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Rearrangements of series

I Definition. A series
∑∞

n=1 bn is said to be a rearrangement of
a series

∑∞
n=1 an if there is a bijection f of N onto N such

that bk = af (k) for all k ∈ N.

I Consider the alternating harmonic series
∑∞

n=1
(−1)n+1

n .

I We know that it is convergent and its sum is s = ln(2).

I We have also seen that the rearranged series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·+ 1

2n − 1
− 1

4n − 2
− 1

4n
+ · · ·

is convergent and its sum is s
2

I Thus the rearranged series may converge to a sum different
from that of the given series.

I However, things are not that bad when we deal with
absolutely convergent series.
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I Theorem (Rearrangement theorem). If
∑∞

n=1 an is absolutely
convergent, then any rearrangement

∑∞
n=1 bn of

∑∞
n=1 an

converges to the same value.

Proof: Let {sn}n∈N be the sequence of partial sums of∑∞
n=1 an and let

∑∞
n=1 an = a.

Let {tn}n∈N be the sequence of partial sums of
∑∞

n=1 bn
Claim: lim

n→∞
tn = a.

Let ε > 0 be arbitrary.
Since lim

n→∞
sn = a, there exists K1 ∈ N such that

|sn − a| < ε, ∀n ≥ K1.

Since
∑∞

n=1 |an| is convergent, by Cauchy criterion, there
exists K2 ∈ N such that

m∑
k=n+1

|ak | < ε, ∀m > n ≥ K2.

Let K := max{K1,K2}.
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Then K ∈ N such that

|sn − a| < ε and
m∑

k=K+1

|ak | < ε for all n,m > K .

Choose M ∈ N such that all of the terms a1, a2, . . . , aK are
contained as summands in tM .
Then it follows that if l ≥ M, then tl − sK+1 is the sum of a finite
number of terms ak with index k > K .
Hence, for some m > K , we have

|tl − sK+1| ≤
m∑

k=K+1

|ak | < ε.

Therefore, if l ≥ M, we have

|tl − a| ≤ |tl − sK+1|+ |sK+1 − a| < ε+ ε = 2ε.

Since ε > 0 is arbitrary, we conclude that lim
n→∞

tn = a. �.
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I The next theorem is in contrast with the Rearrangement
theorem and it says something very dramatic and surprising.

I Theorem (Riemann’s theorem). A conditionally convergent
series can be made to converge to any arbitrary real number or
even made to diverge by a suitable rearrangement of its terms.

I Thus there are rearrangements of
∑∞

n=1
(−1)n+1

n which

converge to 1√
2

, 3
√

5, and so on.

I This theorem should convince us of the danger of
manipulating an infinite series without any attention to
rigorous analysis.

I To prove this theorem, we need the notions of positive and
negative parts of a series.
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I Given a series
∑∞

n=1 an, let

a+n := max{an, 0} and a−n := −min{an, 0}.

I We call the series
∑∞

n=1 a
+
n as the series of positive terms of∑∞

n=1 an. Similarly, we call series
∑∞

n=1 a
−
n as the series of

negative terms of
∑∞

n=1 an.

I Note that all the terms of both these series are non-negative.

I For example, if an = (−1)n+1

n , then

∞∑
n=1

a+n = 1 + 0 +
1

3
+ 0 +

1

5
+ · · ·

and
∞∑
n=1

a−n = 0 +
1

2
+ 0 +

1

4
+ 0 + · · ·
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I Proposition. If
∑∞

n=1 an is conditionally convergent, then∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n are both divergent.

Proof: Let {sn}n∈N, {tn}n∈N, {u+n }n∈N and {u−n }n∈N be the
sequence of partial sums of

∑∞
n=1 an,

∑∞
n=1 |an|,

∑∞
n=1 a

+
n

and
∑∞

n=1 a
−
n , respectively.

Note that u+n is the sum of non-negative terms in sn and −u−n
is the sum of the negative terms in sn for all n ∈ N.

Therefore we have

tn =
n∑

k=1

|ak | = u+n + u−n and sn = u+n − u−n for all n ∈ N

Let lim
n→∞

sn = s.

Observe that both {u+n }n∈N and {u−n }n∈N are increasing.

