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Recall

I Definition. Let {an}n∈N be a sequence of real numbers. We
say that

∑∞
n=1 an is

(i) absolutely convergent if
∑∞

n=1 |an| is convergent;
(ii) conditionally convergent if it is convergent, but not absolutely

convergent.

I Theorem. Every absolutely convergent series is convergent.

I Theorem (Cauchy’s Root Test).
Let {an}n∈N be a real sequence and suppose that

r := lim
n→∞

|an|
1
n

exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.
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I Theorem (D’Alembert Ratio Test).
Let {an}n∈N be a sequence of nonzero real numbers and
suppose that

r := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists in R.

(i) If r < 1, then the series
∑∞

n=1 an is absolutely convergent.
(ii) If r > 1, then the series

∑∞
n=1 an is divergent.

I Definition. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their
Cauchy product is the series

∑∞
n=0 cn, where

cn :=
∑n

k=0 akbn−k .

I Remark. The Cauchy product of two convergent series need
not be convergent.
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Convergence of Cauchy product

I Theorem (Mertens’ Theorem). Let
∑∞

n=0 an be absolutely
convergent and

∑∞
n=0 bn be convergent. If

∑∞
n=0 an = a and∑∞

n=0 bn = b, then their Cauchy product
∑∞

n=0 cn is
convergent and

∑∞
n=0 cn = ab.

Proof: Let {sn}n∈N, {tn}n∈N and {un}n∈N be the sequence of
partial sums of

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn, respectively.

Then for all n ∈ N ∪ {0}, we have

un = c0 + c1 + · · ·+ cn

= (a0b0) + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0(b0 + · · ·+ bn) + a1(b0 + · · ·+ bn−1) + · · ·+ anb0

= a0tn + a1tn−1 + · · ·+ ant0

= a0tn + a1tn−1 + · · ·+ ant0 −

(
n∑

k=0

ak

)
b + snb

= a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb,
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i.e.,

cn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) + snb

= vn + snb, (1)

where vn = a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b) for all
n ∈ N ∪ {0}.

Now, since lim
n→∞

snb = ab, in view of (1), to prove that

lim
n→∞

cn = ab, it suffices to prove that lim
n→∞

vn = 0.

Proof of the claim that lim
n→∞

vn = 0: Let ε > 0 be arbitrary.

Since lim
n→∞

(tn − b) = 0, there exists K1 ∈ N such that

|tn − b| < ε, ∀n ≥ K1.

Since {tn − b}n∈N∪{0} is bounded, there exists M > 0 such that

|tn − b| ≤ M, ∀n ∈ N.
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Since
∑∞

n=1 an is absolutely convergent, say
∑∞

n=1 |an| = α,by
Cauchy criterion there exists K2 ∈ N such that

|an+1|+ |an+2|+ · · · |am| < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}. Then for all n ≥ 2K , we have

|vn| = |a0(tn − b) + a1(tn−1 − b) + · · ·+ an(t0 − b)|
≤ |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an||t0 − b|
= |a0||tn − b|+ |a1||tn−1 − b|+ · · ·+ |an−K ||tn+K − b|

+ |an−K+1||tn+K−1 − b|+ · · ·+ |an||t0 − b|
≤ (|a0|+ |a1|+ · · ·+ |an−K |)ε

+ (|an−K+1|+ · · ·+ |an|)M
≤ αε+ εM

= (α + M)ε.

Since ε > 0 is arbitrary, it follows that lim
n→∞

vn = 0. This completes

the proof.
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Tests for conditional convergence

I Definition. A sequence {an}n∈N of non-negative real numbers
is said to be alternating if (−1)n+1an is non-negative for all
n ∈ N.

If {an}n∈N is an alternating sequence, then the series
∑∞

n=1 an
generated by it is called an alternating series.

I Theorem (Alternating Series Test). Let {an}n∈N be a
decreasing sequence of positive reals such that lim

n→∞
an = 0.

Then the alternating series
∑∞

n=1(−1)n+1an is convergent.
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I Theorem (Dirichlet’s Test). Let {an}n∈N be a decreasing
sequence of reals with lim

n→∞
an = 0 and let the sequence of

partial sums {sn}n∈N of
∑∞

n=1 bn be bounded. Then the series∑∞
n=1 anbn is convergent.

Proof: First, we prove a lemma.

Abel’s Lemma. Let {an}n∈N be a sequence of reals and
{sn}n∈N be the sequence of partial sums of

∑∞
n=1 bn with

s0 := 0. If m > n, then

m∑
k=n+1

akbk = (amsm − an+1sn) +
m−1∑

k=n+1

(ak − ak+1)sk . (2)

Proof of the lemma:
m∑

k=n+1

akbk =
m∑

k=n+1

ak(sk − sk−1)

= −an+1sn +
m−1∑

k=n+1

(ak − ak+1)sk + amsm = RHS of (2)
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Proof of the theorem: Let ε > 0 be given.

