CompsSc 1

20 Sep 2021

Course description:

 Syllabus (Programming) Recommended Language: C Basic abilities of
writing, executing, and debugging programs. Basics: Conditional
statements, loops, block structure, functions and parameter passing, single
and multi-dimensional arrays, structures, pointers. Data Structures: stacks,
qgueues, linked lists, binary trees. Simple algorithmic problems: Some
simple illustrative examples, parsing of arithmetic expressions, matrix
operations, searching and sorting algorithms.

* Depending on how the class goes, we may or may not cover all the above.

* This is the old syllabus; look up the new syllabus on the website; most of it
is the same as above.

Text Book

 The C Programming Language | Second Edition | By Pearson. by
Brian W. Kernighan / Dennis Ritchie.

* You can try to get pdf online. E.qg.

* http://cslabcms.nju.edu.cn/problem_solving/images/c/cc/The C Pro
gramming_Language %282nd_Edition Ritchie Kernighan%?29.pdf

* Many other resources available online. Will specify some as we
progress.

e http://www.marcusramos.com.br/univasf/pc-2008-2/cb-sp-dahl.pdf -
Structured Programming

* https://seriouscomputerist.atariverse.com/media/pdf/book/Science%200of
%20Programming.pdft — Science ot Programming.

http://cslabcms.nju.edu.cn/problem_solving/images/c/cc/The_C_Programming_Language_%282nd_Edition_Ritchie_Kernighan%29.pdf
http://www.marcusramos.com.br/univasf/pc-2008-2/cb-sp-dahl.pdf
https://seriouscomputerist.atariverse.com/media/pdf/book/Science%20of%20Programming.pdf

Basic structure of a Computer Program

 What does a computer program do?
* Takes input, processes input, generates output.

* The entire process is written as “code”. The code specifies how to
accept inputs (from keyboard or from files) how to process and how
to generate output.

* A language to code like Cis written in a English like language with its
own grammar.

* The code has to be “compiled”, “linked” etc. before it is run or
executed. — Will not discuss this process in detail at this time.

* So we need a compiler to run and execute C code.

Structure of a C Program via Examples

e Suppose you want to use C to write the following sentence on your
screen “|am feeling great today”, what would you need to do?

* Obviously you need to know what the command in C that prints
something on screen. For reasons that will become obvious we will
call most of these commands as functions.

* Obviously you will also need to know how to put that
command/function in a few lines so as to obey the grammar of C so
that it can be compiled and executed to print that line on your screen

* By the way why do | keep underlining “on your screen”?

* Lets assume the function that writes on the screen has a name. It is called
“printf” in C. Suppose we write something like

printf “| am feeling great today”
and try to execute this.
* That will not work. The correct piece of code that will work is

r<stdio.h>
()
_(”I am feeling great today”);

}

* We will need to “compile and run the code” next. Before that discussion on
the code.

* Why do we need the first line?
* How does the program compiler, and execution know what “printf” is?

* A compiler will, among other things, look for this program in available
libraries that come with the C programming language.

* You have to tell the compiler where, which library, to look for printf

* stdio.h is such a library. #stdio.h tells the compiler to include all the functions
available in that “header file”

 What is main?
* main is a function that EVERY C program must have and will start with.
e Within main there can be other functions.

* Let us quote from the text book here.

Now for some explanations about the program itself. A C program, what-
ever its size, consists of functions and variables. A function contains state-
ments that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and
functions of Fortran or the procedures and functions of Pascal. Our example is
a function named, main. Normally you are at liberty to give functions whatever
names you like, but “main” is special—your program begins executing at the
beginning of main. This means that every program must have a main some-
where.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

tells the compiler to include information about the standard input/output
library; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

How to Compile

* You need to (you must for this course) install a C compiler on your
computer. There are many choices. What | recommend here for those who
have a Windows machine is to please download “code blocks” from

http://www.codeblocks.org/downloads

 UNLESS YOU ARE VERY SOPHISTICATED, download the binary from the
above site.

* For quick purposes you can compile and run small programs from the cloud
such as https://

www.onlinegdb.com/online ¢ compiler

We will show you both.

http://www.codeblocks.org/downloads
http://www.onlinegdb.com/online_c_compiler

Homework- 22Sep2021
(you need to do but not submit)

* Get a copy of the text book and read just upto and including section
1.1

* Download and install codeblocks and run the program discussed in
the class.

& C A Not secure | codeblocks.org/downloads

2 Apps B Maps h 1S Bangalore Onlin...

Features

Main

* Home

» Features

* Screenshots

» Downloads
o Binaries
o Source
o SVN

* Plugins

* User manual

* Licensing

* Donations

Quick links

* FAQ

* Wiki

* Forums

* Forums
(mobile)

« Nightlies

+ Ticket System

* Browse SVN

* Browse SVN
log

[HE1YE’

C o d e (1] B I o cks Code: Blocks - The IDE with all the features you need, having a consistent look, feel and operation across platforms.
|

Downloads Forums Wiki

Downloads

There are different ways to download and install Code::Blocks on your computer:

+ Download the binary release

This is the easy way for installing Code::Blocks. Download the setup file, run it on your computer and Code::Blocks will be installed, ready for you to work with it. Can't get a
thatl

+ Download a nightly build: There are also more recent so-called nightly builds available in the forums. Please note that we consider nightly builds to be stable, usu:
stated otherwise.

* Other distributions usually follow provided by the community (big "Thank youl” for thatl). If you want to provide some, make sure to announce in the forums such the
on the official C::B homepage.

+* Download the source code

If you feel comfortable building applications from source, then this is the recommend way to download Code::Blocks. Downloading the source code and building 1t yourself ¢
control and also makes it easier for you to update to newer versions or, even better, create patches for bugs you may find and contributing them back to the community so &
benefits.

+ Retrieve source code from SVN

This option is the most flexible of all but requires a little bit more work to setup. It gives you that much more flexibility though because you get access to any bug-fixing we dt
do it. No need to wait for the next stable release to benefit from bug-fixesl!

Besides Code: Blocks itself, you can compile extra plugins from contributors to extend its functionality.

Thank you for your interest in downloading Code::Blocks!

M Start here - CodexBlocks 20.03

File Edit View Search Project Build Debug Fortran wxSmith Tools

Tools+ Plugins DoxyBlocks Settings Help
BiP R LG Y NA B

toBEd et veRIQAR)grsa0

~

v dep

K |OMA ==EECoo|Q QS Cl Jaies|NEB R

#3 | <|0@ D]

.

| @ = 2 €} A *

Management X
‘ Projects Files FSyl "
@ Workspace

What Codeblocks looks

. Code::Blocks
|

The open source, cross-platform IDE

Release 20.03 rev 11983 (2020-03-12 18:24:30) gcc 8.1.0 Windows/unicode - 64 bit

[% "
E Create a new project %’t Open an existing project] Tip of the Day

@_. Visit the Code:Blocks forums Report a bug or request a new feature
'

Recent projects

No recent projects
Recent files

ﬁ C:\Users\utpal\DocumentstestC.c

IINE

Logs & others

[«] (3 Search results X Cccc X ﬁBuiIdlog X fBuiId messages X CppCheckNera++ X CppCheck.Nera++ messages X Cscope X ﬁDebugger X DoxyBIocks X BFO

File

Line

Message

Start here

H) Turmmem bmre Fm cmare b

Evaluations

* In Class Quizzes (typically once in two /three weeks, the exact date to
be communicated in the previous classes. Look for Moodle
notifications.

 We will do 7 -10 quizzes. We will discard the lowest two marks.

* All quizzes will have similar portion but may not have the exact same
total marks. We will normalize each quiz to 20 marks when we
compare quizzes to decide which to discard.

* 50% from the Quizzes; Rest 50% in the final exam.

* You can contact me in utpal@isibang.ac.in contacting me over
moodle is preferred.

mailto:utpal@isibang.ac.in

Today we will focus on

* Functions

* Variables

* Data Types

* Naming variables
e Keywords in C

Functions in C

* We have already seen two functions
* main()
* printf(“”)

e Generic structure of a function in C
(function return type) name_of function (argumentl, argument?2)

{

statement 1;
statement 2;

}

#include <stdio.h> include information about standard library

main() define a function named main
that receives no argument values

{ statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf

to print this sequence of characters;

} \n represents the newline character

The first C program.

example, main is defined to be a function that expects no arguments, which is
indicated by the empty list ().

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

printf("hello, world\n");

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of arguments,
so this calls the function printf with the argument "hello, world\n".
printf is a library function that prints output, in this case the string of char-
acters between the quotes.

A sequence of characters in double quotes, like "hello, world\n", is
called a character string or string constant. For the moment our only use of
character strings will be as arguments for printf£ and other functions.

Variables in C

e What is a variable?

* Suppose you want to compute factorial of a number. Say 100! You
must tell the computer that you will provide (input) the program
with an integer whose value is 100. And then instruct the code what
to do with that input. The computer must provide for a space in the
memory to keep that integer which it must be able to refer to by a
name. This is done by declaring a variable by specifying its type and
its name. e.g. in the above example int apx; is a declaration that the
variable whose name is apx will be an integer. Its data type is int

Variable

« Avariable is nothing but a name

given to a storage area that

our programs can manipulate. Each variable in C has a
specific type, which determines the size and layout of

the variable's memory; the range of values that can be stored
within that memory; and the set of operations that can be

applied to the variable.

* Variable Is the name of memory
constant, variables are changea
a variable during execution of a

ocation. Unlike
nle, we can change value of

prograim. A programmer can

choose a meaningful variable name. Example : average,

height, age, total etc.

Basic Data types in C

K&R Chapter 2.

2.2 Data Types and Sizes

There are only a few basic data types in C:

char a single byte, capable of holding one character
in the local character set.
int an integer, typically reflecting the natural size

of integers on the host machine.
float single-precision floating point.
double double-precision floating point.

In addition, there are a number of qualifiers that can be applied to these
basic types. short and long apply to integers:

short int sh;
long int counter;

The word int can be omitted in such declarations, and typically is.

Variable Names (From two sources on internet;
but check your latest C reference book)

Rules to construct a valid variable name: Rules for naming a variable

1.A variable name can only have letters (both uppercase and
1. A variable name may consists of letters, lowercase letters), digits and underscore.
digits and the underscore (_) characters. 2.The first letter of a variable should be either a letter or an
2. A variable name must begin with a letter. underscore.
Some system allows to starts the variable 3.There is no rule on how long a variable name (identifier) can
name with an underscore as the first be. However, you may run into problems in some compilers if
character. the variable name is longer than 31 characters.

3. ANSI standard recognizes a length of 31
characters for a variable name. However, the
length should not be normally more than any
combination of eight alphabets, digits, and
underscores.

4. Uppercase and lowercase are significant.
That is the variable Totamt is not the same
as totamt and TOTAMT.

5. The variable name may not be a C
reserved word (keyword).

Keywords in C

auto

break

case

char

continue

do

default

const

double

else

enum

extern

for

if

goto

float

C Keywords

int

long

register

return

signed

static

sizeof

short

STruct

switch

typedef

union

void

while

volatile

unsigned

Write a program to add two numbers

* In the following program, three variables of int type declared and
assigned values.

* The =sign is not the same as in math, it is an assignment operator
* Notice printf

#include <stdio.h>

int main()
{
intx,vy;
x=1;
y=2;
int sum;
sum= X +y;
printf("%d", sum);
return O;

}

Write a program to add two numbers

* Same program using a function. #include <stdio.h>

'M-I_ U\M . Y AR cﬁ U"‘ i{ntii(:iﬁ?;;if " &‘T tw
Lod e e o o
(i) e 5@“&.“
} int main()

{

intx,y;
x=1;

y=2;
int sum;

— sum = add(x,y);
printf("%d", sum);

return O;

}

4 Oct 2020

* Quiz on 6 Oct 2021; during class hours.
e Look for notification in Moodle

Today we will

 Discuss more library functions for standard io
* Introduce conditional execution of statements

A property of C functions — worth repeating
again and again

e A C function returns a value belonging to a datatype.

* If it returns an integer, then the datatype of the function will be int
* If it does not return a value then its type is void.

* The printf function also returns a value as we will see later.

* Two more functions we will introduce today getchar and putchar,
both are integer type.

How to accept input from the standard input

e getchar(), and scanf() functions

* The C library function int getchar() gets a character, one character
at a time (an unsigned char), from stdin.

» The function returns the integer representing the character

- int scanf() function is used to read character, string, numeric
data from keyboard.

» The function returns the number of items of the argument list successfully
read. If a reading error happens or the end-of-file is reached while reading,
the proper indicator is set (feof or ferror) and, if either happens before any
data could be successfully read, EOF is returned.

Simple Examples using getchar, scanf

#include <stdio.h>
int main ()

{

int c;
printf ("Enter character: ");
c = getchar () ;

printf ("Integer representing Character entered: %d",c);
return (0) ;

}

Simple Examples using getchar, scanf

#include <stdio.h>
int main ()

{

int c;
printf ("Enter character: ");
c = getchar () ;

printf ("Integer representing Character entered: %d",c);
return (0) ;

}

The getchar() function obtains a character from stdin. It
returns the character that was read in the form of an
integer or EOF if an error occurs.

Simple Examples using getchar, scanf

#include <stdio.h>
int main ()

{

char c;
printf ("Enter character: ");
c = getchar () ;

printf ("Integer representing Character entered: %d",c);
return (0) ;

}

This will still work. Why?

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

char c;

printf ("Enter character: ");

c = getchar () ;

printf ("Integer representing Character entered: %d",c);

return (0) ;
Description

} The C library function int getchar{void) gets a character (an unsigned char) from stdin. This is
equivalent to getc with stdin as its argument.

Declaration

Following is the declaration for getchar() function.

int getchar(void)

Parameters
2 NA

Return Value

This function returns the character read as an unsigned char cast to an int or EOF on end of file or
error.

Simple Examples using getchar, scanf

#include <stdio.h>
int main ()

{

int c;
printf ("Enter character: ");
c = getchar () ;

printf ("Integer representing Character entered:
return (0) ;

5d", c) ;

#include <stdio.h>
int main ()

{

char any;

printf ("Enter a character:

scanf ("%c" ,&any);

return (0) ;

(
printf ("Character entered:
(

")

sc",any) ;

Simple Examples using getchar, scanf

#include <stdio.h>
int main ()

{

int c;
printf ("Enter character: ");
c = getchar () ;

printf ("Integer representing Character entered:
return (0) ;

What does &any mean in the above program?

5d", c) ;

#include <stdio.h>
int main ()

{

char any;

printf ("Enter a character:

scanf ("%c" ,&any);

return (0) ;

The variable name is any. &any represents the memory location of the
variable any (declared as char) where scanf stores the entered character.

(
printf ("Character entered:
(

")

sch",any) ;

Putchar

* Opposite of getchar is putchar.
* putchar accepts an integer and returns the character the integer represents.

#include <stdio.h>
int main ()

{
int c;
printf ("Enter character: ");

c = getchar();
printf ("Integer representing Character entered: %d",c);

putchar (c) ;
return(0) ;

}
 What will be the output if you enter A ?

Integer representing Character A is 65
A

Putting these together: output an input file

read a character

while (character is not end-of-file indicator)
output the character just read
read a character

Converting this into C gives

#include <stdio.h>

/% copy input to output; 1st version #/
main()

{

int c¢;

¢ = getchar();
while (c l= EOF) {
putchar(c);
¢ = getchar();

More on printf (formatted output)

#include <stdio.h>

int main()

{
charch ="A";
char str[20] = “LearningC";
float pi_upto2digits = 3.14;
int no = 150;
double dbl = 20.123456;
printf("Character is %c \n", ch);
printf("String is %s \n" , str);
printf("Float value is %f \n", flt);
printf("Integer value is %d\n" , no);
printf("Double value is %If \n", dbl);
printf("Octal value is %o \n", no);
printf("Hexadecimal value is %x \n", no);

return O;

More on printf (formatted output)

Program Output

#include <stdio.h>

Characteris A

- ey String is LearningC
char ch = A" Float value is 3.14
char str[20] = “LearningC"; Integer Value iS 150
float pi_upto2digits = 3.14; DOU.b].e Va].ue iS 20.123456
int no = 150; Octal value is 226
double dbl = 20.123456; Hexadecimal value is o)

printf("Character is %c \n", ch);
printf("String is %s \n" , str);
printf("Float value is %f \n", flt);
printf("Integer value is %d\n" , no);
printf("Double value is %If \n", dbl);
printf("Octal value is %o \n", no);
printf("Hexadecimal value is %x \n", no);

return O;

More on printf (formatted output)

#include <stdio.h>

int main()

{
charch ="A";
char str[20] = “LearningC";
float pi_upto2digits = 3.14;
int no = 150;
double dbl = 20.123456;
printf("Character is %c \n", ch);
printf("String is %s \n" , str);
printf("Float value is %f \n", flt);
printf("Integer value is %d\n" , no);
printf("Double value is %If \n", dbl);
printf("Octal value is %o \n", no);
printf("Hexadecimal value is %x \n", no);

return O;

Output Note the following:

(S:hé.lrac,ter 1S A o C 1. Need \n so that the outputs are not in different lines.
tring is Learning 2. What will the following statement print?

