

ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent and its sum is $s = \ln(2)$.

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent and its sum is $s = \ln(2)$.
- ▶ We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

is convergent and its sum is $\frac{s}{2}$

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent and its sum is $s = \ln(2)$.
- ▶ We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

is convergent and its sum is $\frac{s}{2}$

- ▶ Thus the rearranged series may converge to a sum different from that of the given series.

Rearrangements of series

- ▶ **Definition.** A series $\sum_{n=1}^{\infty} b_n$ is said to be a **rearrangement** of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.
- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- ▶ We know that it is convergent and its sum is $s = \ln(2)$.
- ▶ We have also seen that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

is convergent and its sum is $\frac{s}{2}$

- ▶ Thus the rearranged series may converge to a sum different from that of the given series.
- ▶ However, things are not that bad when we deal with absolutely convergent series.

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

Claim: $\lim_{n \rightarrow \infty} t_n = a$.

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

Claim: $\lim_{n \rightarrow \infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

► **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

Claim: $\lim_{n \rightarrow \infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} s_n = a$, there exists $K_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \quad \forall n \geq K_1.$$

- **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

Claim: $\lim_{n \rightarrow \infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} s_n = a$, there exists $K_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \quad \forall n \geq K_1.$$

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K_2 \in \mathbb{N}$ such that

$$\sum_{k=n+1}^m |a_k| < \epsilon, \quad \forall m > n \geq K_2.$$

- **Theorem (Rearrangement theorem).** If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then any rearrangement $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ converges to the same value.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and let $\sum_{n=1}^{\infty} a_n = a$.

Let $\{t_n\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$

Claim: $\lim_{n \rightarrow \infty} t_n = a$.

Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \rightarrow \infty} s_n = a$, there exists $K_1 \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon, \quad \forall n \geq K_1.$$

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K_2 \in \mathbb{N}$ such that

$$\sum_{k=n+1}^m |a_k| < \epsilon, \quad \forall m > n \geq K_2.$$

Let $K := \max\{K_1, K_2\}$.

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $l \geq M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index $k > K$.

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $l \geq M$, then $t_l - s_{K+1}$ is the sum of a finite number of terms a_k with index $k > K$.

Hence, for some $m > K$, we have

$$|t_l - s_{K+1}| \leq \sum_{k=K+1}^m |a_k| < \epsilon.$$

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $I \geq M$, then $t_I - s_{K+1}$ is the sum of a finite number of terms a_k with index $k > K$.

Hence, for some $m > K$, we have

$$|t_I - s_{K+1}| \leq \sum_{k=K+1}^m |a_k| < \epsilon.$$

Therefore, if $I \geq M$, we have

$$|t_I - a| \leq |t_I - s_{K+1}| + |s_{K+1} - a| < \epsilon + \epsilon = 2\epsilon.$$

Then $K \in \mathbb{N}$ such that

$$|s_n - a| < \epsilon \text{ and } \sum_{k=K+1}^m |a_k| < \epsilon \text{ for all } n, m > K.$$

Choose $M \in \mathbb{N}$ such that all of the terms a_1, a_2, \dots, a_K are contained as summands in t_M .

Then it follows that if $I \geq M$, then $t_I - s_{K+1}$ is the sum of a finite number of terms a_k with index $k > K$.

Hence, for some $m > K$, we have

$$|t_I - s_{K+1}| \leq \sum_{k=K+1}^m |a_k| < \epsilon.$$

Therefore, if $I \geq M$, we have

$$|t_I - a| \leq |t_I - s_{K+1}| + |s_{K+1} - a| < \epsilon + \epsilon = 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we conclude that $\lim_{n \rightarrow \infty} t_n = a$.

- ▶ The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.

- ▶ The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ▶ **Theorem (Riemann's theorem).** A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.

- ▶ The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ▶ **Theorem (Riemann's theorem).** A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ▶ Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.

- ▶ The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ▶ **Theorem (Riemann's theorem).** A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ▶ Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.
- ▶ This theorem should convince us of the danger of manipulating an infinite series without any attention to rigorous analysis.

- ▶ The next theorem is in contrast with the Rearrangement theorem and it says something very dramatic and surprising.
- ▶ **Theorem (Riemann's theorem).** A conditionally convergent series can be made to converge to any arbitrary real number or even made to diverge by a suitable rearrangement of its terms.
- ▶ Thus there are rearrangements of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which converge to $\frac{1}{\sqrt{2}}$, $\sqrt[3]{5}$, and so on.
- ▶ This theorem should convince us of the danger of manipulating an infinite series without any attention to rigorous analysis.
- ▶ To prove this theorem, we need the notions of positive and negative parts of a series.

