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a series > 2, a, if there is a bijection f of N onto N such
that by = ar(k) for all k € N.
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» Thus the rearranged series may converge to a sum different
from that of the given series.

» However, things are not that bad when we deal with
absolutely convergent series.
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Since >"77 ; |an| is convergent, by Cauchy criterion, there
exists K> € N such that

m
Z lak| <€, Vm > n> Kj.
k=n+1

Let K := max{Ki, Ka}.
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Choose M € N such that all of the terms a1, ap,...,ak are

contained as summands in tp.

Then it follows that if / > M, then t; — sk is the sum of a finite
number of terms a, with index k > K.

Hence, for some m > K, we have

m
It — skl < D lad <e
k=K-+1

Therefore, if | > M, we have

]t,—a\ < ]t,—sK+1]+|sK+1—a\ <€+ €e=2e.

Since € > 0 is arbitrary, we conclude that lim t, = a. [}
n—o0
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theorem and it says something very dramatic and surprising.
Theorem (Riemann’s theorem). A conditionally convergent
series can be made to converge to any arbitrary real number or
even made to diverge by a suitable rearrangement of its terms.

U™ hich

Thus there are rearrangements of » 7 ;
converge to % v/5, and so on.
This theorem should convince us of the danger of

manipulating an infinite series without any attention to
rigorous analysis.

To prove this theorem, we need the notions of positive and
negative parts of a series.
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Given a series Y 2, ap, let

a) :=max{a,,0} and a, :=—min{a,,0}.

. S , "
We call the series ) .° ; aj as the series of positive terms of
302 1 an. Similarly, we call series > "2, a,, as the series of
negative terms of Y 0° , aj.

Note that all the terms of both these series are non-negative.

For example, if a, = = 1) i , then

— . 1 1
> a) =140+ 24+ 0+ 4+
n=1

and
oo

_ 1 1
;an =0+ 54047 +0+:+
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and Y77 a;,, respectively.
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Therefore we have
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Observe that both {u; },en and {u}, }hen are increasing.

By hypothesis > 72, |a,| is divergent, which implies that
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>

>

Let Y72, a, be a conditionally convergent series and let ¢ € R
be fixed.

Then both Y7, a} and >" 7 a; diverges to infinity.
Choose the least K; € N such that Zﬁl a} exceeds c.
Then subtract just enough terms from {a, } so that the
resulting sums is less than c.

And, so on.

These steps are possible since both 72, a and >~ 2, a;
diverges to infinity.

Obviously, we obtain a rearrangement of Zi‘;l an.

Exploit the fact that a, — 0 to estimate at each step how
much the sum differ from c.

It follows that the sequence of partial sums of the rearranged
series converges to c.

» Reference: Theorem 3.54 in [Walter Rudin, Principles of
Mathematical Analysis, Third Edition, McGraw Hill Inc., 1976]

or

Theorem 8.33 in [Tom M. Apostol, Mathematical Analysis,
Addison-Wesley Publishing Company, Inc., 1974]
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Similar to 77, ay, it is natural to ask: What is the meaning
of [1,2; an when {an} e is a real sequence?

Definition. Let {a,}nen be a sequence of real numbers.
An expression of the form [[72; a, is called an infinite
product.

Fohr each n e N, the ﬁnit;eo product p, = [];_; ax is called the
n®" partial product of [[;2 an.

For each n € N, the number a, is called the nth factor of
1221 an

The symbol []2 .1 an means [[72 anin.

By analogy with infinite series, it seems natural to call the
product [0, a, converges if {ps}nen converges.
However, this definition is inconvenient since every product

having one factor zero would converge regardless of the
behavior of the other factors.
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> Definition. Let ], a, be an infinite product of real
numbers.

(i)
(i)

(iii)

If infinitely many factors a, are zero, then we say that the
product diverges to zero.
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Convergence of infinite products

> Definition. Let ], a, be an infinite product of real
numbers.

(i)
(i)

(iii)

If infinitely many factors a, are zero, then we say that the
product diverges to zero.
If no factor a, is zero, then we say that the product is

convergent if there exists a real number p # 0 such that

lim p, = p.

n—oo

In this case, p is called the value of the product and we write

p=1I21an

If nILmOO pn = 0., then we say that the product diverges to zero.
If there exists an N € N such that n > N implies a, # 0, then
we say that [];°, a, is convergent provided that [~ ., an
converges as described in (ii).

In this case the value of the product [] 2, a, is

o0
diaz ---an H dp.

n=N+1

[152, an is called divergent if it does not converge as described

in (i) or (iii).
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Note that value of a convergent infinite product can be zero.
But this happen if and only if a finite number of factors are
zero.

The convergence of an infinite product is not affected by
inserting or removing a finite number of factors, zero or not.

This fact makes the above definition very convenient.

Theorem (Cauchy criterion). The infinite product []7; a5 is
convergent if and only if for every € > 0, there exists an
N € N such that

lant1dnt2--am— 1| <€ Ym>n> N.

» Theorem. If Hzozl an is convergent, then lim a, = 1.

n—oo

» For this reason, the factors of a product are written as 1 + a,

instead of just a,. Thus, if [[72;(1 + a,) is convergent, then

lim a, =0.
n—oo
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Theorem. Let a, > 0 for all n € N. Then [[72;(1 + a,) is
convergent if and only if > 7 a, is convergent.

Definition. The product []72;(1 4 an) is said to be absolutely
convergent if [[72;(1 + |as|) is convergent.

Theorem. If [[72;(1 + ap) is absolutely convergent, then it is
convergent.

Theorem. The product [[;2;(1 + an) is absolutely convergent
if and only if Y~°7; a, is absolutely convergent.

Reference: pp. 206-209 of [Tom M. Apostol, Mathematical
Analysis, Addison-Wesley Publishing Company, Inc., 1974]