Float value is ,3‘14 printf(“Integer value of %5d\n”,no);
Integer value is 150

Double value is 20.123456
Octal value is 226 '
Hexadecimal value is 9

printf replaces values of the variables in the order they
appear. What will the following statement print?

printf(“Integer value of %d and Octal value is %0\n”,no,no);

4. AFIK printf does not support printing binary representation of
an integer. Investigate how you can write a function to do that.

More on printf

* The function returns an integer. The return value of printf is the total
number of characters it printed.

 What will be the output of the following code? Try to answer this
without running the code.

#include <stdio.h>

int main(){

char str[] ="l am a student at ISI";

printf(“\nThe value returned by printf() for the above string is : %d", printf("%s", str));

return O;

}

More on printf

* The function returns an integer. The return value of printf is the total
number of characters it printed.

 What will be the output of the following code? Try to answer this without
running the code.

#include <stdio.h>

int main(){

char str[] ="l am a student at ISI";

printf(“\nThe value returned by printf() for the above string is : %d", printf("%s", str));

Return O;

| am a student at ISI
The value returned by printf() for the above stringis : 21

Conditional execution of statement

* While, for, if are used to control execution of statements, either to
repeat them until a condition is fulfilled or to execute the statement
at all

* LoopsinC
 Conditional execution of statements
* Constants in C

while and do while

while (condition)
statement;

OR

while (condition)

{

statement 1;
statement?2;

}

DO..WHILE -
DO..WHILE loops are useful for things that want to
loop at least once. The structure is

do {
} while (condition);

Notice that the condition is tested at the end of
the block instead of the beginning, so the block
will be executed at least once.

If the condition is true, we jump back to the beginning of
the block and execute it again. A do..while loop is almost
the same as a while loop except that the loop body is
guaranteed to execute at least once.

A while loop says "Loop while the condition is true, and
execute this block of code", a do..while loop says
"Execute this block of code, and then continue to loop
while the condition is true".

for

for (variable initialization; condition; variable update) {
statements to execute while the condition is true

}
// variable updated after each loop BEFORE checking condition

#include <stdio.h>

/% print Fahrenheit-Celsius table #*/
main()

{
int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%34 %6.1f\n", fahr, (5.0/9.0)+#(fahr-32));

If else, else if

if (condition)

statementl; //statementl will be executed only if condition is true
statement 2; (will be executed whether condition is true or not??)
OR
if(condition)

statementl; //statementl will be executed only if condition is true
else statement?2; //statement2 will be executed only if condition is false
statement3; // will be executed whether condition is true of false

Else-if

3.3 Else-If
The construction

if (expression)
staterment

else if (expression)
staterment

else if (expression)
staterment

else if (expression)
statement

else
statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement asso-
ciated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group in braces.

The last else part handles the ‘““none of the above’ or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
statement

can be omitted, or it may be used for error checking to catch an ‘““impossible™
condition.

A simple example of else if

#include<stdio.h>

int main() {

int marks=83;
if(marks>75)

{ printf("First class"); }

else if(marks>65)
{ printf("Second class"); }

else if(marks>55)
{ printf("Third class"); }

else{ printf("Fourth class"); }
return 0; }

110ct2021

Using CONSTANTS for better coding

#include <stdio.h>

/+ print Fahrenheit-Celsius table */
main()
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%34 %6.1f\n", fahr, (5.0/9.0)x*(fahr-32));
} _

1.4 Symbolic 'Constants

A final observation before we leave temperature conversion forever. It’s bad
practice to bury “magic numbers” like 300 and 20 in a program; they convey
little information to someone who might have to read the program later, and
they are hard to change in a systematic way. One way to deal with magic
numbers is to give them meaningful names. A #define line defines a sym-
bolic name or symbolic constant to be a particular string of characters:

#define name replacement text

Using Symbolic Constants

#include <stdio.h>

#define LOWER O /% lower limit of table #/
#define UPPER 300 /% upper limit =/
#define STEP 20 /% step size »/

/% print Fahrenheit-Celsius table »/
main() |

{

int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf("%3d %6.1f\n", fahr, (5.0/9.0)x(fahr-32));

Character Constants

What is the difference between
putchar(65);
and

putchar(‘A’);

Character Constants

What is the difference between
putchar(65);
and

putchar(‘A’);

BOTH WILL (likely) write A on the standard output.

Character Constants

What is the difference between
putchar(65);
and

putchar(‘A’);

BOTH WILL (likely) write A on the standard output.

A character written between single quotes represents an integer value equal
to the numerical value of the character in the machine’s character set. This is
called a character constant, although it is just another way to write a small
integer. So, for example, ‘A’ is a character constant; in the ASCII character
set its value is 65, the internal representation of the character A. Of course ‘A’
is to be preferred over 65: its meaning is obvious, and it is independent of a par-
ticular character set. |

* In the definition below what is the data type of ‘E ?’

e ##define E 2.718
* Is it float, integer, or will it generate an error?

* Write a C Program to change cases of alphabets in input using all that we
have discussed.

e.g. the input
| see a RED bull, only ONE (1)

will become
i SEE A red BULL,ONLY one(1)

(Assume that all the upper case (lower case too) letters are represented by
contiguous letters)

* Psuedo code (very important to write something like this before
starting to code)

* Get a character
* While the character is not EOF
* Ifitis a character in the Egnlish Aphabet,
* change case
e Write to stdio or a file whatever
* Else if read next character
e Continue with While

e End while

* Psuedo code (very important to write something like this before
starting to code)

e Get a character

* While the character is not EOF HOW To do This?
e Ifitis acharacter in the Egnlish Apha

* change case
e Write to stdio or a file whatever
* Else if read next character

* Continue with While
 End while

* Psuedo code (very important to write something like this before
starting to code)

* Get a character HOW To do This?

* While the character is not EOF One can add or subtract from a
* Ifitis a character in the Egnlish Apha character ‘A’ —"a’
* change case

e Write to stdio or a file whatever
* Else if read next character

* Continue with While
 End while

Write the complete C program now.

* Psuedo code (very important to write something like this before
starting to code)

* Get a character HOW To do This?

* While the character is not EOF One can add or subtract from a
* Ifitis a character in the Egnlish Apha character ‘A’ —"a’
* change case

e Write to stdio or a file whatever
* Read next character

* Continue with While
 End while

A Program to Change cases of alphabets in
Input

#include <stdio.h>
int main(){
int nxtlet;

nxtlet = getchar();

while (nxtlet |=EOF)

{
if ((nxtlet>='A") && (nxtlet<='Z"))
putchar(nxtlet +'a'-'A");

else if((nxtlet>='a"') && (nxtlet<='z"))
putchar(nxtlet -'a'+'A');

else putchar(nxtlet);

nxtlet= getchar();
}

return O;

}

Be careful about for syntax

Look at the for statement carefully

The for statement

for (expr,; expr,; expr;)
statement

Grammatically, the three components of a for loop are expressions. Most
commonly, expr, and expr; are assignments or function calls and expr, is a
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr, or expr, is omitted, it is simply dropped from the
expansion. If the test, expr,, is not present, it is taken as permanently true, so

What is an expression in C?

for (;;) {

}

is an “infinite” loop, presumably to be broken by other means, such as a break
or return.

Look at the for statement carefuly

The for statement

for (expr,; expr,; expr,)

statement

What is an expression in C?

An expression is a combination of variables constants and operators written according to the syntax of
C language. In C every expression evaluates to a value i.e., every expression results in some value of
a certain type that can be assigned to a variable. Some examples of C expressions are shown in the
table given below.

Algebraic Expression C Expression

axb-c a *b -c
(m + n) (2 + vy) (m + n) * (x + v)
(zb /) a *hb / c
32 +2x + 1 3*x*xR+2%x+1
(z / y) + ¢ =/ vy +c

Look at the for statement carefuly

The for statement

for (expr,; expr,; expr;)
statement

Grammatically, the three components of a for loop are expressions. Most
commonly, expr, and expr; are assignments or function calls and expr, is a
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr, or expr, is omitted, it is simply dropped from the
expansion. If the test, expr,, is not present, it is taken as permanently true, so

What is an expression in C?

for (;;) {

}

is an “infinite” loop, presumably to be broken by other means, such as a break
or return.

For and While loops are equivalent

The for statement
The for statement

for (expr,; expr,; expr;)
statement

is equivalent to

For and While loops are equivalent

The for statement
The for statement

for (expr,; expr,; expr;)
statement

is equivalent to

while ... exprl;
While (expr2)

statement;
expr3;

For and While loops are equivalent

The for statement
The for statement

for (expr,; expr,; expr;)
statement

is equivalent to

For and While loops are equivalent

The for statement
The for statement

for (expr,; expr,; expr;)
statement

is equivalent to

expr ;s

while (expr,) {
Statement
exprs ;

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

#include <stdio.h>

/# count characters in input; 2nd version */

main()
{
double nc;

for (nc = 0; getchar() != EOF; ++nc)
printf("%.0£\n", nc);

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

#include <stdio.h>

/# count characters in input; 2nd version #/
main()

{
double nc;

for (nc = 0; getchar() != EOF; ++nc)

»
printf("%.0£\n", nc);

Word count program

#include <stdio.h>

#define IN 1 /% inside a word =/
#define OUT O /# outside a word #»/

/% count lines, words, and characters in input #/
main()

{
int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((c = getchar()) != EOF) ({
+4+NC;
if (¢ == "\n’)
++nl;
if (¢ == * * ||
state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;

[#]
1]
]
Ll
-
'dt..
0
il
]
-~
ot
—

}
}

printf("%d %4 %d\n", nl, nw, nc);

Word count program

#include <stdio.h>

#define IN 1 /% inside a word »/

#define OUT 0 /% outside a word «/

/% count lines, words, and characters in input #/

main()

{

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((¢ = getchar()) != EOF) {
+4+NC;
if (¢ == '\n’)
++nl;
if (¢ == * ’ |l ¢ == ‘\n’ ||
state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}
}
printf("%d %4 %d\n", nl, nw, nc);

The line

nl = nw = nc = 0;

sets all three variables to zero. This is not a special case, but a consequence of
the fact that an assignment is an expression with a value and assignments asso-
ciate from right to left. It’s as if we had written

nl = (nw = (nc = 0));

Word count program

#include <stdio.h>

/% inside a word =/
/% outside a word =/

#define IN 1
#define OUT 0

/% count lines, words, and characters in input #/

main()

{

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;

while ((¢ = getchar()) != EOF) {
+4+NC;
if (¢ == '\n’")
++nl;
if (e == * * Il ¢ == "\n’ || ¢ == "\t’

state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}
}
printf("%d %4 %d\n", nl, nw, nc);

The operator | | means OR, so the line

if (¢ ==’ * 1l ¢ == "\n’ || ¢ ==
says “if c is a blank or c is a newline or ¢ is a tab”. (Recall that the escape
sequence \t is a visible representation of the tab character.) There is a
corresponding operator && for AND; its precedence is just higher than i1,
Expressions connected by && or ii are evaluated left to right, and it is
guaranteed that evaluation will stop as soon as the truth or falsehood is known.

Word count program

#include <stdio.h>

#define IN 1 /% inside a word »/
#define OUT 0 /% outside a word «/

/% count lires_ words, and chara.r:ﬁ'l,"l*: in input */

=" How will you test the program?

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((¢ = getchar()) != EOF) {
+4+NC;
if (¢ == '\n’")
++nl;
if (e == * * |l ¢ == "\n’ || ¢ == '\t’)
state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}

}
printf("%d %4 %d\n", nl, nw, nc);

Word count program

#include <stdio.h>

/% inside a word »/
/% outside a word =/

#define IN 1
#define OUT 0

/% count linpal words., ang characters in input */

purpose of testing a code?

=0 \Nfhat IS

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((¢ = getchar()) != EOF) {
+4+NC;
if (¢ == '\n’")
++nl;
if (e == * * |l ¢ == "\n’ || ¢ == '\t’)
state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}

}
printf("%d %4 %d\n", nl, nw, nc);

input file contains 1 enormous word without any newlines

input file contains all white space without newlines

input file contains 66000 newlines

input file contains word/{huge sequence of whitespace of different kinds}/word
input file contains 66000 single letter words, 66 to the line

input file contains 66000 words without any newlines

Word count program

#include <stdio.h>

#define IN 1 /% inside a word »/
#define OUT 0 /% outside a word «/

/% count l'i.npal words., ang characters in input */

at is purpose of testing a code?

main() W
{

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((¢ = getchar()) != EOF) {
+4+NC;
if (¢ == '\n’")
++nl;
if (e == * * |l ¢ == "\n’ || ¢ == '\t’)
state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}

}
printf("%d %4 %d\n", nl, nw, nc);

NEED TO CHECK FOR THESE SITUATIONS + SOME MORE

input file contains 1 enormous word without any newlines

input file contains all white space without newlines

input file contains 66000 newlines

input file contains word/{huge sequence of whitespace of different kinds}/word
input file contains 66000 single letter words, 66 to the line

input file contains 66000 words without any newlines

HW: Modify the Word count program to
count number of words of different lengths

#include <stdio.h>

#define IN 1 /% inside a word =/
#define OUT O /# outside a word #»/

/% count lines, words, and characters in input #/
main()
{

int ¢, nl, nw, nc, state;

state = OUT; Modify the program so you can generate the
nl = nw = nc = 0; following report
while ((¢c = getchar()) != EOF) {
+4+NC;
if (c =I "\n”) Word Length Number of Words of that length
++nl;
if (¢ == * * Il c == "\n’ || ¢ == "\t’)

state = OUT;
else if (state == OUT) {
state = IN;
+4+0W;
}
}
printf("%d %4 %d\n", nl, nw, nc);

Arrays, Functions call, modular programs

Now we will focus on data structure array and
more on writing functions

e Count the number of each vowel in the input (stdio)
* Draw a histogram showing the frequency of each vowel. E.g.

- XAEMMUXEX

- XXMM

- X

* Here 1,2,3,4,5 stand for a/A,e/E,i/l,o/O,u/U

First Write a program to count the number of
each vowe|

* A3,E,eli,0,0,Uu
 Stat with counting a or A
* You have to count both A and a, and give a total count of A and 3, etc.

First Write a program to count the number of
each vowel

* Aa,E,e,l,1,0,0,U,u | _

 Stat with counting a or A mt ::ncof

* You have to count both A and a, int n_a-e;
and give a total count of A and a

()) !'= EOF)

c 1A1)

First Write a program to count the number of

each vowel| (e

int n_a =8; int n_e ; int n i ; int n_o =8; int n_u
() EOF)
'A")
c=="E")

1I1)

1U1)

“Number
“Number
“Number
“Number
"Number

Reviewing a program to count number of
vowels

#include <stdio.h>

int main ()

{

int c¢=0;

intna, ne, ni, no,n u;

while

if (c

((c=getchar())

lal

= EOF)

CZ:IAI)

n a= n _atl;

else

if

(c ==

lel

n e= n etl;

else

if

(c ==

lil

n i= n i+1;

else

if

(c ==

lol

n o= n o+l;

else

if

(c ==

lul

n u= n u+l;

printf ("T
printf ("T
printf ("T
printf ("T
printf ("T

return 0;

}

he
he
he
he
he

number
number
number
number
number

of
of
of
of
of

O - D0 W

c=="E")

c=="1")

c=="0")

c=='U")

and
and
and
and
and

S O HMEH

is
is
is
is
is

o® o o o° o°

Q0 000

#include <stdio.h>
int main ()

{
int c=0;
intna, ne, ni, no,n u;

int n_v[5]={0,0,0,0,0}; // holds numbers of vowels a/A,e/E,i/l,0/O,u/U
char vowel _Ic[] = "aeiomg

na=ne= ni= n o=n u=0; char vowel_uc[] = "AEIOU
while ((c=getchar()) != EOF)
{
if(c == 'a' || c=="A")
n a= n a+l;
else 1f (c == 'e' || c=="E") Using an
n e=n e+l;
else if (c == 'i' || c=='I") array to
n i=n i+1;
else if (c == 'o' || c=='0") store the
n o= n_otl; number of
else if (¢ == '"u' || c=='U")

each vowel

n u= n u+l;

printf ("The number of a and A is %d \n",n_a); for (inti=0;i<5; i=i+1)

printf ("The number of e and E is %d \n",n e);

printf ("The number of 1 and I is %d \n",n_1); ,untf("The number of %c and %c is %d \n", vowel_Ic[i], vowel_uc[i], n_v[i]);
printf ("The number of o and O is %d \n",n_o); -

printf ("The number of u and U is %d \n",n u);

return 0;

}

Drawing a horizontal histogram
Explain how this program works:

Assume that n_v={4,9,5,3,2}
How many variables would you need to do this?