- Given a series $\sum_{n=1}^{\infty} a_n$, let

$$a_n^+ := \max\{a_n, 0\} \quad \text{and} \quad a_n^- := -\min\{a_n, 0\}.$$

- Given a series $\sum_{n=1}^{\infty} a_n$, let

$$a_n^+ := \max\{a_n, 0\} \quad \text{and} \quad a_n^- := -\min\{a_n, 0\}.$$

- We call the series $\sum_{n=1}^{\infty} a_n^+$ as the **series of positive terms** of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the **series of negative terms** of $\sum_{n=1}^{\infty} a_n$.

- Given a series $\sum_{n=1}^{\infty} a_n$, let

$$a_n^+ := \max\{a_n, 0\} \quad \text{and} \quad a_n^- := -\min\{a_n, 0\}.$$

- We call the series $\sum_{n=1}^{\infty} a_n^+$ as the **series of positive terms** of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the **series of negative terms** of $\sum_{n=1}^{\infty} a_n$.
- Note that all the terms of both these series are non-negative.

- Given a series $\sum_{n=1}^{\infty} a_n$, let

$$a_n^+ := \max\{a_n, 0\} \quad \text{and} \quad a_n^- := -\min\{a_n, 0\}.$$

- We call the series $\sum_{n=1}^{\infty} a_n^+$ as the **series of positive terms** of $\sum_{n=1}^{\infty} a_n$. Similarly, we call series $\sum_{n=1}^{\infty} a_n^-$ as the **series of negative terms** of $\sum_{n=1}^{\infty} a_n$.
- Note that all the terms of both these series are non-negative.
- For example, if $a_n = \frac{(-1)^{n+1}}{n}$, then

$$\sum_{n=1}^{\infty} a_n^+ = 1 + 0 + \frac{1}{3} + 0 + \frac{1}{5} + \dots$$

and

$$\sum_{n=1}^{\infty} a_n^- = 0 + \frac{1}{2} + 0 + \frac{1}{4} + 0 + \dots$$

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^- \quad \text{and} \quad s_n = u_n^+ - u_n^- \quad \text{for all } n \in \mathbb{N}$$

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^- \quad \text{and} \quad s_n = u_n^+ - u_n^- \quad \text{for all } n \in \mathbb{N}$$

Let $\lim_{n \rightarrow \infty} s_n = s$.

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^- \quad \text{and} \quad s_n = u_n^+ - u_n^- \quad \text{for all } n \in \mathbb{N}$$

Let $\lim_{n \rightarrow \infty} s_n = s$.

Observe that both $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ are increasing.

► **Proposition.** If $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are both divergent.

Proof: Let $\{s_n\}_{n \in \mathbb{N}}$, $\{t_n\}_{n \in \mathbb{N}}$, $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$, respectively.

Note that u_n^+ is the sum of non-negative terms in s_n and $-u_n^-$ is the sum of the negative terms in s_n for all $n \in \mathbb{N}$.

Therefore we have

$$t_n = \sum_{k=1}^n |a_k| = u_n^+ + u_n^- \quad \text{and} \quad s_n = u_n^+ - u_n^- \quad \text{for all } n \in \mathbb{N}$$

Let $\lim_{n \rightarrow \infty} s_n = s$.

Observe that both $\{u_n^+\}_{n \in \mathbb{N}}$ and $\{u_n^-\}_{n \in \mathbb{N}}$ are increasing.

By hypothesis $\sum_{n=1}^{\infty} |a_n|$ is divergent, which implies that $\lim_{n \rightarrow \infty} t_n = \infty$.

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that

$$-M \leq s_n \leq M, \quad \forall n \in \mathbb{N}.$$

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that

$$-M \leq s_n \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\lim_{n \rightarrow \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \quad \forall n \geq K.$$

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that

$$-M \leq s_n \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\lim_{n \rightarrow \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \quad \forall n \geq K.$$

Then $t_n + s_n > (2r + M) + (-M) = 2r, \forall n \geq K$, implying that

$$u_n^+ = \frac{t_n + s_n}{2} > \frac{2r}{2} = r, \quad \forall n \geq K.$$

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that

$$-M \leq s_n \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\lim_{n \rightarrow \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \quad \forall n \geq K.$$

Then $t_n + s_n > (2r + M) + (-M) = 2r, \forall n \geq K$, implying that

$$u_n^+ = \frac{t_n + s_n}{2} > \frac{2r}{2} = r, \quad \forall n \geq K.$$

Therefore $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Note that

$$u_n^+ = \frac{t_n + s_n}{2} \quad \text{and} \quad u_n^- = \frac{t_n - s_n}{2} \quad \text{for all } n \in \mathbb{N}$$

We shall show that $\lim_{n \rightarrow \infty} u_n^+ = \infty$.

