio Test).**

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► **Definition.** Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their **Cauchy product** is the series $\sum_{n=0}^{\infty} c_n$, where

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

► Theorem (D'Alembert Ratio Test).

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists in \mathbb{R} .

- (i) If $r < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $r > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

► Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

► Remark. The Cauchy product of two convergent series need not be convergent.

Convergence of Cauchy product

- **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Convergence of Cauchy product

► **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$ and $\{u_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively.

Convergence of Cauchy product

► **Theorem (Mertens' Theorem).** Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$ and $\{u_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively. Then for all $n \in \mathbb{N} \cup \{0\}$, we have

$$\begin{aligned} u_n &= c_0 + c_1 + \cdots + c_n \\ &= (a_0 b_0) + (a_0 b_1 + a_1 b_0) + \cdots + (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) \\ &= a_0(b_0 + \cdots + b_n) + a_1(b_0 + \cdots + b_{n-1}) + \cdots + a_n b_0 \\ &= a_0 t_n + a_1 t_{n-1} + \cdots + a_n t_0 \\ &= a_0 t_n + a_1 t_{n-1} + \cdots + a_n t_0 - \left(\sum_{k=0}^n a_k \right) b + s_n b \\ &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b, \end{aligned}$$

i.e.,

$$\begin{aligned} c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\ &= v_n + s_n b, \end{aligned} \tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

i.e.,

$$\begin{aligned} c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\ &= v_n + s_n b, \end{aligned} \tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (1), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

i.e.,

$$\begin{aligned} c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\ &= v_n + s_n b, \end{aligned} \tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (1), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$:

i.e.,

$$\begin{aligned} c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\ &= v_n + s_n b, \end{aligned} \tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (1), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (1), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n - b| < \epsilon, \quad \forall n \geq K_1.$$

i.e.,

$$\begin{aligned}c_n &= a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b) + s_n b \\&= v_n + s_n b,\end{aligned}\tag{1}$$

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n \rightarrow \infty} s_n b = ab$, in view of (1), to prove that

$\lim_{n \rightarrow \infty} c_n = ab$, it suffices to prove that $\lim_{n \rightarrow \infty} v_n = 0$.

Proof of the claim that $\lim_{n \rightarrow \infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n - b| < \epsilon, \quad \forall n \geq K_1.$$

Since $\{t_n - b\}_{n \in \mathbb{N} \cup \{0\}}$ is bounded, there exists $M > 0$ such that

$$|t_n - b| \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$.

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \geq 2K$, we have

$$\begin{aligned} |v_n| &= |a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)| \\ &\leq |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_n||t_0 - b| \\ &= |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_{n-K}||t_{n+K} - b| \\ &\quad + |a_{n-K+1}||t_{n+K-1} - b| + \cdots + |a_n||t_0 - b| \\ &\leq (|a_0| + |a_1| + \cdots + |a_{n-K}|)\epsilon \\ &\quad + (|a_{n-K+1}| + \cdots + |a_n|)M \\ &\leq \alpha\epsilon + \epsilon M \\ &= (\alpha + M)\epsilon. \end{aligned}$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \geq 2K$, we have

$$\begin{aligned} |v_n| &= |a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)| \\ &\leq |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_n||t_0 - b| \\ &= |a_0||t_n - b| + |a_1||t_{n-1} - b| + \cdots + |a_{n-K}||t_{n+K} - b| \\ &\quad + |a_{n-K+1}||t_{n+K-1} - b| + \cdots + |a_n||t_0 - b| \\ &\leq (|a_0| + |a_1| + \cdots + |a_{n-K}|)\epsilon \\ &\quad + (|a_{n-K+1}| + \cdots + |a_n|)M \\ &\leq \alpha\epsilon + \epsilon M \\ &= (\alpha + M)\epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, it follows that $\lim_{n \rightarrow \infty} v_n = 0$. This completes the proof.

Tests for conditional convergence

- ▶ **Definition.** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of non-negative real numbers is said to be **alternating** if $(-1)^{n+1}a_n$ is non-negative for all $n \in \mathbb{N}$.

Tests for conditional convergence

- ▶ **Definition.** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of non-negative real numbers is said to be **alternating** if $(-1)^{n+1}a_n$ is non-negative for all $n \in \mathbb{N}$.
If $\{a_n\}_{n \in \mathbb{N}}$ is an alternating sequence, then the series $\sum_{n=1}^{\infty} a_n$ generated by it is called an **alternating series**.