How many (for) loops you have to run through?

Drawing a horizontal histogram
Explain how this program works:

Assume that n_v={4,9,5,3,2}

What will this print?

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1) // first loop controlling going over each of the FIVE vowels
{

for (int k=n_v[j]; k>0; k=k-1) printf("x"); //second loop printing as many x as the number of each vowel

printf("\n");
}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2}

isplay hori | hi
// display horizontal histogram Declare the function:

for (int j=0; j<5; j= j+1) function type

function parameters
{ Define the function
for (int k=n_v[j]; k>0; k=k-1) printf("x");
orintf("\n"); Calling the function

}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2}

isplay hori | hi
// display horizontal histogram Declare the function:

for (int j=0; j<5; j= j+1) function type

function parameters
{ Define the function
for (int k=n_v[j]; k>0; k=k-1) printf("x");
orintf("\n"); Calling the function

}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2}

isplay hori | hi
// display horizontal histogram Declare the function:

for (int j=0; [<5; i= j+1) function type
{ » J<9, function parameters

for ((int k=n_v[j]; k>0; k=k-1) printf("x"); void draw_hist_h(int entry, int data[])

printf("\n");
}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2} Declare the function:
function type
// display horizontal histogram function parameters
for (int j=0; j<5; j= j+1) void draw_hist_h(int entries, int entry_values|])
{
for (int k=n_v[j]; k>0; k=k-1) printf("x"); void draw_hist h(int entries, int entry values[])

{
;)rmtf(\n"); for (int j=0; j<entries; j= j+1)
{

for (int k=entry values[]j]; k>0; k=k-1) printf("x");

printf ("\n") ;
}

}

fflncluae <stdadlio.n->

void draw _hist h(int entries, int entry values[])

{

for (int j=0; j<entries; Jj= j+1)

{ for (int k=entry values[]J]; k>0; k=k-1) printf("x");

printf ("\n");

int main ()

{

int c¢=0;

int n v[5]1={0,0,0,0,0}; // holds numbers of vowels a/A,e/E,i/I,0/0,u/U

char vowel 1lc[] = "aeiou";
char vowel uc[] = "AEIOU";
while ((c=getchar()) != EOF)
{
if(c == 'a' || c=='A")
n v[0]=n v[0]+1;
else if (¢ == 'e' || c=="'E'")
n v[il]=n v[1]+1;
else if (¢ == '"1i' || c=="'1")
n v[i2]=n v[2]+1;
else if (¢ == 'o' || c=="'0")
n v[3]=n v[3]+1;
else if (¢ == "u' || c=='U")
n vi4l=n v[i4]+1;
}
for (int i =0; i<5; i=i+1)

printf ("The number of %c and %c is %d \n",vowel 1lc[i],vowel uc[i], n vI[i]);

// Draw histogram using the function draw hist h, the parameter entries 5 and the entry value[]
draw_hist h(5, n_v);
return 0;}

is n v

130ct2021

Arrays in C

* Arrays is a datatype consisting of other (usually but not necessarily
more primitive) datatypes.

* An array is a collection of similar data items stored at contiguous
memory locations

* Elements of an array can be accessed randomly using indices of the
array — In C, the index begins with 0.

* They can be used to store collection of primitive data types such as
int, float, double, char, etc of any particular type. To add to it, an array
in C can store derived data types such as the structures, pointers etc.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of
elements required by an array as follows -

type arraylame [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater than
Zzero and type can be any valid C data type. For example, to declare a 10-element array called
balance of type double, use this statement -

double balance[18];

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

In this example, memory space is created to hold 10 items of double data type. At this
stage, they are NOT initialized and the memory locations may have garbage/unusuable
data .

Another way to declare and initialize, for example; int marks[]={5,9,3,10,2}. This will create
an array of just five elements initialized to these values.

Accessing Array elements

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example -

double salary = balance[9];

The above statement will take the 10 element from the array and assign the value to salary

Note that the variable salary is declared and initialized through an
assignment.

Also, it is important that balance[9] has already been initialized.

In general, it is important to initialize all the array elements to some
default value as soon as possible.

#include <stdio.h>

int main () What is the
output?

{ int n[10]; /* n is an array of 10 integers */

int i,7J; /* initialize elements of array n to 0 */

Element[B] = 188

for (1 =0; 1 < 10; 1i++) Element[1] = 101

{ n[1] =1 + 100; /* set element at location i to i + 100 */ Element[2] = 102
} Element[3] = 183
Element[4] = 184

Element[5] = 185

/* output each array element's value */ Element[6] = 106
o . - .o Element[7] = 187

for .(j =073 < 107 3%+) . . Element[8] = 188
{ printf ("Element[%d] = %d\n", J, n[j]); } Element[9] = 109

return 0; }

#include <stdio.h>

int main () What is the
{ int n[10]; /* n is an array of 10 integers */ output?
int i,J; /* initialize elements of array n to 0 */

for (1 = 0; 1 < 10; 1i++)

{ n[1] =1 + 100; /* set element at location 1 to 1 + 100 */ }
/* output each array element's value */

) . . Element[@] = 1@
for (3 = 0; 3 < 10; J++) Element[1] = 101
{ printf ("Element[%d] = %d\n", j, n[j]); } Element[2] = 102
return O: } Element[3] = 183
! Element[4] = 104
Element[5] = 185
Element[6] = 186
Element[7] = 187
Element[8] = 188
Element[9] = 189

Suppose we wish to store the marks of the students of a class in an integer array so that
we can calculate the average, the max etc.

Keep in mind the class size differs from class to class but you can assume a maximum of
100 students.

Assume that for a particular class we have 25 students and their marks are populated in
the first 25 elements in the array.

We want to write a generic function find the maximum mark that works for other classes
too. What should be the arguments for such a function

int maxMarks(??7?7?)

We will continue this discussion in the next class. YOU MAY TRY TO WRITE A COMPLETE
PROIS-]RAM WITH SOME DUMMY MARKS, to see if you can write such a function and if it
works.

This is a prelude to working with character arrays and strings which we will be discussing
in the next few classes.

Quiz on 200ct2021

* Everything from minus infinity to today.

180ct2021

* Passing arguments to a function

 Call by Value vs call by reference. Introducing Pointers.
* Operator Precedence

* Passing an array to a function

e Character Arrays; Strings

* String Operations

Quiz on 200ct2021

* Everything from minus infinity to last class but today.

Arguments to functions — from the KR book

One aspect of C functions may be unfamiliar to programmers who are used
to some other languages, particularly Fortran. In C, all function arguments are
passed “by value.” This means that the called function is given the values of its
arguments in temporary variables rather than the originals. This leads to some
different properties than are seen with “call by reference” languages like For-
tran or with var parameters in Pascal, in which the called routine has access to
the original argument, not a local copy.

The main distinction is that in C the called function cannot directly alter a
variable in the calling function; it can only alter its private, temporary copy.

Example: The power function

/+ power: raise base to n-th power; n >= 0 */
/* (old-style version) #/

power (base, n)

int base, n;

{

int i, p;

Pp=1;

for (i = 1; i <= n; ++1)
P = p * base;

return p;

Example: The power function

/+ power: raise base to n-th power; n >= 0 */
/* (old-style version) #/
power (base, n)
int base, n;
{
int 1, s In function declaration it is better to have int power(int base, int n)

p = 1; Here the variable i is redundant.
for (i = 1; i <= n; ++1)

P = p * base;
return p;

Example: The power function

/+ power: raise base to n-th power; n >= 0 */
/* (old-style version) #/

power (base, n)

int base, n;

{
int i, p; : . . . ,
In function declaration it is better to have int power(int base, int n)
p = 1; Here the variable i is redundant.
for (i = 1; i <= n; ++1)
P = p * base;
return p; /% power: raise base to n-th power; n>=0; version 2 »/
} int power(int base, int n)
{
int p;
for (p= 1; n > 0; --n)
p = p + base;
return p;

Example: The power function

/+ power: raise base to n-th power; n >= 0 */
/* (old-style version) #/

power (base, n)

int base, n;

{
int is Ps . . - . . .
In function declaration it is better to have int power(int base, int n)
p=1; Here the variable i is redundant.
For ;i==p1i ;a;:.n; rei) /% power: raise base to n-th power; n>=0; version 2 »/
return p; ’ int power(int base, int n)
} {
int p;

for (p= 1; n > 0; --n)
P = p # base;
| return p;
}
The parameter n is used as a temporary variable, and is counted down (a for
loop that runs backwards) until it becomes zero; there is no longer a need for
the variable i. Whatever is done to n inside power has no effect on the argu-

ment that power was originally called with.

When necessary, it is possible to arrange for a function to modify a variable
in a calling routine. The caller must provide the address of the variable to be
set (technically a pointer to the variable), and the called function must declare
the parameter to be a pointer and access the variable indirectly through it. We
will cover pointers in Chapter 5.

The story is different for arrays. When the name of an array is used as an
argument, the value passed to the function is the location or address of the
beginning of the array—there is no copying of array elements. By subscripting
this value, the function can access and alter any element of the array. This is
the topic of the next section.

Call by value and Call by reference

e Call by value in C

* In call by value method, the value of the actual parameters is copied into the
formal parameters. In other words, we can say that the value of the variable is
used in the function call in the call by value method.

* In call by value method, we can not modify the value of the actual parameter
by the formal parameter.

* In call by value, different memory is allocated for actual and formal
parameters since the value of the actual parameter is copied into the formal
parameter.

* The actual parameter is the argument which is used in the function call
whereas formal parameter is the argument which is used in the function
definition.

* Call by reference in C

* In call by reference, the address of the variable is passed into the function call
as the actual parameter.

* The value of the actual parameters can be modified by changing the formal
parameters since the address of the actual parameters is passed.

* In call by reference, the memory allocation is similar for both formal
parameters and actual parameters. All the operations in the function are
performed on the value stored at the address of the actual parameters, and
the modified value gets stored at the same address.

Call by value and Call by references

. #include<stdio.h>

. void change(int num) {
printf("Before adding value inside function num=%d \n",num);
num=num+100;

1
2
3
4
5. printf("After adding value inside function num=%d \n", num);
6.}

7. int main() {

8. intx=100;

9. printf("Before function call x=%d \n", x);

10. change(x);//passing value in function

11. printf("After function call x=%d \n", x);

12.return O;

13.}

Call by value and Call by references

. #include<stdio.h>

. void change(int num) {
printf("Before adding value inside function num=%d \n",num);
num=num+100;

-}
. int main() { Before function call x=100

1

2

3

il

5. printf("After adding value inside function num=%d \n", Jum;
6

7

8 int X=100; Before adding value inside function num=1€0
9

After adding value inside function num=200

. printf("Before function call x=%d \n", x); _
After function call x=166
10. change(x);//passing value in function
11. printf("After function call x=%d \n", x);
12.return O;

13.}

1. #include <stdio.h>
2. void swap(int, int); //prototype of the function’

3. void swap(int a; int b)

4. {

5 int temp;
6 temp = a;
7. a=b;

8 b=temp;
9 printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a =20, b = 10
10.}

11.

12.int main()
13.

14. inta=10;
15. intb=20;

16. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main
17. swap(a,b);

18. printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the formal parameters in c
all by value, a=10, b =20

19.}
20.

CALL BY REFERENCE does not swap:

1. #include <stdio.h>

2. void swap(int, int); //prototype of the function

3. int main()

4. {

5. inta=10;

6. intb=20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(a,b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the for

mal parameters in call by value, a =10, b = 20
10.}
11.void swap (int a, int b)

Before swapping the values in main a

iz{ int temp; After swapping values in function a

14. temp = a; After swapping values in main a = 18, b = 20
15. a=b;

16. b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a =20, b = 10
18.}

Call by reference —a example.

1. #include<stdio.h>

2. void change(int* num) {

3. printf("Before adding value inside function num=%d \n",*num);
4. (*num) += 200;

5. printf("After adding value inside function num=%d \n", *num);
6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(&x);//passing reference in function

11. printf("After function call x=%d \n", x);

12. returnO;

13. }

Call by reference —a example.

1. #include<stdio.h>

2. void change(int* num) {

3. printf("Before adding value inside function num=%d \n",*num);

4. (*num) += 200;

5. printf("After adding value inside function num=%d \n", *num);

6. '}

7. int main() {

8. int x=100; Before function call x=100

9. printf("Before function call x=%d \n", x); Before adding walue inside function num=100
10. change(&x)://passing reference in function After adding walue inside function num=300
11. printf("After function call x=%d \n", x); Aiter function call x=300

12. returnO;

13. }

Call by reference does the swap! INTRODUCING POINTER VARIABLES:

1. #include <stdio.h>
2. void swap(int *, int *); //prototype of the function

3. int main()
4. {
5. inta=10;

6. intb=20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main
8. swap(&a,&b);
9

. printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call
by reference, a =10, b =20

10.}

11.void swap (int *a, int *b)
12,

13. int temp;

14. temp = *a;

15. *a=*b;

16. *b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10
18.}

Call by reference does the swap! INTRODUCING POINTER VARIABLES

1. #include <stdio.h>
2. void swap(int *, int *); //prototype of the function

3. int main()
4. {
5. inta=10;

6. intb=20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main
8. swap(&a,&b);
9

. printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call
by reference, a =10, b =20

10.}

11.void swap (int *a, int *b) Before swapping the values in main a = 18, b = 20
12{ int temp; After swapping values in function a = 20, b = 186
1: :bez @ \fter swapping values in main a = 20, b = 10

16. *b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10
18.}

Passing an array to a function in C

When necessary, it is possible to arrange for a function to modify a variable
in a calling routine. The caller must provide the address of the variable to be
set (technically a pointer to the variable), and the called function must declare
the parameter to be a pointer and access the variable indirectly through it. We
will cover pointers in Chapter 5.
The story is different for arrays. When the name of an array is used as an
argument, the value passed to the function is the location or address of the Ve
beginning of the array—there is no copying of array elements. By subscri
this value, the function can access and alter any element of the array.

the topic of the next section.)
ol cngledigd L)

e S M(m‘l xy-l\'33
v b
_ xv L -
PP’ #(‘;!‘/Z'l-')

HOMEWORK

* Please read up on precedence of Operators from the text book on
your own. The following slides will serve as a guide

Operators

e Arithmetic Operators

* Relational and Logical Operators

* Increment and Decrement Operators

* Bitwise Operators

* Assignment Operators and Expressions
* Conditional Expressions

* Precedence and Order of Evaluaion

OPERATOR TYPE ASSOCIAVITY
O n . - left-to-right
++ - +- _:iz;.f (type) * & LN G— right-to-left
*/ % Arithmetic Operator left-to-right
+ - Arithmetic Operator left-to-right
<< >> Shift Operator lelt-to-Tight
< <= > >= Relational Operator left-to-right
= I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator ieit-to-rignt
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
1 Logical OR Operator felil-to-right
?: Ternary Conditional Operator | right-to-left
- ‘Z‘:’f: :’ii &= 7= Assignment Operator right-to-left
) Comma left-to-right

OPERATOR TYPE ASSOCIAVITY
(0O mnm . - left-to-right
o T sliz:n[(ope) * & P — right-to-left
*I'% Arithmetic Operator left-to-right
+ - Arithmetic Operator lefi-to-right
< >> Shift Operator left-to-right
< <= > >= Relational Operator left-to-right
== I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator | [eitto-right
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
|1 Logical OR Operator left-to-right
21 Ternary Conditional Operator | right-to-left
- -=|— ‘2.: T’; &= 1= Assignment Operator right-to-left
) Comma left-to-right

The unusual aspect is that ++ and -- may be used either as prefix operators
(before the variable, as in ++n), or postfix (after the variable: n++). In both
cases, the effect is to increment n. But the expression ++n increments n before
its value is used, while n++ increments n after its value has been used. This
means that in a context where the value is being used, not just the effect, ++n
and n++ are different. If nis 5, then

X = DN++;
sets x to 5, but
x =

sets x to 6. In both cases, n becomes 6. The increment and decrement opera-
tors can only be applied to variables; an expression like (i+3)++ is illegal.