Let $r > 0$ be arbitrary.

Since $\{s_n\}_{n \in \mathbb{N}}$ is bounded, there exists $M > 0$ such that

$$-M \leq s_n \leq M, \quad \forall n \in \mathbb{N}.$$

Since $\lim_{n \rightarrow \infty} t_n = \infty$, there exists $K \in \mathbb{N}$ such that

$$t_n > 2r + M, \quad \forall n \geq K.$$

Then $t_n + s_n > (2r + M) + (-M) = 2r, \forall n \geq K$, implying that

$$u_n^+ = \frac{t_n + s_n}{2} > \frac{2r}{2} = r, \quad \forall n \geq K.$$

Therefore $\lim_{n \rightarrow \infty} u_n^+ = \infty$. A similar argument shows that

$$\lim_{n \rightarrow \infty} u_n^- = \infty.$$

► Sketch of the proof of Riemann's theorem:

► Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .
- And, so on.

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .
- And, so on.
- These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .
- And, so on.
- These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .
- And, so on.
- These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
- Exploit the fact that $a_n \rightarrow 0$ to estimate at each step how much the sum differ from c .

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sums is less than c .
- And, so on.
- These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
- Exploit the fact that $a_n \rightarrow 0$ to estimate at each step how much the sum differ from c .
- It follows that the sequence of partial sums of the rearranged series converges to c .

► Sketch of the proof of Riemann's theorem:

- Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series and let $c \in \mathbb{R}$ be fixed.
- Then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Choose the least $K_1 \in \mathbb{N}$ such that $\sum_{n=1}^{K_1} a_n^+$ exceeds c .
- Then subtract just enough terms from $\{a_n^-\}$ so that the resulting sum is less than c .
- And, so on.
- These steps are possible since both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverges to infinity.
- Obviously, we obtain a rearrangement of $\sum_{n=1}^{\infty} a_n$.
- Exploit the fact that $a_n \rightarrow 0$ to estimate at each step how much the sum differ from c .
- It follows that the sequence of partial sums of the rearranged series converges to c .

► Reference: Theorem 3.54 in [Walter Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, Inc., 1974]

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} **partial product** of $\prod_{n=1}^{\infty} a_n$.

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} **partial product** of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} **factor** of $\prod_{n=1}^{\infty} a_n$.

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} **partial product** of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} **factor** of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} **partial product** of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} **factor** of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

- ▶ By analogy with infinite series, it seems natural to call the product $\prod_{n=1}^{\infty} a_n$ converges if $\{p_n\}_{n \in \mathbb{N}}$ converges.

Infinite products

- ▶ Similar to $\sum_{n=1}^{\infty} a_n$, it is natural to ask: What is the meaning of $\prod_{n=1}^{\infty} a_n$ when $\{a_n\}_{n \in \mathbb{N}}$ is a real sequence?
- ▶ **Definition.** Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. An expression of the form $\prod_{n=1}^{\infty} a_n$ is called an **infinite product**.

For each $n \in \mathbb{N}$, the finite product $p_n = \prod_{k=1}^n a_k$ is called the n^{th} **partial product** of $\prod_{n=1}^{\infty} a_n$.

For each $n \in \mathbb{N}$, the number a_n is called the n^{th} **factor** of $\prod_{n=1}^{\infty} a_n$.

The symbol $\prod_{n=N+1}^{\infty} a_n$ means $\prod_{n=1}^{\infty} a_{N+n}$.

- ▶ By analogy with infinite series, it seems natural to call the product $\prod_{n=1}^{\infty} a_n$ converges if $\{p_n\}_{n \in \mathbb{N}}$ converges.
- ▶ However, this definition is inconvenient since every product having one factor zero would converge regardless of the behavior of the other factors.

Convergence of infinite products

- ▶ **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

Convergence of infinite products

- **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.

Convergence of infinite products

- ▶ **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.
 - (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
 - (ii) If no factor a_n is zero, then we say that the product is **convergent** if there exists a real number $p \neq 0$ such that
$$\lim_{n \rightarrow \infty} p_n = p.$$

Convergence of infinite products

- **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

- (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
- (ii) If no factor a_n is zero, then we say that the product is **convergent** if there exists a real number $p \neq 0$ such that
$$\lim_{n \rightarrow \infty} p_n = p.$$

In this case, p is called the **value of the product** and we write
$$p = \prod_{n=1}^{\infty} a_n.$$

Convergence of infinite products

► **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

- (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
- (ii) If no factor a_n is zero, then we say that the product is

convergent if there exists a real number $p \neq 0$ such that

$$\lim_{n \rightarrow \infty} p_n = p.$$

In this case, p is called the **value of the product** and we write

$$p = \prod_{n=1}^{\infty} a_n.$$

If $\lim_{n \rightarrow \infty} p_n = 0$, then we say that the product diverges to zero.