Since {sn}n∈N is
bounded, there exists M > 0 such that |sn| ≤ M, ∀n ∈ N.
By Abel’s lemma, for m > n we have∣∣∣∣∣

m∑
k=n+1

akbk

∣∣∣∣∣ =

∣∣∣∣∣(amsm − an+1sn) +
m−1∑

k=n+1

(ak − ak+1)sk

∣∣∣∣∣
≤ |am||sm|+ |an+1||sn|+

m−1∑
k=n+1

|ak − ak+1||sk |

≤ (am + an+1)M +
m−1∑

k=n+1

(ak − ak+1)M

= {(am + an+1) + (an+1 − am)}M = 2an+1M (3)

Since lim
n→∞

an = 0, there exists K ∈ N such that

|an| < ε
2M , ∀n ≥ K .

Therefore, by (3) we have |
∑m

k=n+1 akbk | < ε, ∀m > n ≥ K .
Since ε > 0 is arbitrary, by Cauchy criterion, it follows that∑∞

n=1 anbn is convergent. �
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Theorem (Abel’s Test). Let {an}n∈N be a convergent monotone
sequence and let the series

∑∞
n=1 bn be convergent. Then the

series
∑∞

n=1 anbn is convergent.

Proof:

Case (i): Let {an}n∈N be decreasing with limit a.
Set un = an − a, ∀n ∈ N.
Then

anbn = (un + a)bn = unbn + abn, ∀n ∈ N (4)

Now, {un}n∈N is decreasing with limit 0 and the sequence of
partial sums of

∑∞
n=1 bn. is bounded.

Therefore, by Dirichlet’s test, the series
∑∞

n=1 unbn is convergent.
This implies by (4) that the series

∑∞
n=1 anbn is convergent,

because by hypothesis
∑∞

n=1 bn is convergent.
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Case (ii): Let {an}n∈N be increasing with limit a.

Set un = a− an, ∀n ∈ N.
Then {un}n∈N is decreasing with limit 0 and

anbn = (a− un)bn = abn − unbn, ∀n ∈ N.

Therefore, by an argument similar to above, it follows that the
series

∑∞
n=1 anbn is convergent. �

Examples.

(i)
∑∞

n=1
1
n sin

(
nπ
2

)
is convergent by Dirichlet’s test.

(ii)
∑∞

n=1
(−1)n+1

n
√
n

is convergent by Abel’s test.
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Grouping of series

I Given a series
∑∞

n=1 an, we can construct many other series∑∞
n=1 bn by leaving the order of the terms an fixed, but

inserting parentheses that group together finite number of
terms.

I For example, the series

1− 1

22
+

(
1

32
− 1

42

)
+

(
1

52
− 1

62
+

1

72

)
− 1

82
+ · · ·

is obtained by grouping the terms in the series
∑∞

n=1
(−1)n+1

n2
.

I It is an interesting fact that such grouping does not affect the
convergence or the sum of a convergent series.

I More precisely,
Theorem. If a series

∑∞
n=1 an is convergent, then any series

obtained from it by grouping the terms also converges to the
same value.
Proof: Exercise
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Rearrangements of series

I Consider the alternating harmonic series
∑∞

n=1
(−1)n+1

n .

I We know that it is convergent, say to a sum s (In fact
s = ln(2)).

I Rearrange the above series in such a way that two negative
terms follow a positive term:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·+ 1

2n − 1
− 1

4n − 2
− 1

4n
+ · · ·

I Let sn be the nth partial sum of the original series and tn be
the nth partial sum of this rearranged series.

I Then

t3n =

(
1− 1

2
− 1

4

)
+ · · ·+

(
1

2n − 1
− 1

4n − 2
− 1

4n

)
+ · · ·

=

(
1

2
− 1

4

)
+ · · ·+

(
1

4n − 2
− 1

4n

)
+ · · ·

=
s2n
2
→ s

2
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I

t3n+1 = t3n +
1

2n + 1
=

s2n
2

+
1

2n + 1
→ s

2

t3n+2 = t3n +
1

2n + 1
− 1

4n + 2
=

s2n
2

+
1

2n + 1
+

1

4n + 2
→ s

2

I Therefore lim
n→∞

tn = s
2 .

I Thus the rearranged series may converge to a sum different
from that of the given series.

I Definition. A series
∑∞

n=1 bn is said to be a rearrangement of
a series

∑∞
n=1 an if there is a bijection f of N onto N such

that bk = af (k) for all k ∈ N.
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