+411}

OPERATOR TYPE ASSOCIAVITY
() [1 -> left-to-right
o T sliz:n[(ope) * & P — right-to-left
*1 % Arithmetic Operator Toli-fo-right
+ - Arithmetic Operator lefi-to-right
< >> Shift Operator left-to-right
< <= > >= Relational Operator left-to-right
== I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator | [eitto-right
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
[Logical OR Operator left-to-right
?: Ternary Conditional Operator | right-to-left
- -=|— ‘2.: :ﬁ; &= 7= Assignment Operator right-to-left
) Comma left-to-right

The unusual aspect is that ++ and -- may be used either as prefix operators
(before the variable, as in ++n), or postfix (after the variable: n++). In both
cases, the effect is to increment n. But the expression ++n increments n before
its value is used, while n++ increments n after its value has been used. This
means that in a context where the value is being used, not just the effect, ++n
and n++ are different. If nis 5, then

X = DN++;
sets x to 5, but
x =

sets x to 6. In both cases, n becomes 6. The increment and decrement opera-
tors can only be applied to variables; an expression like (i+3)++ is illegal.

+411}

For example,

if (¢ == ‘\n’) {
s[(i] = c;
++1;

}

can be written more compactly as

if (c == ‘\n’)
s[i++] = c;

OPERATOR TYPE ASSOCIAVITY
() [l -> left-to-right
o T sliz:n[(ope) * & P — right-to-left
*I'% Arithmetic Operator left-to-right
+ - Arithmetic Operator lefi-to-right
<< >> Shift Operator left-to-right
< <= > >= Relational Operator left-to-right
== I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator | [eitto-right
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
|1 Logical OR Operator left-to-right
21 Ternary Conditional Operator | right-to-left
- -=|— ‘2.: :ﬁ; &= 1= Assignment Operator right-to-left
) Comma left-to-right

2.10 Assignment Operators and Expressions
Expressions such as
i=14+2
in which the variable on the left hand side is repeated immediately on the right,
can be written in the compressed form
i+=2

The operator += is called an assignment operator.
Most binary operators (operators like + that have a left and right operand)
have a corresponding assignment operator op =, where op is one of

+ - * / % << >> 5 ~ '

If expr, and expr, are expressions, then
expr, op= expr,
is equivalent to
expr, = (expr,) op (expr,)
except that expr, is computed only once. Notice the parentheses around expr:
X #= y + 1
means
x=x % (y + 1)
rather than

x=x %y + 1

OPERATOR TYPE ASSOCIAVITY
() [1 -> left-to-right
o T sliz:n[(ope) * & P — right-to-left
*I'% Arithmetic Operator left-to-right
+ - Arithmetic Operator lefi-to-right
<< >> Shift Operator left-to-right
< <= > >= Relational Operator left-to-right
== I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator | [eitto-right
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
|1 Logical OR Operator left-to-right
21 Ternary Conditional Operator | right-to-left
- -=|= ‘2.: T’; &= 1= Assignment Operator right-to-left
) Comma left-to-right

2.11 Conditional Expressions

The statements

if (a
z
else
z

v

b)
a;

b;

compute in z the maximum of a and b. The conditional expression, written
with the ternary operator “?:”, provides an alternate way to write this and
similar constructions. In the expression

expr, ? expr,

¢ exprs

the expression expr, is evaluated first. If it is non-zero (true), then the expres-
sion expr, is evaluated, and that is the value of the conditional expression.
Otherwise expr is evaluated, and that is the value. Only one of expr; and
exprs is evaluated. Thus to set z to the maximum of a and b,

(a>Db) 7 a:

b; /# z = max(a, b) */

OPERATOR TYPE ASSOCIAVITY
O un . - lefi-to-right
++ — +- 1 ~ (ppe) * & right-to-left
sizeof Unary Operator

*/ % Arithmetic Operator left-to-right

+ - Arithmetic Operator left-to-right o

S We will discuss the rest of the
: -to-right : :
<< >> Shift Operator o-righ operands like sizeof, (type) *,
-to-ri nd BIT WISE OPERATOR
< <= > >= Relational Operator left-to-right & and SEO ORS
LATER

= I= Relational Operator left-to-right
& Bitwise AND Operator left-to-right
A Bitwise EX-OR Operator ieit-to-rignt
| Bitwise OR Operator left-to-right
&& Logical AND Operator left-to-right
1 Logical OR Operator left-to-right
?: Ternary Conditional Operator | right-to-left
- '=|_ *2 <f :’f’}__ &= 7= Assignment Operator right-to-left
’ Comma left-to-right

270ct2021

* Pointers

* Passing an array to a function
* Character Arrays; Strings

* String Operations

Detailed Discussion on Pointers

* Pointer Arithmetic

 Array of pointers

 Pointer to Pointers

« Passing pointers to functions (already doing it)
« Return a pointer from functions in C

Pointer Arithmetic

* Basic Idea is this: A pointer in c Is an address, which is a numeric
value. Therefore, One can perform arithmetic operations on a
pointer just as one can on a numeric value.

* There are four arithmetic operators that can be used on
pointers: ++, --, +, and —

Pointer Arithmetic

* Basic Idea is this: A pointer in ¢ IS an address, which is a numeric
value. Therefore, One can perform arithmetic operations on a pointer
just as one can on a numeric value.

* There aae four arithmetic operators that can be used on pointers: ++,
--1 +1 an -

« Suppose we have

Int *ptl,

ptl = 1000;

char *pt2; pt2 = 5000;
What will be the values of
ptl=++ptl; pt2= ++pt2

Pointer Arithmetic

* Basic Idea is this: A pointer Iin ¢ Is an address, which Is a numeric
value. Therefore, One can perform arithmetic operations on a
pointer just as one can on a numeric value.

* There are four arithmetic operators that can be used on
pointers: ++, --, +, and —

* Suppose we have
int *ptl = 1000; char *pt2 = 5000
What will be the values of

ptl=++ptl; pt2= ++pt2; [NOT advisable without proper casting or
appropriate context — will discuss in a later slide]

Pointer arithmetic: An example

#include <stdio.h>

const int MAX = 3;

int main ()

{ int wvar|[] = {10, 100, 200};

int i, *ptr; /* let us have array address in
pointer */

ptr = var;

for (1 = 0; 1 < MAX; 1i++)

printf ("Address of var[%d] = %x\n", i, ptr);
printf ("Value of wvar[%d] = %d\n", i, *ptr);
/* move to the next location */

ptr++; } return 0; }

Pointer arithmetic: An example

#include <stdio.h>
const int MAX = 3;
int main () What does this var mean in this
{ int wvar[] = {10, 100, 200}; statement?

int i, *ptr; /* let us have arra
pointer */
ptr = var;
for (1 = 0; 1 < MAX; 1i++
printf ("Address of var([%d

)
] =
printf ("Value of var([%d] = %d\n", 1, *ptr);

/* move to the next location */
ptr++; } return 0; }

$x\n", 1, ptr);

Pointer arithmetic: An example

#include <stdio.h>

const int MAX = 3;

int main ()

{ int wvar|[] = {10, 100, 200};

int i, *ptr; /* let us have array address in
pointer */
ptr = var;
for (1 = 0; 1 < MAX; 1i++)

printf ("Address of var[%d] = %x\n", i, ptr);
printf ("Value of wvar[%d] = %d\n", i, *ptr);
/* move to the next location */

ptr++; } return 0; }

In C an array name is the address to the

first element of the array; it is a pointer

#include <stdio.h>

const int MAX = 3;

int main ()

{ int wvar|[] = {10, 100, 200};

int i, *ptr; /* let us have array address in
pointer */

ptr = wvar; Address of var[0] = bf882b30
. . . Value of var[0] = 100

for (1 = 0; 1 < MAX; 1++) Address of var[l] = bf882b34
J " o — o " : . Value of wvar[l] = 100

printf ("Address of var[%d] sx\n", i, ptr); Addrese of var(2] - bE8SIDIS
] = 200

printf ("Value of wvar[%d] = %d\n", i, *ptr); Value of var([2
/* move to the next location */
ptr++; } return 0; }

#include <stdio.h>

const int MAX = 3;

int main ()

{ int wvar|[] = {10, 100, 200};

int i, *ptr; /* let us have array address in
pointer */

ptr = wvar; édiressfof va[ué][O] ;Okovf882b30
alue of var =
for (1 = O,' 1 < MAX,’ l‘|“|‘) { Address of var[l] = bf882b34
J " o — o " : . Value of wvar[l] = 100
printf ("Address of var[%d] sx\n", i, ptr); Address of var[2] — bE882D3E
] = 200

printf ("Value of wvar[%d] = %d\n", i, *ptr); Value of var([2
/* move to the next location */
ptr++; } return 0; }

At least two mistakes in this slide

* Type Conversion

* Type Conversion

/# lower: convert c to lower case; ASCII only */
int lower(int c)

{
if (¢ >= ’A’ && ¢ <= ’Z’
return ¢ + ‘a’ - ‘A’
else
return cC;

o mt

* Type Conversion

/# lower: convert c to lower case; ASCII only */
int lower(int c)

{ |
if (¢ >= A’ && ¢ <= ‘Z’)
return =
else
return c¢ ’ Comparing 2 data types in the
} ' same expression.

An example of implicit
conversion

Type Casting

* A type cast is basically a conversion from one type to another.
* Implicit Type Conversion — done by the compiler on its own
* Explicit Type Casting

When an operator has operands of different types, they are converted to a
common type according to a small number of rules. In general, the only
automatic conversions are those that convert a “narrower” operand into a
“wider” one without losing information, such as converting an integer to floating
point in an expression like £ + i. Expressions that don’t make sense, like
using a float as a subscript, are disallowed. Expressions that might lose infor-
mation, like assigning a longer integer type to a shorter, or a floating-point type
to an integer, may draw a warning, but they are not illegal.

Type Casting

* A type cast is basically a conversion from one type to another.
* Implicit Type Conversion — done by the compiler on its own

// An example of implicit conversion

e Explicit Type Casting #include<stdio.h>
int main()

{
int x = 10; // integer x
chary="a"; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
X=X+Y;

// x is implicitly converted to float
float z=x + 1.0;

printf("x = %d, z = %f", x, z);
return O;

Type Casting

* A type cast is basically a conversion from one type to another.
* Implicit Type Conversion — done by the compiler on its own

// An example of implicit conversion

e Explicit Type Casting #include<stdio.h>
int main()

{
int x = 10; // integer x
chary="a"; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
X=X+Y;

// x is implicitly converted to float
floatz; z=x+ 1.0;

printf("x = %d, z = %f", x, z);
return O;

Type Casting

* A type cast is basically a conversion from one type to another.
* Implicit Type Conversion — done b); the compiler on its own

An example of implicit conversion

° EXpI|C|t Type CaStlng #include<stdio.h>

int main()

{
int x = 10; // integer x
chary ="a"; // character c

// y implicitly converted to int. ASCII .

// value of 'a" is 97 motio”

* Xa+\syé Kown @°
nis \S

// x is implicitly converted to float

floatz; z=x + 1.0;

'\nteger pYO

printf("x = %d, z = %f", x, z);
return O;

Type Casting

* A type cast is basically a conversion from one type to another.

* Implicit Type Conversion — done by the compiler on its own

.. . // An example of implicit conversion
e Explicit Type Casting #include<stdio.h>
int main()

{

Allthe data types of the variables are upgraded to the data type of the variable with largest data Lr;]ta’; ; ioa/ / /i/”(fﬁgzc’ier)
type.

// 'y implicitly converted to int. ASCII
// value of 'a' is 97
X=X+Y;
bool -> char -> short int -> int -»
, , , // x is implicitly converted to float
unsigned int -> long -> unsigned -» floatz: 2= x + 1.0;
long long -> float -> double -> long double
printf("x = %d, z = %f", x, z);
return O;

Explicit type casting

* Syntax: (type) expression

// C program to demonstrate explicit type casting
#include<stdio.h>

int main()
{
double x = 1.2;

// Explicit conversion from double to int
int sum = (int)x + 1;

printf("sum = %d", sum);

return O;

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong
enough that pointers and arrays should be discussed simultaneously. Any opera-
tion that can be achieved by array subscripting can also be done with pointers.
The pointer version will in general be faster but, at least to the uninitiated,

somewhat harder to understand.

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong
enough that pointers and arrays should be discussed simultaneously. Any opera-
tion that can be achieved by array subscripting can also be done with pointers.
The pointer version will in general be faster but, at least to the uninitiated,

somewhat harder to understand.

The correspondence between indexing and pointer arithmetic 1s very close.
By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

pa = &a[0];

pa and a have identical values. Since the name of an array is a synonym for
the location of the initial element, the assignment pa=&a[0] can also be writ-

ten as

pa = a;

Strings, String functions, Pointers ...

* In C programming, a string is a sequence of characters terminated
with a null character \0

* Example: char c[]="c string”;

* When the compiler encounters a sequence of characters enclosed in
the double quotation marks, it appends a null character o at the end
by default

e char c[5]; is a declaration. Then you can feed a string into it subject
to the storage you have specified for space for \0

Common string functions

Few commonly used string handling functions are discussed below:

Function Work of Function

strlen() computes string's length
strepy() copies a string to another
strcat() concatenates(joins) two strings
stremp() compares two strings

striwr() converts string to lowercase
strupr() converts string to uppercase

Strings handling functions are defined under "string.h” header file.

#include <string.h>

Simple program to find string length

#include <stdio.h>

Int main() {

char s[] = "C Programming";

int i;

for (i = 0; s[i] = "\O"; ++1i);
printf("Length of the string: %d", i);
return 0; }

Simple program to find string length

e Convert this program into a function
#include <stdio.h>

 What should be the function declaration? int main() {
char s[] = "C Programming";
 What are the parameters? int i:
) i C . for (i = 0; s[i] = "\0'; ++1);
* What is the function definition? orintf("Length of the string: %d", i);

return O; }

Simple program to find string length

e Convert this program into a function

* What should be the function declaration? ?P%‘;?ne(;{“dio-m
* What are the parameters char s[] = “C Programming":
* What is the function definition inti;

for (i = 0; s[i] = "\O"; ++i);
printf("Length of the string:

int StringL(char s[]) sd’,); return 07}

{

for (int i=0; s[i] 1= \O’; ++i);
returni;

}

Simple program to find string length

e Convert this program into a function

* What should be the function declaration? #include <stdio.h>
\\ include def of StringL here
 What are the parameters int main() {
 What is the function definition f:taif sl] = "C Programming’;
for (’i = 0; s[i] '= "\O"; ++1);
int StringL(char S[]) printf("Length of the string: %d",
StringL(s));
{ return O; }

for (int.i=0; s[i] != I\O’; ++i); There is a FATAL Mistake in the
return iI; definition of the function StringlL

}

Simple program to find string length

e Convert this program into a function

* What should be the function declaration? ?;:[‘%L;?r]e()<{5td‘°-h>
* What are the parameters char s[] = “C Programming":
* What is the function definition inti;

for (i = 0; s[i] '= \O'; ++1i);
printf("Length of the string: %d",

int StringL(char s[]) Setiinr%Lés)});
retu ,
{

for (int.i=0; S[i] |= '\O’; ++i); Rewrite this program using
return iI; pointers

}

Simple program to find string length

e Convert this program into a function

* What should be the function declaration?
 What are the parameters

 What is the function definition

int StringL(char s[])

{ int String_L(char*s)
{
int count = 0;
for (int i=0; s[i] != "\O’; ++i); while (7s 1207 {
return i' count++;
! S++,
})

return count;

}

#include <stdio.h>
Int main() {

char s[] = “C Programming";
int i;

for (i = 0; s[i] = "\O"; ++i);
printf("Length of the string:
%d", 1); return O; }

Now we can write a number of sophisticated
programs/functions with arrays.

* Sort an integer array

* Insert into an array

* Reverse a string

* Copy a string

e Sorting an array. Merge sort, Quick sort.

Insert a number in an array of integers

void insert(int a[], int n, int i,) // insert i in the beginning, zeroth place

PLEASE WRITE THE FUNCTION NOW

Insert a number in an array of integers

void insert(int a[], int n, inti,) // insert in in the beginning, zeroth place

Insert a number in an array of integers

void insert(int a[], int n, inti,) // insert in in the beginning, zeroth place

void insert(int a[], int n, int i)
//n is length of array, insert i in the Oth place
{ for (int k=n-1; k >=0; k--)

{ *(a+k+1)=*(a+k); ToTaTe
S
*a=i;

}

Insert a number in an array of integers

REWRITE THE FUNCTION TO insert at the jth place (array[j-1])

void insert(int a[], int n, int i, int j) // insert integer i at the j-th place

Insert a number in an array of integers

REWRITE THE FUNCTION TO insert at the jth place (array[j-1])

void insert(int a[], int n, int i, int j) // insert integer i at the j-th place
VERY SIMPLE MODIFICATION TO

{ for (int k=n-1; k >=0; k--)
{ *(atk+1)=*(a+k); }

*q=i-

l;
J

Insert a number in an array of integers

void insert(int a[], int n, inti,) // insert in in the beginning, zeroth place

void insert(int a[], int n, int i)

//n is length of array, insert i in the jth place
{ for (int k=n-1; k >=j; k--)

{ *(a+k+1)=*(a+k); }

*(a+j)=i;

}

#include <stdio.h>

Sa m p | e CO d e 1 void insert(int a[], int n, int i) //n is length of array, insert i in the Oth place
{
for (int k=n-1; k >=0; k--)
{ *(a+k+1)=*(a+k); }
*a=i;}

int main(){

int N[50] ={3,7};
for(int i=0; i<2; i++)
{ printf("%d\n",*(N+i));
}

printf("\nwill insert a number now and then print it out\n");
insert(N,2,5);

for(int i=0; i<3; i++){
printf("%d\n",*(N+i));
}

return O;

}

#include <stdio.h>

Sa m p | e CO d e 2 void insert(int a[], int n, int i, int j) //n is length of array, insert i in the jth place
{
for (int k=n-1; k >=j; k--)
{ *(a+k+1)=*(a+k); }
(at)=i

}

int main(){

int N[50] ={3,7};
for(int i=0; i<2; i++)
{ printf("%d\n",*(N+i));
}

printf("\nwill insert a number now and then print it out\n");
insert(N,2,5,1);

for(int i=0; i<3; i++){
printf("%d\n",*(N+i));
}

return O;

}

What is the time complexity of insertion in an
array?