Convergence of infinite products

- **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

- (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
- (ii) If no factor a_n is zero, then we say that the product is **convergent** if there exists a real number $p \neq 0$ such that
$$\lim_{n \rightarrow \infty} p_n = p.$$

In this case, p is called the **value of the product** and we write $p = \prod_{n=1}^{\infty} a_n$.

If $\lim_{n \rightarrow \infty} p_n = 0$, then we say that the product diverges to zero.

- (iii) If there exists an $N \in \mathbb{N}$ such that $n > N$ implies $a_n \neq 0$, then we say that $\prod_{n=1}^{\infty} a_n$ is convergent provided that $\prod_{n=N+1}^{\infty} a_n$ converges as described in (ii).

Convergence of infinite products

► **Definition.** Let $\prod_{n=1}^{\infty} a_n$ be an infinite product of real numbers.

- (i) If infinitely many factors a_n are zero, then we say that the product diverges to zero.
- (ii) If no factor a_n is zero, then we say that the product is **convergent** if there exists a real number $p \neq 0$ such that
$$\lim_{n \rightarrow \infty} p_n = p.$$

In this case, p is called the **value of the product** and we write $p = \prod_{n=1}^{\infty} a_n$.

If $\lim_{n \rightarrow \infty} p_n = 0$, then we say that the product diverges to zero.

- (iii) If there exists an $N \in \mathbb{N}$ such that $n > N$ implies $a_n \neq 0$, then we say that $\prod_{n=1}^{\infty} a_n$ is convergent provided that $\prod_{n=N+1}^{\infty} a_n$ converges as described in (ii).

In this case the value of the product $\prod_{n=1}^{\infty} a_n$ is

$$a_1 a_2 \cdots a_N \prod_{n=N+1}^{\infty} a_n.$$

- (iv) $\prod_{n=1}^{\infty} a_n$ is called **divergent** if it does not converge as described in (ii) or (iii).

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ▶ The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ▶ The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ▶ The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.
- ▶ **Theorem (Cauchy criterion).** The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2} \cdots a_m - 1| < \epsilon, \quad \forall m > n \geq N.$$

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ▶ The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.
- ▶ **Theorem (Cauchy criterion).** The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2} \cdots a_m - 1| < \epsilon, \quad \forall m > n \geq N.$$

- ▶ **Theorem.** If $\prod_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \rightarrow \infty} a_n = 1$.

- ▶ Note that value of a convergent infinite product can be zero. But this happen if and only if a finite number of factors are zero.
- ▶ The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- ▶ This fact makes the above definition very convenient.
- ▶ **Theorem (Cauchy criterion).** The infinite product $\prod_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_{n+1}a_{n+2} \cdots a_m - 1| < \epsilon, \quad \forall m > n \geq N.$$

- ▶ **Theorem.** If $\prod_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \rightarrow \infty} a_n = 1$.
- ▶ For this reason, the factors of a product are written as $1 + a_n$ instead of just a_n . Thus, if $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent, then $\lim_{n \rightarrow \infty} a_n = 0$.

► **Theorem.** Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.

- ▶ **Theorem.** Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ **Definition.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to be **absolutely convergent** if $\prod_{n=1}^{\infty} (1 + |a_n|)$ is convergent.

- ▶ **Theorem.** Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ **Definition.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to be **absolutely convergent** if $\prod_{n=1}^{\infty} (1 + |a_n|)$ is convergent.
- ▶ **Theorem.** If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.

- ▶ **Theorem.** Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ **Definition.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to be **absolutely convergent** if $\prod_{n=1}^{\infty} (1 + |a_n|)$ is convergent.
- ▶ **Theorem.** If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.
- ▶ **Theorem.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent if and only if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- ▶ **Theorem.** Let $a_n > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
- ▶ **Definition.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to be **absolutely convergent** if $\prod_{n=1}^{\infty} (1 + |a_n|)$ is convergent.
- ▶ **Theorem.** If $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent, then it is convergent.
- ▶ **Theorem.** The product $\prod_{n=1}^{\infty} (1 + a_n)$ is absolutely convergent if and only if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- ▶ **Reference:** pp. 206-209 of [Tom M. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, Inc., 1974]