Tests for conditional convergence

- ▶ **Definition.** A sequence $\{a_n\}_{n \in \mathbb{N}}$ of non-negative real numbers is said to be **alternating** if $(-1)^{n+1}a_n$ is non-negative for all $n \in \mathbb{N}$.
If $\{a_n\}_{n \in \mathbb{N}}$ is an alternating sequence, then the series $\sum_{n=1}^{\infty} a_n$ generated by it is called an **alternating series**.
- ▶ **Theorem (Alternating Series Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a decreasing sequence of positive reals such that $\lim_{n \rightarrow \infty} a_n = 0$. Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1}a_n$ is convergent.

► **Theorem (Dirichlet's Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n \rightarrow \infty} a_n = 0$ and let the sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ of $\sum_{n=1}^{\infty} b_n$ be bounded. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

► **Theorem (Dirichlet's Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n \rightarrow \infty} a_n = 0$ and let the sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ of $\sum_{n=1}^{\infty} b_n$ be bounded. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof: First, we prove a lemma.

- **Theorem (Dirichlet's Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n \rightarrow \infty} a_n = 0$ and let the sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ of $\sum_{n=1}^{\infty} b_n$ be bounded. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of reals and $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$ with $s_0 := 0$. If $m > n$, then

$$\sum_{k=n+1}^m a_k b_k = (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k. \quad (2)$$

- **Theorem (Dirichlet's Test).** Let $\{a_n\}_{n \in \mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n \rightarrow \infty} a_n = 0$ and let the sequence of partial sums $\{s_n\}_{n \in \mathbb{N}}$ of $\sum_{n=1}^{\infty} b_n$ be bounded. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of reals and $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$ with $s_0 := 0$. If $m > n$, then

$$\sum_{k=n+1}^m a_k b_k = (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k. \quad (2)$$

Proof of the lemma:

$$\begin{aligned} \sum_{k=n+1}^m a_k b_k &= \sum_{k=n+1}^m a_k (s_k - s_{k-1}) \\ &= -a_{n+1} s_n + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k + a_m s_m = \text{RHS of (2)} \end{aligned}$$

Proof of the theorem: Let $\epsilon > 0$ be given.

Proof of the theorem: Let $\epsilon > 0$ be given. Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$.

Proof of the theorem: Let $\epsilon > 0$ be given. Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$. By Abel's lemma, for $m > n$ we have

$$\begin{aligned}
 \left| \sum_{k=n+1}^m a_k b_k \right| &= \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right| \\
 &\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k| \\
 &\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M \\
 &= \{(a_m + a_{n+1}) + (a_{n+1} - a_m)\} M = 2a_{n+1} M \quad (3)
 \end{aligned}$$

Proof of the theorem: Let $\epsilon > 0$ be given. Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$. By Abel's lemma, for $m > n$ we have

$$\begin{aligned}
 \left| \sum_{k=n+1}^m a_k b_k \right| &= \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right| \\
 &\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k| \\
 &\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M \\
 &= \{(a_m + a_{n+1}) + (a_{n+1} - a_m)\} M = 2a_{n+1} M \quad (3)
 \end{aligned}$$

Since $\lim_{n \rightarrow \infty} a_n = 0$, there exists $K \in \mathbb{N}$ such that $|a_n| < \frac{\epsilon}{2M}, \forall n \geq K$.

Proof of the theorem: Let $\epsilon > 0$ be given. Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$. By Abel's lemma, for $m > n$ we have

$$\begin{aligned}
 \left| \sum_{k=n+1}^m a_k b_k \right| &= \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right| \\
 &\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k| \\
 &\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M \\
 &= \{(a_m + a_{n+1}) + (a_{n+1} - a_m)\} M = 2a_{n+1} M \quad (3)
 \end{aligned}$$

Since $\lim_{n \rightarrow \infty} a_n = 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n| < \frac{\epsilon}{2M}, \quad \forall n \geq K.$$

Therefore, by (3) we have $|\sum_{k=n+1}^m a_k b_k| < \epsilon, \forall m > n \geq K$.

Proof of the theorem: Let $\epsilon > 0$ be given. Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that $|s_n| \leq M, \forall n \in \mathbb{N}$. By Abel's lemma, for $m > n$ we have

$$\begin{aligned}
 \left| \sum_{k=n+1}^m a_k b_k \right| &= \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right| \\
 &\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k| \\
 &\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M \\
 &= \{(a_m + a_{n+1}) + (a_{n+1} - a_m)\} M = 2a_{n+1} M \quad (3)
 \end{aligned}$$

Since $\lim_{n \rightarrow \infty} a_n = 0$, there exists $K \in \mathbb{N}$ such that

$$|a_n| < \frac{\epsilon}{2M}, \quad \forall n \geq K.$$

Therefore, by (3) we have $|\sum_{k=n+1}^m a_k b_k| < \epsilon, \forall m > n \geq K$.