* On the average how many operations needed to insert at a random
array index?

What is the time complexity of insertion in an
array?

* On the average how many operations needed to insert at a random
array index?

* O(n), Can be substantial if n is large.

* How can we make it O(1), that is independent of the length of the
array?

* This leads us to a discussion on linked lists, and structures in general
which we will discuss later in the course.

Some loose ends to be covered

e Scope of Variables
* How to read and write into files....
e Break, switch.... Etc.

Later to come

* Structures
* Defining structures
* calling structures
* memory allocation, deallocation,

* Some basic data structures

e Some basic algorithm and basic algorithmic complexity
considerations.

* Some of these will not be covered ibn the K&R book, and
supplementary material available on the net will be used for these.

1Nov2021

e Scope of Variables

Variable Scope

* An object is recognized by its identifier or name. The object may
be a variable of basic type or a function, a structure, or a union.

* The scope of a variable is the range of program statements that
can access that variable.

« A variable is visible within its scope and invisible or hidden
outside it

* We will Look at an example.

Global Variables

Variables that are declared outside of a function block and can be accessed inside the function is called global variables.

Global Variable Initialization

After defining a local variable, the system or the compiler won't be initializing any value to it. You have to initialize it by
yourself. It is considered good programming practice to initialize variables before using. Whereas in contrast, global
variables get initialized automatically by the compiler as and when defined. Here's how based on datatype; global variables

are defined.
int 0
char "\O'
float 0
double 0

pointer NULL

Variable Scope, Global variables

In C every variable defined in scope. You can define scope as the section or region of a program where a variable has its
existence; moreover, that variable cannot be used or accessed beyond that region.

In C programming, variable declared within a function is different from a variable declared outside of a function. The

variable can be declared in three places. These are:

Position Type

Inside a function or a local variables
block.

Qut of all functions. Global variables

In the function Formal parameters

parameters.

// C program to illustrate the global scope
#include <stdio.h>

// Global variable
int global = 5;

// global variable accessed from
// within a function
void display()
{

printf("%d\n", global);
}

// main function
int main()

{

printf("Before change within main: ");
display();

// changing value of global
// variable from main function
printf("After change within main:");

;global = 10;
display();

oxctorn ert bt

Extern is a keyword in C programming language which is used to declare a global variable that is a
variable without any memory assigned to it. It is used to declare variables and functions in header files.
Extern can be used access variables across C files.

Syntax:

extern <data type> <variable name>;

extern <return_type> <function name>(<parameter list>);

e Declaration

Declaration of a variable means that the compiler knows that the variable exists but no memory or data
has been assigned to it. To stop at this step, we need extern keyword like:

extern int opengenus;

External variables are also known as global variables. These variables are defined outside the
function. These variables are available globally throughout the function execution. The value of global
variables can be modified by the functions. “extern” keyword is used to declare and define the
external variables.

Scope - They are not bound by any function. They are everywhere in the program i.e. global.
Default value — Default initialized value of global variables are Zero.
Lifetime - Till the end of the execution of the program.
Here are some important points about extern keyword in C language,
= External variables can be declared number of times but defined only once.
= “extern” keyword is used to extend the visibility of function or variable.

= By default the functions are visible throughout the program, there is no need to declare or
define extern functions. It just increase the redundancy.

= Variables with “extern” keyword are only declared not defined.

= |nitialization of extern variable is considered as the definition of the extern variable.

#include <stdio.h>
extern int x = 32;
int b = 8;
int main() {
auto int a = 28;
extern int b;
printf(“The value of auto variable : %d\n", a);
printf{“The value of extern variables x and b : %d,%d\n",x,b);
x = 15;
printf{“The value of modified extern variable x : ¥d\n",x);
return @;

}
Output

The wvalue of auto variable : 28
The value of extern variables x and b : 32,8
The value of modified extern wvariable x : 15

#include <stdio.h>
extern int x = 32;
int b = B;
int main() {
auto int a = 28;
extern int b;
printf(“The value of auto variable : %d\n", a);
printf{“The value of extern variables x and b : %d,%d\n",x,b);

x = 15;
printf{“The value of modified extern variable x : ¥d\n",x);
return @;

h

Output

The wvalue of auto variable : 28
The value of extern variables x and b : 32,8
The value of modified extern wvariable x : 15

Time Permitting we will discuss storage classes in C later in the course. IN that context we will
discuss static and auto variables.

Structure

e A structure is a user defined data type. A structure creates a data type that
can be used to group items of possibly different types into a single type.

* Example:
struct address struct ind_address
{
{ char name[50];
char street[]_O()] . struct address name_add;
’ Iy
char city[50];
char state[20];
int pin;

5

Declaring Structure (Example)

// A variable declaration with structure declaration.

struct Point

{

intx,y;

} p1; // The variable p1 is declared with 'Point'

// A variable declaration like basic data types

struct Point

{

intx,y;

|3

int main()

{

struct Point p1; // The variable p1 is declared like a normal variable

}

Initializing Structures

* Wrong

struct Point

{

int x = 0; // COMPILER ERROR: cannot initialize members here
inty =0; // COMPILER ERROR: cannot initialize members here
I

* Right

struct Point

{

intx,y;

Iy

int main()

{

// A valid initialization. member x gets value 0 and y

// gets value 1. The order of declaration is followed.

struct Point p1 ={0, 1};

}

Accessing structure elements

#include<stdio.h>

struct Point
{
intx,y;

|5

int main()

{

struct Point p1 = {0, 1};

// Accessing members of point p1

pl.x = 20;

printf ("x =%d, y = %d", pl.x, pl.y);

printf(“Area= %d”, int Area = (p1.x*p1l.y)); //WRONG, Area needs to be declared

return O;

}

Array of Structure

#include<stdio.h>

struct Point

{

intx,y;

Iy

int main()

{

// Create an array of structures
struct Point arr[10];

// Access array members
arr[0].x = 10;

arr[0].y = 20;

printf("%d %d", arr[0].x, arr[0].y);
return O;

}

Pointer to a Structure

#include<stdio.h>

struct Point

{

intx,y;

|3

int main()

{
struct Point p1 ={1, 2};

// p2 is a pointer to structure p1

struct Point *p2 = &p1;

// Accessing structure members using structure pointer
printf("%d %d", p2->x, p2->y);

return O;

}

Nested Structure

« Nested structure in C is structure within structure. One
structure can be declared inside other structure as we
declare structure members inside a structure. (give an
example)

« The structure variables can be a normal structure
variable or a pointer variable to access the data.

« More on these later.

struct rect

{

struct Point

{

int x, y;

}

int perimeter;
Int area ;
// you can refer to the structure Point if Point declared outside and global

}

Important Data Structures

* Arrays

* Linked Lists

* Stacks

* Queues

* Trees

* Binary Trees

* Heaps

* We will cover some of these

8Nov2021

Important Data Structures

* Arrays

* Linked Lists

* Stacks

* Queues

* Trees

* Binary Trees

* Heaps

* We will cover some of these

Typical Operations involving Data Structures

* Arrays, Linked Lists, Stacks, Queues, Trees, Binary Trees, Heaps

 All data structures typically have these following functions
|. Create
lI. Insert
lll. Delete
V. Read (Retrieve data (information))

Pointers (continued discussion)

* There are a few important operations with pointers very
frequently.
 (a) define a pointer variable,
 (b) assign the address of a variable to a pointer and

* (c) finally access the value at the address available in the pointer
variable. This is done by using unary operator * that returns the value
of the variable located at the address specified by its operand.

* NULL Pointers

* [t Is a good practice to assign a NULL value to a pointer variable
IN case an exact address Is yet to be assigned. This Iis done at

the time of variable declaration. A pointer that is assigned NULL
Is called a null pointer.

 The NULL pointer is a constant with a value of zero defined In
several standard libraries.

* In most of the operating systems, programs are not permitted to
access memory at address O because that memory is reserved
by the operating system. However, the memory address 0 has
special significance; it signals that the pointer is not intended to
point to an accessible memory location. But by convention, if a
pointer contains the null (zero) value, it is assumed to point to
nothing

* To check that the ptr 1s pointing to something at all,
we can and should that the pointer 1s not NULL

if (ptr) /* succeeds if p is not null */

if (!ptr) /* succeeds if p is null */
OR

if (ptr == NULL) /* succeeds if p 1is
not null */
If(ptr !'= NULL) /* succeeds if p is

null */

Linked List

// A linked list node containing integers
struct Node {
int datal;
struct Node™ next;

Linked List

// A linked list node containing integers and another structure.
struct Node {

int datal;

struct ind_address data2;

Singly Linked List

struct Node™ next;

* Like arrays, Linked List is a linear data structure.

* Unlike arrays, linked list elements are not stored at a contiguous
location

* elements are linked using pointers

* Clearly you need to identify beginning and end of a linearly linked
list!! How?

* Like arrays, Linked List is a linear data structure.

* Unlike arrays, linked list elements are not stored at a contiguous
location

e elements are linked using pointers
* Clearly you need to identify beginning and end !! How?

Head

|_A/ —)‘ -)‘ C —)‘ D 3 o

Data Next

Linked List Creation

* Define the node type

* Define a function that allocates memory for a single node (consistent
with the “sizeof” the node and returns a pointer.

Sizeof is a much used operator in the C. It is a compile time unary operator which can
be used to compute the size of its operand. sizeof can be applied to any data-type,

including primitive types such as integer and floating-point types, pointer types, or
compound datatypes such as Structure, union etc.

#include <stdio.h>

int main()

{
printf("%lu\n", sizeof(char));
printf("%lu\n", sizeof(int));
printf("%lu\n", sizeof(float));
printf("%lu", sizeof(double));
return O;

Sizeof is a much used operator in the C. It is a compile time unary operator which can
be used to compute the size of its operand. sizeof can be applied to any data-type,
including primitive types such as integer and floating-point types, pointer types, or
compound datatypes such as Structure, union etc.

#include <stdio.h>

int main()

{ Output:
printf("%lu\n", sizeof(char));
printf("%lu\n", sizeof(int));
printf("%lu\n", sizeof(float));
printf("%lu", sizeof(double));
return O;

R S

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {

int data;
struct Node* next;
|5
// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap

head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third

head second third
I I
I
I I
I
oot T T
| # | #] | # | # | | # | # |
oot ot ot

represents any random value. Data is random because we haven’t assigned anything yet */

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {

int data;
struct Node* next;
|5
// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap

head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third

head second third
I I
I
I I
I
oot T T
| # | #] | # | # | | # | # |
oot ot ot

represents any random value. Data is random because we haven’t assigned anything yet */

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {

int data;
struct Node* next;
|5
// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap

head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third

head second third
I I
I
I I
I
oot T T
| # | #] | # | # | | # | # |
oot ot ot * /

represents any random value. Data is random because we haven’t assigned anything yet */

head->data = 1; // assign data in first node
head->next = second; // Link first node with
// the second node

/* data has been assigned to the data part of the first
block (block pointed by the head). And next

pointer of first block points to second.

So they both are linked.

head second third
| |
|
| |
|
T S T S B § S B—
| Ll o> # | #] [#] #]
T S T S B § S B—

// assign data to second node
second->data = 2;

// Link second node with the third node
second->next = third;

/* data has been assigned to the data part of the second block (block pointed by second).
And next pointer of the second block points to the third block. So all three blocks are linked.

head second third
I I I
I I I
ottt -+ e
|1]o0---->|2| 0> |#|#]|
bt bt oot */

third->data = 3; // assign data to third node
third->next = NULL;

/* data has been assigned to data part of third block (block pointed by third). And next pointer of the third block is made NULL to indicate
that the linked list is terminated here.

We have the linked list ready.

head

I

I
ot . s +
|1]0--->|2| 0---->| 3| NULL |
I Homtmmt s +

Note that only head is sufficient to represent the whole list. We can traverse the complete list by following next pointers. */

return O;

struct LinkedList{
int data;

struct LinkedList *next;
}s

Creating a Node:

Let's define a data type of struct LinkedListto make code cleaner.

typedef struct LinkedlList *node; //Define node as pointer of data type struct LinkedList

node createNode(){
node temp; // declare a node
temp = (node)malloc(sizeof(struct LinkedList)); // allocate memory using malloc()
temp->next = NULL;// make next point to NULL

return temp;//return the new node

typedef is used to define a data type in C.
malloc() is used to dynamically allocate a single block of memory in C, it is available in the header file stdlib.h.

sizeof() is used to determine size in bytes of an element in C. Here it is used to determine size of each node and sent as a
parameter to malloc.

The above code will create 3 node with data as value and next nointine to NUILL

Append a hode

A _)l B _)l C 3 o }I\M
Data Next /‘
tmp
node addnode(node head, int wvalue){ E ﬁNULL

node temp,p;// declare two nodes temp and p

temp = createNode();//createNode will return a new node with data = value and next pointing to NULL.
temp->data = value; // add element's value to data part of node
if(head == NULL){

head = temp; //when linked list is empty
}
else
p = head;//assign head to p
while(p->next != nULL){
p = p->next;//traverse the list until p is the last node.The last node always points to NULL.
}
p->next = temp;//Point the previous last node to the new node created.
}

return head;

Here the new node will always be added after the last node. This is known as inserting a node at the rear end.

Inserting a node

Head
Data Next
¥ N . |
E We are given pointer to a node, and the new node is inserted after the given node.
Head
Data Next T
tmp
E
Head

b
b

r:/ k D >

Data Next /
tmp
E ﬁ NULL

Sorting an array of integers

 Bubble sort

Sorting an array of integers

 Bubble sort

* Bubble sort, sometimes referred to as sinking sort, is a simple
sorting algorithm that repeatedly steps through the list, compares
adjacent elements and swaps them if they are in the wrong order. The
pass through the list is repeated until the list is sorted. The algorithm,
which is a comparison sort, is named for the way smaller or larger
elements "bubble" to the top of the list.

Take an array of numbers " 51 4 2 8", and sort the array from lowest number to greatest number using bubble
sort. In each step, elements written in bold are being compared. Three passes will be required;

First Pass

(51428)—(15428), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(15428)—>(14528),Swapsince5>4

(14528)—>(14258), Swap since5>2

(14258)—(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass

(14258)—(14258)

(14258)—>(12458), Swap since4 > 2

(12458)—(12458)

(12458)—(12458)

Now, the array is already sorted, but the algorithm does not know if it is completed. The algorithm needs

one whole pass without any swap to know it is sorted.

Third Pass

(12458)—-(12458)

(12458)—(12458)

(12458)—(12458)

(12458)—(12458)

—
—

* Write a C function to do a bubble sort using a C function to swap.

* Write a bubble sort function that uses a swap function

//Improved Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)

{
int temp = *xp;
*Xp = *yp;
*yp = temp;

}

// An optimized version of Bubble Sort
void bubbleSort(int arr[], int n)

{

inti, j;

//bool swapped;

for (i=0;i<n-1;i++)

{
//swapped = false;
for (j = 0; j < n-i-1; j++)
{
if (arr[j] > arr[j+1])
{
swap(&arr[j], &arr[j+1]);
//swapped = true;
}
}
// IF no two elements were swapped by inner loop, then break
//if (swapped == false)
//break;
}

* Write a C function to do a bubble sort using a C function to swap.

e Write the bubblesort function

int main()

{

int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);

printf("Sorted array: \n");
printArray(arr, n);

return 9;

// Optimized implementation of Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)

{
int temp = *xp;
*Xp = *yp;
*yp = temp;

Homework

* Please understand the C program for bubble sort and optimized
bubble sort. Understand how exactly it works.

15Nov2021

A reference to practice C programs (with
strings etc.)