By hypothesis
∑∞

n=1 |an| is divergent, which implies that
lim
n→∞

tn =∞.
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I Sketch of the proof of Riemann’s theorem:
I Let

∑∞
n=1 an be a conditionally convergent series and let c ∈ R

be fixed.

I Then both
∑∞

n=1 a
+
n and

∑∞
n=1 a

−
n diverges to infinity.

I Choose the least K1 ∈ N such that
∑K1

n=1 a
+
n exceeds c .

I Then subtract just enough terms from {a−n } so that the
resulting sums is less than c .

I And, so on.
I These steps are possible since both

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n

diverges to infinity.
I Obviously, we obtain a rearrangement of

∑∞
n=1 an.

I Exploit the fact that an → 0 to estimate at each step how
much the sum differ from c .

I It follows that the sequence of partial sums of the rearranged
series converges to c .

I Reference: Theorem 3.54 in [Walter Rudin, Principles of
Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis,
Addison-Wesley Publishing Company, Inc., 1974]
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Infinite products

I Similar to
∑∞

n=1 an, it is natural to ask: What is the meaning
of

∏∞
n=1 an when {an}n∈N is a real sequence?

I Definition. Let {an}n∈N be a sequence of real numbers.
An expression of the form

∏∞
n=1 an is called an infinite

product.
For each n ∈ N, the finite product pn =

∏n
k=1 ak is called the

nth partial product of
∏∞

n=1 an.
For each n ∈ N, the number an is called the nth factor of∏∞

n=1 an.
The symbol

∏∞
n=N+1 an means

∏∞
n=1 aN+n.

I By analogy with infinite series, it seems natural to call the
product

∏∞
n=1 an converges if {pn}n∈N converges.

I However, this definition is inconvenient since every product
having one factor zero would converge regardless of the
behavior of the other factors.
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I By analogy with infinite series, it seems natural to call the
product

∏∞
n=1 an converges if {pn}n∈N converges.

I However, this definition is inconvenient since every product
having one factor zero would converge regardless of the
behavior of the other factors.
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Convergence of infinite products

I Definition. Let
∏∞

n=1 an be an infinite product of real
numbers.

(i) If infinitely many factors an are zero, then we say that the
product diverges to zero.

(ii) If no factor an is zero, then we say that the product is
convergent if there exists a real number p 6= 0 such that
lim

n→∞
pn = p.

In this case, p is called the value of the product and we write
p =

∏∞
n=1 an.

If lim
n→∞

pn = 0., then we say that the product diverges to zero.

(iii) If there exists an N ∈ N such that n > N implies an 6= 0, then
we say that

∏∞
n=1 an is convergent provided that

∏∞
n=N+1 an

converges as described in (ii).
In this case the value of the product

∏∞
n=1 an is

a1a2 · · · aN
∞∏

n=N+1

an.

(iv)
∏∞

n=1 an is called divergent if it does not converge as described
in (ii) or (iii).
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I Note that value of a convergent infinite product can be zero.
But this happen if and only if a finite number of factors are
zero.

I The convergence of an infinite product is not affected by
inserting or removing a finite number of factors, zero or not.

I This fact makes the above definition very convenient.

I Theorem (Cauchy criterion). The infinite product
∏∞

n=1 an is
convergent if and only if for every ε > 0, there exists an
N ∈ N such that

|an+1an+2 · · · am − 1| < ε, ∀m > n ≥ N.

I Theorem. If
∏∞

n=1 an is convergent, then lim
n→∞

an = 1.

I For this reason, the factors of a product are written as 1 + an
instead of just an. Thus, if

∏∞
n=1(1 + an) is convergent, then

lim
n→∞

an = 0.
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I Theorem. Let an > 0 for all n ∈ N. Then
∏∞

n=1(1 + an) is
convergent if and only if

∑∞
n=1 an is convergent.

I Definition. The product
∏∞

n=1(1 + an) is said to be absolutely
convergent if

∏∞
n=1(1 + |an|) is convergent.

I Theorem. If
∏∞

n=1(1 + an) is absolutely convergent, then it is
convergent.

I Theorem. The product
∏∞

n=1(1 + an) is absolutely convergent
if and only if

∑∞
n=1 an is absolutely convergent.

I Reference: pp. 206-209 of [Tom M. Apostol, Mathematical
Analysis, Addison-Wesley Publishing Company, Inc., 1974]
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