Since $\epsilon > 0$ is arbitrary, by Cauchy criterion, it follows that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_n b_n = (u_n + a)b_n = u_n b_n + a b_n, \quad \forall n \in \mathbb{N} \quad (4)$$

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_n b_n = (u_n + a)b_n = u_n b_n + a b_n, \quad \forall n \in \mathbb{N} \quad (4)$$

Now, $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$ is bounded.

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_n b_n = (u_n + a)b_n = u_n b_n + a b_n, \quad \forall n \in \mathbb{N} \quad (4)$$

Now, $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$ is bounded.

Therefore, by Dirichlet's test, the series $\sum_{n=1}^{\infty} u_n b_n$ is convergent.

Theorem (Abel's Test). Let $\{a_n\}_{n \in \mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty} b_n$ be convergent. Then the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n \in \mathbb{N}}$ be decreasing with limit a .

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_n b_n = (u_n + a)b_n = u_n b_n + ab_n, \quad \forall n \in \mathbb{N} \quad (4)$$

Now, $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$ is bounded.

Therefore, by Dirichlet's test, the series $\sum_{n=1}^{\infty} u_n b_n$ is convergent. This implies by (4) that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent, because by hypothesis $\sum_{n=1}^{\infty} b_n$ is convergent.

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .
Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and

$$a_n b_n = (a - u_n) b_n = ab_n - u_n b_n, \quad \forall n \in \mathbb{N}.$$

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and

$$a_n b_n = (a - u_n) b_n = ab_n - u_n b_n, \quad \forall n \in \mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent. ■

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and

$$a_n b_n = (a - u_n) b_n = ab_n - u_n b_n, \quad \forall n \in \mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent. ■

Examples.

(i) $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$ is convergent by Dirichlet's test.

Case (ii): Let $\{a_n\}_{n \in \mathbb{N}}$ be increasing with limit a .

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n \in \mathbb{N}}$ is decreasing with limit 0 and

$$a_n b_n = (a - u_n) b_n = ab_n - u_n b_n, \quad \forall n \in \mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent. ■

Examples.

(i) $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$ is convergent by Dirichlet's test.

(ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\sqrt{n}}$ is convergent by Abel's test.

Grouping of series

- Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.

Grouping of series

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ▶ For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2} \right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} \right) - \frac{1}{8^2} + \cdots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

Grouping of series

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ▶ For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2} \right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} \right) - \frac{1}{8^2} + \dots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.

Grouping of series

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ▶ For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2} \right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} \right) - \frac{1}{8^2} + \dots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.
- ▶ More precisely,

Theorem. If a series $\sum_{n=1}^{\infty} a_n$ is convergent, then any series obtained from it by grouping the terms also converges to the same value.

Grouping of series

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ▶ For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2} \right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} \right) - \frac{1}{8^2} + \dots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.
- ▶ More precisely,

Theorem. If a series $\sum_{n=1}^{\infty} a_n$ is convergent, then any series obtained from it by grouping the terms also converges to the same value.

Proof: Exercise

Rearrangements of series

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Rearrangements of series

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent, say to a sum s (In fact $s = \ln(2)$).

Rearrangements of series

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent, say to a sum s (In fact $s = \ln(2)$).
- ▶ Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

Rearrangements of series

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent, say to a sum s (In fact $s = \ln(2)$).
- ▶ Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

- ▶ Let s_n be the n^{th} partial sum of the original series and t_n be the n^{th} partial sum of this rearranged series.

Rearrangements of series

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent, say to a sum s (In fact $s = \ln(2)$).
- ▶ Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

- ▶ Let s_n be the n^{th} partial sum of the original series and t_n be the n^{th} partial sum of this rearranged series.
- ▶ Then

$$\begin{aligned} t_{3n} &= \left(1 - \frac{1}{2} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n}\right) + \cdots \\ &= \left(\frac{1}{2} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{4n-2} - \frac{1}{4n}\right) + \cdots \\ &= \frac{s_{2n}}{2} \rightarrow \frac{s}{2} \end{aligned}$$

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \rightarrow \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \rightarrow \frac{s}{2}$$

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \rightarrow \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \rightarrow \frac{s}{2}$$

► Therefore $\lim_{n \rightarrow \infty} t_n = \frac{s}{2}$.

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \rightarrow \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \rightarrow \frac{s}{2}$$

- ▶ Therefore $\lim_{n \rightarrow \infty} t_n = \frac{s}{2}$.
- ▶ Thus the rearranged series may converge to a sum different from that of the given series.

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \rightarrow \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \rightarrow \frac{s}{2}$$

- ▶ Therefore $\lim_{n \rightarrow \infty} t_n = \frac{s}{2}$.
- ▶ Thus the rearranged series may converge to a sum different from that of the given series.
- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.