* There are many references on the net. You may look up any one of
them. In particular take a look at

https://www.w3schools.in/c-program/

* Take a look at many of these programs and practice.

https://www.w3schools.in/c-program/

Last time we began to discuss two distinct things

- how to define and work with a linear but non-contiguously placed
data structure, namely a linearly linked list.

A GOOD REF on LINKED LIST: GO To:
http://cslibrary.stanford.edu/103/

- Search and sorting algorithms.

http://cslibrary.stanford.edu/103/

Today we will continue the discussion on different aspects of search
and sort algorithm; how to determine correctness of an algorithm, how
to measure complexities of algorithms etc.

Introductory Statements

* Typically we need to search for a data item.

* We can search for an item by going linearly across the data set. If the
size of the data set is n, then it is plausible that we will take time
proportional to n.

* Why do we need to sort then???

* TWO reasons:

1. searching a sorted list is cheaper than searching an unsorted list.
2. Typically we need to search more than once !!

SEARCH|

-- N

" using

NG A SORTED LIST

s ler

(L)

inear search, search for an element is O(n)

= using binary search, can search for an element in O(log n)
* assumes the list is sorted!

" when does it make sense to sort first then search?
* SORT+0O(log n)<0O(n) 2 SORT<O(n)-0(1log n)
* when sorting is less than O(n)

* NEVER TRUE!

* to sort a collection of n elements must look at each one at
least once!

AMORTIZED COST
- nis len(L)

= why bother sorting first?

" in some cases, may sort a list once then do many
searches

= AMORTIZE cost of the sort over many searches
" SORT+ K*O(log n)<K*O(n)

— for large K, SORT time becomes irrelevant, if
cost of sorting is small enough

Sorting Algorithms

* Bubble sort

* Insertion Sort (will discuss today)
* Selection sort

* Merge Sort

* Heap sort

Insertion Sort

* |dea: like sorting a hand of playing cards

e Start with an empty left hand and the cards facing down on the table.

* Remove one card at a time from the table, and insert it into the correct
position in the left hand
 compare it with each of the cards already in the hand, from right to left
* The cards held in the left hand are sorted

* these cards were originally the top cards of the pile on the table

Insertion Sort

To insert 12, we need to make
room for it by moving first 36
and then 24.

230

Insertion Sort

e ¢
4

231

Insertion Sort

i &
4

232

Insertion Sort

input array

5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

left sub-array right sub-array

2\ 5 l;j 6 1 3

-

sorted unsorted

233

Insertion Sort

ol

ofen o ol en ol ~ 0| N
1 I oy I o HWW P
By R e o v SN g O oy B
= T S| S
NJ K I,_- u o -\J ar :.,__ ! .I.—.
ol ol vy v u
w el = ol =t u [I el
—| -] o -l & |-
N
i) cr i | o) O
SN
i I....
— __
— — — [r— \4_ O ____ LV
S \ __
I_._
TN |
—" ___
TN . _ j
=T __,,,,A_.\ g v | S/ on
—\ J
N __ |
e VA v/ <t <+ | o N
N \ |
__ - __
___ __
Wy /e g — —

234

INSERTION-SORT

ﬂll:g INSERTION-SORT(A) L2
for j < 2ton
do key < A[j] I_kev

Nnsert A[j]into the sorted sequence A[1 .. j -1]
l—j-1
while i > 0 and A[i] > key
do A[i + 1] — A[i]
| —i-1
Ali + 1] — key

* Insertion sort — sorts the elements in place

How do we know an algorithm works or that
it is correct?

* The idea is define and track a loop invariant.

* A loop invariant is something that remains constant throughout the
loop.

* It ensures that the algorithm is correct and if it terminates, then it will
give a correct result.

Proving Loop Invariants

* Proving loop invariants works like induction

* Initialization (base case):

* Itis true prior to the first iteration of the loop

* Maintenance (inductive step):
* Ifitis true before an iteration of the loop, it remains true before the
next iteration
* Termination:

 When the loop terminates, the invariant gives us a useful property that
helps show that the algorithm is correct

e Stop the induction when the loop terminates

Loop Invariant for Insertion Sort |
J

Alg.: INSERTION-SORT(A) | 2 3 4 5‘6

forj—2ton | ALATRT YA
dokey ¢ ALj 1 NLEEY

Insert A[j]into the sorted sequence A[1 .. j -1]

l—j-1
while i > O and A[i] > key
do A[i + 1] — AJi]
| —i-1
Ali + 1] — key

Invariant: at the start of the for loop the elements in A[1 .. j-1] are in

sorted order
238

Loop Invariant for Insertion Sort

 Initialization:

* Just before the first iteration, j = 2:
the subarray A[1 .. j-1] = A[1], (the

element originally in A[1]) —is sorted

Loop Invariant for Insertion Sort

* Maintenance:

* the while inner loop moves A[j -1], A[j -2], A[j -3], and
so on, by one position to the right until the proper position
for key (which has the value that started out in A[j]) is
found

* At that point, the value of key is placed into this position.

J J
| 2 34 5 6 1 2 3 4]5 6
2 (514161113 21415161 |3

Loop Invariant for Insertion Sort

* Termination:
* The outer for loopendswhen j=n+1=j-1=n

* Replace nh with j-1in the loop invariant:

 the subarray A[1l .. n] consists of the elements originally in A[1 . .
n], but in sorted order

J Jj-1
|2;45f_~.‘|: 5 6

S I
g¥’

I S
|

516 @

4 3
LAY

* The entire array is sorted!

Invariant: at the start of the for loop the elements in A[1 .. j-1] are in
sorted order

Insertion Sort - Summary

We will discuss these notations

* Advantages
e Good running time for “almost sorted” arrays (®(n))

* Disadvantages

~ n%/2 comparisons and exchanges (®(n?) running time in worst and average
case)

242

Insertion Sort - Summary

Time Complexity:

* BestCase Sorted array as input, [O(N)]. And 0(1) swaps.
» Worst Case: Reversely sorted, and when inner loop makes maximum comparison, [0(N?)] . And 0(N2) swaps.
» Average Case: [0(N2)]. And O(N2) swaps.

Space Complexity: [auxiliary, 0(1)]. In-Place sort.

Advantage:

1.1t can be easily computed.

2. Best case complexity is of O(N) while the array is already sorted.

3. Number of swaps reduced than bubble sort.

4. For smaller values of N, insertion sort performs efficiently like other quadratic sorting algorithms.
5. Stable sort.

6. Adaptive: total number of steps is reduced for partially sorted array.

7.In-Place sort.

Disadvantage:

1.1t is generally used when the value of N is small. For larger values of N, it is inefficient.

243

Bubble Sort

* |dea:
* Repeatedly pass through the array
» Swaps adjacent elements that are out of order

e Easier to implement, but slower than Insertion sort

Time Complexity:

* BestCase Sorted array as input. Or almost all elements are in proper place. [O(N)]. 0(1) swaps.
« Worst Case: Reversely sorted / Very few elements are in proper place. [0(N2)] . 0(N2) swaps.
» Average Case: [0(N2)] . 0(N?) swaps.

Space Complexity: A temporary variable is used in swapping [auxiliary, 0(1)]. Hence it is In-Place sort.

Advantage:

1. Itis the simplest sorting approach.
2. Best case complexity is of 0(N) [for optimized approach] while the array is sorted.
3. Using optimized approach, it can detect already sorted array in first pass with time complexity of O(N).

4. Stable sort: does not change the relative order of elements with equal keys.
5.In-Place sort.

Disadvantage:

1. Bubble sort is comparatively slower algorithm.

Selection Sort

* |dea:
* Find the smallest element in the array
* Exchange it with the element in the first position

* Find the second smallest element and exchange it with the
element in the second position

* Continue until the array is sorted

* Disadvantage:

* Running time depends only slightly on the amount of order
in the file

Time Complexity:

» BestCase [0(N2)]. And 0(1) swaps.
» Worst Case: Reversely sorted, and when the inner loop makes a maximum comparison. [0(N2)] . Also, 0(N) swaps.

 Average Case: [0(N2)] . Also O(N) swaps.

Space Complexity: [auxiliary, 0(1)]. In-Place sort.(When elements are shifted instead of being swapped (i.e.

temp=a[min], then shifting elements from ar[i] to ar[min-1] one place up and then putting a[i]=temp). If swapping is

opted for, the algorithm is not In-place.)

What are the loop invariants in Bubble and
Selection sort?

How do we evaluate algorithms?

-FFICIENCY OF PROGRAMS

= computers are fast and getting faster — so maybe efficient
programs don’t matter?

> but data sets can be very large (e.g., in 2014, Google served
30,000,000,000,000 pages, covering 100,000,000 GB — how long to
search brute force?)

> thus, simple solutions may simply not scale with size in acceptable
manner

* how can we decide which option for program is most efficient?

=" separate time and space efficiency of a program

= tradeoff between them:

> can sometimes pre-compute results are stored; then use “lookup” to
retrieve (e.g., memoization for Fibonacci)

> will focus on time efficiency

WANT TO UNDERSTAND
-FRFICIENCY OF PROGRAMS

Challenges in understanding efficiency of solution to a
computational problem:

" 3 program can be implemented in many different
ways

" you can solve a problem using only a handful of
different algorithms

= would like to separate choices of implementation
from choices of more abstract algorithm

HOW TO EVALUATE
EFFICIENCY OF PROGRAMS

" measure with a timer

= count the operations

=l abstract notion of order of growth w3

TIMING PROGRAMS IS
INCONSISTENT

" GOAL: to evaluate different algorithms

= running time varies between algorithms v/
* running time varies between implementations ¥
*" running time varies between computers) ¢

" running time is not predictable based on small) 4
iInputs

" time varies for different inputs but
cannot really express a relationship
between inputs and time

COUNTING OPERATIONS

" assume these steps take def c_to_f(c):
constant time: return|c*9.0/5 + 32
. . S
* mathematical operations 2OV

def mysum(Xx):

* comparisons

* assignments ‘
| o Q

» accessing objects in memory \0@0@@6

total = 0
for |1 in range(x+1l):
total += 1

return total ¢
’LO

%DQ

10?

* then count the number of
operations executed as

: _ _ mysum =2 1+3x ops
function of size of input

COUNTING OPERATIONS IS
BETTER, BUT STILL...

* GOAL: to evaluate different algorithms

" count depends on algorithm v
" count depends on implementations X
= count independent of computers v

= no clear definition of which operations to count 3

* count varies for different inputs and
can come up with a relationship

between inputs and the count

STILL NEED A BETTER WAY

* timing and counting evaluate implementations

* timing evaluates machines

* want to evaluate algorithm
* want to evaluate scalability

* want to evaluate in terms of input size

STILL NEED A BETTER WAY

" Going to focus on idea of counting operations in an
algorithm, but not worry about small variations in
implementation (e.g., whether we take 3 or 4 primitive
operations to execute the steps of a loop)

" Going to focus on how algorithm performs when size
of problem gets arbitrarily large

" Want to relate time needed to complete a
computation, measured this way, against the size of
the input to the problem

" Need to decide what to measure, given that actual
number of steps may depend on specifics of trial

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

" a function that searches for an element in a list
def search for elmt(L, e):
for i in L:
if 1 == e:
return True
return False

= when e is first element in the list = BEST CASE
= when e is not in list 2 WORST CASE

* when look through about half of the elements in
list > AVERAGE CASE

= want to measure this behavior in a general way

BESI, AV

-RAG

-, WORS T CASES

" suppose you are given a list L. of some length 1en (L)

" best case: minimum running time over all possible inputs
of a given size, 1en (L)
* constant for search for elmt
* first element in any list

" average case: average running time over all possible inputs . o
of a given size, 1en (L)
* practical measure

= worst case: maximum running time over all possible inputs

of a given size, 1en (L)

* linear inlength of list for search for elmt
* must search entire list and not find it

ORDERS OF GROWTH

Goals:

= want to evaluate program’s efficiency when input is very big

= want to express the growth of program’s run time as input
Size grows

= want to put an upper bound on growth — as tight as possible
= do not need to be precise: “order of” not “exact” growth

= we will look at largest factors in run time (which section of
the program will take the longest to run?)

* thus, generally we want tight upper bound on growth, as
function of size of input, in worst case

Bottom line idea on growth of algorithmic
time

* A+B In (n) < A+B In(n) + Cn < + D(n?) for large enough n (B, C, D
are positive constants, depends on machine etc.

Some References

* https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/MIT6 0001F16 Lecl0.pdf

* https://www.cse.unr.edu/~bebis/CS477/Lect/InsertionSortBubbleSort
SelectionSort.ppt

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/MIT6_0001F16_Lec10.pdf
https://www.cse.unr.edu/~bebis/CS477/Lect/InsertionSortBubbleSortSelectionSort.ppt

Detailed Analysis of Insertion Sort

L key L key

Analmsis of Insertion Sort

SERTION-SORT(A) cost
forj< 2ton Cq
do key < A[j] C,
PInsert A[j] into the sorted sequence A[1 . .j-1] O
1< j-1 Cy
while i > 0 and Ali] > key Cs
do A[i + 1] & Ali] Ce
1< i1—1 C~
Ali + 1] < key Cg

ti: # of times the while statement is executed at iteration |
n

T(n) :(:1n+(:2(n—1)+(:4(n—1)+c52nltj +Cﬁznl(tj —1)+C7Z<tj —

j=2 j=2 j=2
263

times
n
n-1
n-1
n-1
>t
> =D
> =D

n-1

1)+ Cs(nN—1)

Best Case Analysis

* The array is already sorted “while i > 0 and A[i] > key”

* Al[i] < key upon the first time the while loop test is run
(whenij=j-1)

.tjzl

* T(n) = ¢in + co(N -1) + c4(n -1) + c5(n -1) + cg4(n-1) =

(Ci+Ca+ca+Cs+Cg)n+(Cy+ Cy+ Cs+ Cg)

=an + b = O(n)

T(n) = c1n+c2(n—1)+c4(n—1)+(:5znltj +C6Zn:(tj —1)+ (:72(tj —1)+ c,(n—1)

j=2 j=2 j=2
264

>

Worst Case Analysis

* The array is in reverse sorted order “while i > 0 and A[i] > key”
* Always A[i] > key in while loop test

* Have to compare key with all elements to the left of the j-th position
= compare with j-1elements = tj = J

using > j= ”(”2+1) =Y j= ”(”2+1)—1 = Y (-np="0D e have:

= =2 \ =2 / 2 \

T(n)=cn+c,(n-1)+c,(n—1)+ Cs(n(n;l) —1) +C, n(n2—1) +c, n(n2—1) +c,(n-1)

—an’+bn+c a quadratic function of n

« T(n) = ©(n?) order of growth in n2
T(n)=cn+c,(n-D+c,(n-1)+c > t, JFCBZ(tj —1)+c7 (tj —1)+ c,(n—1)

j=2 j=2 j=2 265

>

Comparisons and Exchanges in Insertion Sort

INSERTION-SORT(A) cost times
forj<2ton Cq n

do key & Al] C, n-1

Insert A[j] into the sorted sequence A[1 . . j-1] 0 n-1

i< j-1 ~n?/2 comparisons ¢4 n-1
[while i > 0 and A[i] > key ' Cs >t }
 doAli+1] €Al D MR UESY
ici-1 =~né/2 exchang}es‘ ¢7 > L=

Cg n-1

Ali + 1] €& key

266

summary

* When you add all these terms, the terms proportional to n-square
will win !

Growth of Functions. Given functions fand g, we wish to show
how toquantify the statement : “g grows as fast as /™.

The growth of functions is directly related to the complexity of
algorithms. We are guided by the following principles.

. We only care about the behavior for “large” problems.

. We may ignore implementation details such as loop counter incrementation.

Let f and g be functions from the natural numbers to the realnumbers.
Then g asymptotically dominates f, or

fis big-O of g

if there are positive constants C and k such that
|If()| < Clg(%)]| for x = k.

Usually we will deal with functions that are manifestly positive at least
for “large values of x”.

If fis big-O of g, then we write
() 1s O(g(x))or f € O(g).

Example:

Show that x> + 10 is O(x).

Let C=3and k = 3.
Then,if x =2 3,32 =xX+2x2 =2 x2+2-322=2 x+10

Or,

Let C=2and k=4. Then, if x = 4,
2xX* =+ = x2+42 = 2+ 10.

So the values of C and k are flexible.
Also note that 3x? = O(x?)

Clearly some general theorems are useful.

THEOREMS: (Without Proof).

If lim lftal _ L, where L 2 0, then [€ O(g).
> |g(x)|
o 1 L0

x> | g(20)|

= 00, then f is not O(g) (f/€ O(g)).

2
r~ + 10 10
lim = —— = lim (1 + —2) =14+0=1.
T

T—00 T F— 0O

X2+ 10 € O(x3).

How do you interpret the statement f is not O(g)? That is, how do you
negate the definition? The definition says:

f € O(g) if and only if there exist constants C and k such that, forall
x, if x = Kk, then |f(x)| < C|g(x)].

The negation would then read:

f is not O(g) if and only if for all constants C and k, there exist x
suchthat x = kand [f(x)]| > C|lg(x)].

Show that x is not O(x). (Prove it)

Show that 22 + x* — 3x+ 2 is O(F).

In general,
Let

i
p(n)=> an',
i=0

where a;> 0, be a degree-d polynomial in », and let £ be a constant.

Then

If k>=d, p(n) is O(x¥)

A polynomial of degree n is O(x").

How about log(x) vs x ?

We already know that x is NOT O(log x); easy to show that log x = O(x)
Definition of small of): If f and g are such that

lim f(n) =10

n—oc y{n)

then we say f is little-o of g, written
feolg).

Theorem: If f is o(g), then f is O(g).

Useful results:

If fi is O(g)) and f, is O(g,), then (fi*f)) is O(max{|g,|, |9,|}).
If f, and f, are both O(g), then (f, + f,) is O(g).

Iff, is O(g,) and f, is O(g,), then (f.f;) is O(g,g,)-

Iff, is O(f;) and f, is O(fy), then f; is O(f,).

If f is O(g), then (af) is O(g) for any constant a.

22Nov2021

* Growth of Functions

* Divide and Conquer algorithms

* Merge sort

* Recurrence relation for Merge sort.
* Solving recurrence relations.

" fn) = O(g(n))

f(n)

" fn) = O(g(n))

f(n) = Q(gm))

" fn) = O(g(n))

f(n)

J(n) = O(g(m)

f(n) = Q(gm))

Let’s say we want to solve a problem P. For e.g. P could be the problem of sorting an array, or
finding the smallest element in an array. Divide-and-conquer is an approach that can be applied
to any P and goes like this:

Divide-and-Conquer

To Solve P:
1. Divide P into two smaller problems P, Ps.
2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to Py, P> into solution for P.

The simplest way is to divide into two subproblems. Can be extended to divide into k subprob-
lems.

Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recur-
rences.

MERGE SORT

A divide-and-conquer solution for sorting an array gives an algorithm known as mergesort:
e Mergesort:

— Divide: Divide an array of n elements into two arrays of n/2 elements each.
— Conquer: Sort the two arrays recursively.

— Combine: Merge the two sorted arrays.

e Assume we have procedure Merge(A, p, ¢, 7) which merges sorted A|[p..q| with sorted Alq+1....r]

e We can sort Alp...r] as follows (initially p=0 and r=n-1):

Merge Sort(A,p,r)

If p<r then
qg=[(p+7)/2]
MergeSort(A,p.q)
MergeSort(A,q+1,r)
Merge(A.p.q.r)

L.
Lo‘ az/ Q aq-c—,‘a

“l GL ﬂ; SI 5
Suppose you are sorting A=15,2,4,7,1, 3, 2, 6]. S——

We divide this into the arrays [5, 2, 4, 7] and [1, 3, 2, 6], and MergeSort each of
those arrays.

To sort [5, 2, 4, 7], we divide it into the arrays [5, 2] and [4, 7], and MergeSort each
of those arrays.

To sort [5, 2], we divide it into the arrays [5] and [2].

At this point we have reached the base case, so MergeSorting the array [5] just
returns the array [5], and MergeSorting the array [2] just returns the array [2].

But now we need to merge together [5] and [2], which gives us [2, 5].
Merging together [2, 5] and [4, 7] gives us [2, 4, 5, 7].

Finally, merging together [2, 4,5, 7] and [1, 2, 3, 6] givesus [1, 2, 2,3,4,5, 6, 7].

W

sorted sequence

e
/AN /N
AR AR

initial sequence

6

The operation of merge sort on the array A = (5,2,4,7, 1,3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

Mergesort Analysis
To simplify things, let us assume that n is a power of 2, i.e n = 2* for some k.

Running time of a recursive algorithm can be analyzed using a recurrence relation. Each
“divide” step yields two sub-problems of size n/2.

Let T'(n) denote the worst-case running time of mergesort on an array of n elements. We

have: ke
— T) Tt})

T(n) = e +T(n/2)+T(n/2)+ e C A\~

SR &\rz -
e Simplified, T'(n) = 27T (n/2) + O(n)
T(2 T2
—_ v
e Note: If n # 2% the recurrence gets more complicated. \ (\/\ = 7T (‘_’LL\ +((- \

T(n) = e(1) Ifn=1 . .
Tw) {7‘([3])+T([§J)+e(n) Ifn > 1 ?'l:‘i{ TR - b\w
— N

T(raYé (& T (L?‘J\

Substitution method of Solving Recurrence Relations:.
1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

Lets try to solve a recurrence relations using this.

T'(1l)=1and T(n) =2T7(|n/2])+ n for n > 1.

T ()< enlygh e C
B P Mo

Substitution method of Solving Recurrence Relations:.
1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

Lets try to solve a recurrence relations using this.

T(1)=1and T(n) =2T(|n/2|) + n for n > 1.

We guess that the solution is[ﬂtm So we must prove that 7'(n) < enlogn for
some constant ¢. (We will get to ng [ater, but for now let’s try to prove the statement for
alln > 1.)

As our inductive hypothesis, we assume 7'(n) < enlogn for all positive numbers less than
n. Therefore, T'(|n/2]|) < ¢|n/2]log(|n/2])), and

2(c|n/2] log(|n/2])) + n
enlog(n/2) +n
cnlogn —enlog2 +n

T(n)

I IA IA

enlogn —en+n

IA

ecnlogn (fore>1)

As our inductive hypothesis, we assume T'(n) < enlogn for all positive numbers less than
n. Therefore, T'(|n/2]|) < ¢|n/2]log(|n/2])), and

2(cn/2] log(|n/2])) + n
enlog(n/2) +n
cnlogn —enlog2 +n

T(n)

IA A

cnlogn —en+n

IA

ecnlogn (fore>1)

Now we need to show the base case. This is tricky, because if T'(n) < enlogn, then T'(1) < 0,
which is not a thing. So we revise our induction so that we only prove the statement for
n > 2, and the base cases of the induction proof (which is not the same as the base case
of the recurrence!) are n = 2 and n = 3. (We are allowed to do this because asymptotic
notation only requires us to prove our statement for n > ng, and we can set ng = 2.)

As our inductive hypothesis, we assume T'(n) < enlogn for all positive numbers less than
n. Therefore, T'(|n/2]|) < ¢|n/2]log(|n/2])), and

2(cn/2] log(|n/2])) + n
enlog(n/2) +n
cnlogn —enlog2 +n

T(n)

IA A

cnlogn —en+n

IA

cnlogn (for ¢ > 1)

Now we need to show the base case. This is tricky, because if T'(n) < enlogn, then T'(1) < 0,
which is not a thing. So we revise our induction so that we only prove the statement for
n > 2, and the base cases of the induction proof (which is not the same as the base case
of the recurrence!) are n = 2 and n = 3. (We are allowed to do this because asymptotic
notation only requires us to prove our statement for n > ng, and we can set ng = 2.)

We choose n = 2 and n = 3 for our base cases because when we expand the recurrence
formula, we will always go through either n = 2 or n = 3 before we hit the case where n = 1.

As our inductive hypothesis, we assume T'(n) < enlogn for all positive numbers less than
n. Therefore, T'(|n/2|) < ¢[n/2]log(|n/2])), and

2(cn/2] log(|n/2])) + n
enlog(n/2) +n
cnlogn —enlog2 +n

T(n)

I IA IA

enlogn —en+n

IA I

ecnlogn (fore>1)

So proving the inductive step as above, plus proving the bound works for n = 2 and n = 3,
suffices for our proof that the bound works for all n > 1.

Plugging the numbers into the recurrence formula, we get 7'(2) = 27(1) + 2 = 4 and

T(3) =2T(1) + 3 = 5. So now we just need to choose a ¢ that satisfies those constraints on
T'(2) and T'(3). We can choose ¢ = 2, because 4 < 2-2log2 and 5 < 2- 3log 3.

Therefore, we have shown that 7'(n) < 2nlogn for all n > 2, so T'(n) = O(nlogn).

Master Method

e It is possible to come up with a formula for recurrences of the form 7'(n) = aT'(n/b) + n°

(7°(1) = 1). This is called the master method.
— Merge-sort = T'(n) =2T(n/2) +n (a=2,b=2, and c = 1).

T(n)=aT(%‘)+n“ a>1.b>1.¢c>0
Y

O(n'osr @) a > b°
T(n) =< O(n°log,n) a=>b"

O(n°) a < b°

Other recurrences

Some important /typical bounds on recurrences not covered by master method:

e Logarithmic: O(logn)

— Recurrence: T'(n) =1+ T(n/2)
— Typical example: Recurse on half the input (and throw half away)
— Variations: T'(n) =1+ 7°(99n/100)

e Linear: O(N)

— Recurrence: T'(n) =1+ T(n—1)
— Typical example: Single loop
— Variations: T'(n) = 1+ 27 (n/2),T(n) =n+T(n/2),T(n) =T(n/5)+T(Tn/10+6) +n

e Quadratic: O(n?)

— Recurrence: T'(n) =n+T(n—-1)
Typical example: Nested loops

e Exponential: ©(2")

—~ Recurrence: T'(n) =27 (n — 1)

Ref

* https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
1.pdf

e https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
2.pdf

e https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
3.pdf

* https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
2.pdf

 https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall14/Lecture
s/02-recurrences/recurrences.pdf

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture1.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture2.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture2.pdf
https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall14/Lectures/02-recurrences/recurrences.pdf

24Nov2021

* Last time we discussed the time complexity of merge — sort.
* The complexity is O(n log n).

* We did this assuming that the time complexity of merging two sorted
arrays of length m and n into a sorted array of length m+n is O(m+n)

* We will complete this today.

* Input: sorted array a of length m, and sorted array b of length n
* Create an empty array c of length m+n, set index_a and index b to 0

* While (index_a < length of a) and (index_b < length of b)
a. Add the smaller of a[index_a] and b[index_b] to the end of c.
b. Increment the index of c.
c. Increment the index of the list with the smaller element

* If any elements are left over in a or b, add them to the end of ¢, in
order

* Return c.

QL) e 0L ¢ M-
| l l ' \‘] \ 7 OSJ\E R
C Tw)
CEele U [T TT— ° Ll Lmwr
: =0
L= °, y= ©
- ap< by Cﬂiﬂ—’—ot_ti"] k=1
Tu=l =0l if o <be CTN=0
Y
= 2= |
("2’320 ,'_(_ bo<a_l QL?.}: \oo bq: L+J_l
.\.:z"J—_B|
oy \, W <xhausty)
R - 3 So b\mw\j}»\'a O\(. p CI(E}L:\A jd "|UY4,,+.

=T) 6079 Ton
S

———

4§|\Q/\/-_d

va'w\é A\/\a\7§‘as— :
Lt e

OL[m=w) \o[n]
1 ITT1 (T l,‘ el Okt
Wos. 5l o b lm Thom by - /j-hp(
m T ("‘bv\B L, W o w«l',ﬁyio —H“f w, N ey
%l O\:V'.MLD C\"\ \q\: T(\/\—I%—\-K
JC\A;\Q“KM!M'I“\M tzle, 'I‘D C/J‘-\VMJ\'I\,D .(lu»\J,g(&wwLQ'\D‘qL
Stvél)wﬂ:)\ \ (V\,\q\ -\ (\"_‘\,V\‘B K (1)
v T
T(vku) P T () = OC(SWL—MB - ”Tw([fq_mo,o@ +\<U\+£)

T(W‘/V\\ _ 2 U T(m-bv) + ComgTent

* O v P
T - A0 A
o) = TN TR (o)
< cm-van)
< c[\ﬂ)%ﬂ)

= T () :C{\mm\ —

#include <stdio.h>
#include <stdlib.h>
int merge_two_sorted_arrays(int arrl[], int arr2[], int arr3][], int

m, int n)

{

inti,j,k; while(i < m)
i=j=k=0; {

for(i=0;i < m && j < n;) arr3[k] = arrl]i];
{ K++;

if(arrl[i] < arr2[j]) i++;

{ }

arr3[k] = arrl]i]; while(j < n)
k++; {

i++; arr3[k] = arr2][j];
} k++;

else j++;

{ }

arr3[k] = arr2][j]; }

k++;

j+

}

}

29N0Ov2021

* Back to Important Structures
* Link List
 Stack
* Binary Trees
* Etc.

* Adding a node at the header of a link list.
(Ref. http://cslibrary.stanford.edu/103/LinkedListBasics.pdf)

Adding a node at the beginning of the code

Stack Heap

LinkTest ()

head N

AN : ::
newNode N \\ 2 }—D 3 /
1
: E B Insert this node with the 3-Step Link In:

1) Allocate the new node

2) Set its .next to the old head

3) Set head to point to the new node
Before: list = {2, 3}

After: list= {1, 2, 3}

Adding a link to the head

* Wrong code. Why?

struct node |
int data;

struct node* next;

b

volid WrongPush(struct node* head, int data) |

struct node* newNode = malloc(sizeof (struct node));

newNode->data = data;
newNode->next = head;
head = newNode; J// NO this line does not work!

vold WrongPushTest () |
List head = BuildTwoThree();

WrongPush (head, 1); Iy try to push a 1 on front -- doesn't work

Adding a node to the head of a linked list

/*
Takes a list and a data wvalue.
Creates a new link with the given data and pushes

void WrongPush (struct node* head, int data) { it onto the front of the list.
struct node* newNode = malloc(sizeof (struct node)); The list is not passed in by its head pointer. .
Instead the list is passed in as a "reference" pointer
newNode->data = data; Eo thz.?eafhpoiniir :— this allows us
o0 modi e caller's memory.
newNode->next = head; ny ¥ ¥
= . i i
} head newNode; // NO this line does not work! vold Bush (struct modes* hesdhek; -ink data) |

struct node* newNode = malloc(sizeof (struct node));

newNode->data = data;
void WrongPushTest () { newNode->next = *headRef; // The '*' to dereferences back to the real head
List head = BuildTwoThree(); *headRef = newNode; // ditto
}
WrongPush (head, 1); // try to push a 1 on front -- doesn't work
} void PushTest () {
struct node* head = BuildTwoThree();// suppose this returns the list (2, 3}
Push (&head, 1); // note the &

Push (&head, 13);

// head is now the list (13, 1, 2, 3}

Stack as abstract data type

Stack is a linear data structure which follows a particular order in which the operations are performed.
The order may be LIFO(Last In First Out) or FILO(First In Last Out).

Mainly the following three basic operations are performed in the stack:

¢ Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow condition.

* Pop: Removes an item from the stack. The items are popped in the reversed order in which they are
pushed. If the stack is empty, then itis said to be an Underflow condition.

¢ Peekor Top: Returns top element of stack.

» isEmpty: Returns true if stack is empty, else false.

Push

Stack Last in, first out

Insertion and Deletion
happen on same end

’flap h Pop

Stack as abstract data type

Stack is a linear data structure which follows a particular order in which the operations are performed.
The order may be LIFO(Last In First Out) or FILO(First In Last Out).

Mainly the following three basic operations are performed in the stack:

¢ Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow condition.

* Pop: Removes an item from the stack. The items are popped in the reversed order in which they are
pushed. If the stack is empty, then itis said to be an Underflow condition.

¢ Peekor Top: Returns top element of stack.

» isEmpty: Returns true if stack is empty, else false.

— TOP=0 TOP =1 TOP = 2 TOP=1
Push stack[D] =1 stack[1l] =2 stack|2] =3 return stack|2)
_ D) :
Stack Last in, first out 2 | 2 | (2
[1 | 1 L 1]
Insertion and Deletion i push push push pop
happen on same end ooy uyyyL

How to implement a Stack

e Can be implemented as array
* Needs maximum size of the stack to create an empty stack, then all the
functions.
* Can be implemented as a linked list
* Create a single node.

* Push is attaching a node to the top
* Pop is reading value at the top and then deleting it from the top (head)

 How will you write Is_full and Is_empty?

Reversing a string using stack and checking if

it is a palindrome

1) Create an empty stack.
2) One by one push all characters of string to stack.
3) One by one pop all characters from stack and put

them back to string.

Original String:cheese

KN
KN
e
e

< Top of Stack

Each character in the
string is pushed onto
the stack one by one so
that the last character
of the string is the top
of the stack, ond that
the first character is the
bottom of the stack.

<« Bottom of Stack

New String:eseehc

< Top of Stack

Each character in the
string is popped off the
stack and appended to
a new string to
effectively spell the
original string
backwards. If the
strings are equal, itis a
palindrome,

& Bottom of Stack

Stack implemented as an array

* A bounded stack can be implemented as array

* We have to know the maximum size

* We have to have an indication when the stack is empty (or full)
* We need to store the data in the stack.

So how to we define a stack structure consistent with these?

Stack structure implemented as array

// Data structure for stack
struct stack

{

int maxsize; // define max capacity of stack
int top; //set top to -1 for an empty stack
int *items; // can also write items[]?? items[maxsize]??

I

Functions related to stack implemented as
array

// Utility function to initialize stack
struct stack™ newStack(int capacity)

{

struct stack *pt = (struct stack®™)malloc(sizeof(struct stack));
pt->maxsize = capacity;
pt->top = -1;

pt->items = (int*)malloc(sizeof(int) * capacity);

return pt;

Functions related to stack implemented as

array

// Utility function to initialize stack
struct stack® newStack(int capacity)

{

struct stack *pt = (struct
stack*)malloc(sizeof(struct stack));

pt->maxsize = capacity;
pt->top = -1;
pt->items = (int*)malloc(sizeof(int) * capacity);

return pt;

}

// Utility function to check if the stack is empty or not
int isEmpty(struct stack *pt)
{

return pt->top ==-1; // or return size(pt) == 0;

}

// Utility function to check if the stack is full or not
int isFull(struct stack *pt)
{
return pt->top == pt->maxsize - 1;
// or return size(pt) == pt->maxsize;

}

Push and Pop an element

// Utility PUSH function to add an element x in the stack
void push(struct stack *pt, int x)

{

// check if the stack is already full. Then inserting an element

would
// lead to stack overflow
if (isFull(pt))
{
printf("OverFlow\nProgram Terminated\n");
exit(EXIT_FAILURE);

}

// add an element and increments the top index
pt->items[++pt->top] = x;

Explain how the last line works.
How is it adding to the array?
Pushed to which location or index

to the array? l
ca_Jboa/u 3J=56
owpb o { \ t1 4?[: =@,
PeA (s ETTTIEL Aspes
i v Q:I-'-‘ -‘-lw['oj__ S
IDMC‘B LS(ty \ tUrt XwLml-PT,

Push and Pop an element

// Utility PUSH function to add an element x in the stack // Utility function to pop top element from the stack
void push(struct stack *pt, int x) int pop(struct stack *pt)
{ {
// check if the stack is already full. Then inserting an element // check for stack underflow
would if (iIsEmpty(pt))
// lead to stack overflow {
if (isFull(pt)) printf("UnderFlow\nProgram Terminated\n");
{ exit(EXIT_FAILURE);
printf("OverFlow\nProgram Terminated\n"); }
exit(EXIT_FAILURE);
} // decrement stack size by 1 and (optionally) return the
popped element
// add an element and increments the top index return pt->items[pt->top--];
pt->items[++pt->top] = x; }

Peek at the top of the stack

// Utility function to return top element in a stack
int peek(struct stack *pt)
{
// check for empty stack
if (lisEmpty(pt))
return pt->items[pt->top];
else
exit(EXIT_FAILURE);

Sample Program illustrating a stack using all
these functions

int main() Output:
{
// create a stack of capacity 5
struct stack *pt = newStack(5); Inserti ng 1
push(pt, 1); Inser‘ting 2
push(pt, 2); Inserting 3
push(pt, 3); .
Top element is 3
printf("Top element is %d\n", peek(pt)); Stack size is 3

printf("Stack size is %d\n", size(pt)); Removi ng 3

pop(pt); Removing 2
pop(pt); .
Removing 1

pop(pt);
Stack is empty
if (isEmpty(pt))
printf("Stack is empty");
else
printf("Stack is not empty");

return O;

}

Using Header files to define structure as per

|
A Stack Implemented as an array in C

Header file for a list

// File: Codel2@ Stack.h

// Purpose: Header file for a demonstration of a stack implemented
// as an array. Data type: Character

// Programming Language: C

// Author: Dr. Rick Coleman

#ifndef CODE120_STACK_H
#define CODE120_STACK_H

#include <stdio.h>
#define MAX_SIZE 50 // Define maximum length of the stack

// List Function Prototypes

void InitStack(); // Initialize the stack

void ClearStack(); // Remove all items from the stack
int Push(char ch); // Push an item onto the stack
char Pop(); // Pop an item from the stack

int isEmpty(); // Return true if stack is empty
int isFull(); // Return true if stack is full

// Define TRUE and FALSE if they have not already been defined
#ifndef FALSE

#define FALSE (0)

#endif

#ifndef TRUE

#define TRUE (!FALSE)

#endif

#endif // End of stack header

Using Header files to define structure as per

// File: Codel2@ Stack.h

// Purpose: Header file for a demonstration of a stack implemented
// as an array. Data type: Character

// Programming Language: C
// Author: Dr. Rick Coleman

#ifndef CODE120_STACK_H
#define CODE120_STACK_H

#include <stdio.h>
#define MAX_SIZE 50 //

// List Function Prototypes

void InitStack(); //
void ClearStack(); //
int Push(char ch); /7
char Pop(); [/
int isEmpty(); //

int isFull(); //

// Define TRUE and FALSE if they
#ifndef FALSE

#define FALSE (0)

#endif

#ifndef TRUE

#define TRUE (!FALSE)

#endif

#endif // End of stack header

Define maximum length of the stack

Initialize the stack

Remove all items from the stack
Push an item onto the stack

Pop an item from the stack
Return true if stack is empty
Return true if stack is full

have not already been defined

A Stack Implemented as an array in C

Header file for a list

#include "Codel20 Stack.h"

// Declare these as static so no code outside of this source
// can access them.

static int top; // Declare global index to top of the stack
static char theStack[MAX_SIZE]; // The stack

https://www.cs.uah.edu/~rcoleman/Common/CodeVault/Code
/Code120 Stack.html

Application of Stack

* Checking parenthesis

* Expression handling (in fix to Pre fix or post fix)
* What else?

Check for balanced expressions

* |dentify what you want to see balanced and what rules apply

e.g. Given an expression string exp, write a program to examine
whether the pairs and the orders of “{“ “}’, “(“, “)”, “1“, “1” are correct

in exp

Algorithm:

e Declare a character stackS.

» Now traverse the expression string exp.
1.1f the current characteris a starting bracket (‘(* or ‘{" or’[') then push it to stack.

2. If the current characteris a closing bracket ()" or '} or‘']') then pop from stack and if the popped
characteris the matching starting bracket then fine else brackets are not balanced.

» After complete traversal, if there is some starting bracket left in stack then "not balanced”

Initially :

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

stack |

s | e fo]

| } | 1]Opening bracket. Push into stack

!

St.ackl [|

st e []

I } |] I Opening bracket. Push into stack

!
i

stack | [] ¢ |

s | ¢ [|

| } | 1]Opening bracket. Push into stack

f

stack | [] ¢] (]

s 0] Jo]

—

I |] Closing bracket. Check top of the stack
} | 1 |issame kind or not

stack | [| ¢ |

s e o]

I } |] ICIosInE.hra:ket. Check top of stack is
i

stack | [|

same kind or not
1

s | Cfe fo |

Closing bracket. Check top of stack is
I } | ! IHm& ind or not

[

#include <stdio.h>
#include <stdlib.h>
#tdefine bool int

// structure of a stack node
struct sNode {
char data;
struct sNode* next;

|3

Initially :
e Stack // Function to push an item to stack

void push(struct sNode** top_ref, int new_data);

5tr| [|{][|) I],l 1 |Dpen|ng bracket. Push into stack

i // Function to pop an item from stack

int pop(struct sNode** top_ref);
Step 1:
Stack |

// Returns 1 if characterl and character2 are matching left

str | [| { l I |)] } |] | Opening bracket. Push into stack // and right Brackets
| bool isMatchingPair(char characterl, char character2)
I
{
Step 2: Stack [IIII: if (characterl =='(' && character2 ==")')
return 1;
str| [[¢ |« | 2] 3] 1 | Openingbracket. Push into stack else if (characterl == '{' && character2 =="}')
3 return 1;
! else if (characterl =="[' && character2 == ")
Step 3: return 1;
Closing bracket. Check top of the stack return 0;

5“[[I{ I(l) I }l] is same kind or not }

// Return 1 if expression has balanced Brackets

Step 4: Stack IIIII: bool areBracketsBalanced(char exp[])

. {
g 8 T T I P B et it nti=0

// Declare an empty character stack

Step 5: struct sNode* stack = NULL;
Stack | |

s"[I I{ I[]) I }l]]CIusInEbracket.Checkmpufstackis

same kind or not // Traverse the given expression to check matching
// brackets

while (exp[i])

{

01Dec2021

Stack structure implemented as array

// Data structure for stack
struct stack

{

int maxsize; // define max capacity of stack
int top; //set top to -1 for an empty stack
int *items; // can also write items[]?? items[maxsize]??

I

Last time there was a discussion as to whether int *items is correct, how it knows that it is an array,
and whether int items[], int items[maxsize] would work as well.

A simpler question.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int *elements;

elements = malloc(50*sizeof(int)); // what does this do???

return O;

}

A simpler question.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int *elements;

elements = malloc(50*sizeof(int)); // what does this do???
elements[19] = 5;

printf(“%d”,elements[19]);

return O;

}

struct mystructure {
int maxsize;

int top; DECLARATION ONLY; NO
int “elements; ITILIALIZATION

}sl

struct mystructure® createmyarrayStack(int size)

struct mystructure “newarray (struct mystructure®) ((struct mystructure)));

newarray maxsize = size;

newarray top ;

newarray elements (newarray maxsize
newarray;

int main()

{

struct mystructure® myStack;

int myStacksize = 100;

myarray = createmyarrayStack(myStacksize);
return O;

}

struct mystructure {
int maxsize;
int top;
int “elements;

}sl

struct mystructure® createmyarrayStack(int size)

struct mystructure “newarray (struct mystructure®) ((struct mystructure)));

newarray maxsize = size;

newarray top ;

newarray elements (newarray maxsize
newarray;

int main()

{

struct mystructure™ myStack;

int myStacksize = 100;

myarray = createmyarrayStack(myStacksize);

myStack->elements[10]=7;
printf("%d", myStack->elements[10]);
return O;

1

Compare stack implementations

ARRAY

/f C program for array implementation of stack
#include <limits.h>

#include <stdio.h>

#include <stdlib.hz

/A structure to represent a stack
struct Stack {

int top;

unsigned capacity;

int* array;

I

S/ function to create a stack of given capacity. It initializes size of
S/ stack as @
struct Stack* createStack(unsigned capacity)
{
struct Stack* stack = (struct Stack*)malloc(sizeof(struct Stack));
stack-»capacity = capacity,;
stack->top = -1;
stack-»array = (int*)mallec(stack->capacity * sizeof(int));
return stack;

Compare stack implementations

ARRAY

/f C program for array implementation of stack
#include «<limits.h> LINKED LIST
#include <stdio.h>

#include <stdlib.h>
/A structure to represent a stack

[/ A structure to represent a stack struct Stackhode {
struct Stack { int data;
int top; struct Stacklode* next;
unsigned capacity; I
int* array;
ks struct StackNode® newNode(int data)
1
[/ function to create a stack of given capacity. It initializes size of struct Stacklode* stackhNode =
J// stack as @ (struct StackMlode*)
struct Stack* createStack(unsigned capacity) malloc(sizeof(struct Stacklode));
{ stackMNode->data = data;
struct Stack* stack = (struct Stack*)malloc(sizeof(struct Stack)); stackNode-»next = NULL;
stack-»capacity = capacity; return stackNode;
stack-»>top = -1; T

stack-»array = (int*)mallec(stack->capacity * sizeof(int));
return stack;

File handling in C

e Suppose you have a “text file” in C and you want to append a line at
the end.

* For example, you have a list of integers and you want to append
another integer

* Or you want to sort these integers and save the sorted one in another
list.

 All this calls for reading from a file. Basic Operations are opening a file
for a specific purpose (read, write, append) and closing a file.

* When working with files, we need to declare a pointer of type file.
This declaration is needed for communication between the file and
the program.

* In other words, the pointer will store the address required to access
the file

* When working with files, we need to declare a pointer of type file.
This declaration is needed for communication between the file and
the program.

* In other words, the pointer will store the address required to access
the file

* Declaration:
FILE *filepointervariablename;

Opening a file

* The C function to open a file is fopen

Opening a file

* The C function to open a file is fopen

The fopen() method in C is a library function that is used to open afile to perform various operations
which include reading, writing etc. along with various modes. If the file exists then the particular file is

opened else a new file is created.

Syntax:

FILE *fopen(const char *file_name, const char *mode_of_operation);

Parameters: The method accepts two parameters of character type:

1. file_name: This is of C string type and accepts the name of the file that is needed to be opened.
2. mode_of_operation: This is also of C string type and refers to the mode of the file access. Below
are the file access modes for C:

i."r" - Searches file. If the file is opened successfully fopen() loads it into memory and sets up a
pointer which points to the first characterin it. If the file cannot be opened fopen() returns
NULL.

ii. "w" = Searches file. If the file exists, its contents are overwritten. If the file doesn't exist, a new
file is created. Returns NULL, if unable to open the file.

iii. "a" = Searches file. If the file is opened successfully fopen() loads it into memory and sets up a
pointer that points to the last characterinit. If the file doesn't exist, a new file is created.
Returns NULL, if unable to open the file.

iv. "r+" = Searches file. If opened successfully, fopen() loads it into memory and sets up a pointer
which points to the first character in it. Returns NULL, if unable to open the file.

v. "w+" = Searches file. If the file exists, its contents are overwritten. If the file doesn't exist a new
file is created. Returns NULL, if unable to open the file.

vi. "a+" - Searches file. If the file is opened successfully fopen() loads it into memory and sets up
a pointer which points to the last characterinit. If the file doesn't exist, a new file is created.

Returns NULL, if unable to open the file.

Return Value: The function is used to return a pointer to FILE if the execution succeeds else NULL is

returned.

Useful to check if the file could be opened

EXAMPLE:

FILE *fptr;
fptr = fopen("triall.txt","a");

if(fptr == NULL)

{
printf("Error!");
exit(1);

J

Exercise adding an integer to a file containing
Integers

HW

 Study the following functions
fscanf, fgets, fgetc, fputc ...

- fgetc() function is a file handlmg function in C
programming language which is used to read a character
from a file. It reads single character at a time and moves
the file pointer position to the next address/location to
read the next character.

HW::

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

3Dec

HW: Has anyone tried this??

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

HW: Has anyone tried this??

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

- Open the File to read:
- Store the numbers in an array or a linked list.

- Sort the array or the linked list as you find new numbers — What sort
program will you use here?

- End with End of File.
- WRITE THIS PROGRAM — not so easy, neither too difficult

Two Dimensional Arrays.

* A way to store a m x n matrix
data_type array name[x][y];

Example: int x[10][20];

Can store a 10x20 matrix whose elements are integers.

s there another way to store matrices for
practical purposes.

* Many applications deal with very very large matrices most of whose
elements are zero.

Matrix Operations for Large but Sparse Matrix

e Sparse matrix is a matrix (typically A VERY LARGE matrix) most of
whose elements are zero.

* The idea is to represent such matrices with a data structure that
retains only the non zero elements.

* The challenge is to find such a representation and develop time
efficient functions such that the “sparse representation” or sparsity is
maintained through out.

Unstructured Sparse Matrices

Airline flight matrix.
= airports are numbered 1 through n
= flight(i,j) = list of nonstop flights from airport i
to airport j
= n=1000 (say)
" nxn array of list references =>4 million bytes
= total number of flights = 20,000 (say)

= need at most 20,000 list references => at most
80,000 bytes

Unstructured Sparse Matrices

Web page matrix.
web pages are numbered 1 through n
web(i,j) = number of links from page i to page j

Web analysis.
authority page ... page that has many links to it
hub page ... links to many authority pages

Web Page Matrix

" n =2 billion (and growing by 1 million a day)

" n x n array of ints => 16 * 108 bytes (16 * 10°
GB)

= each page links to 10 (say) other pages on
average

" on average there are 10 nonzero entries per
row

= space needed for nonzero elements is
approximately 20 billion x 4 bytes = 80 billion
bytes (80 GB)

Unstructured Sparse Matrices

A typical representation

e Define a structure that has a tuplet array
* Each array element is a tuplet[N] (row, column, value)

* We can use the zero element of the array to retain some key information
about the original matrix

E.g. tuplet[0] = {no. of rows, no. of columns, no. of nonzero elements Are we
saving any space? Only if sparsity <1/3

p = number of non zero elements, p <= (mn)/3 for a m x n matrix

Representation Of Unstructured
Sparse Matrices

Single linear list in row-major order.

scan the nonzero elements of the sparse matrix in
row-major order

each nonzero element is represented by a triple
(row, column, value)

the list of triples may be an array list or a linked list
(chain)

colO | coll | col2 | col3 |col4| colb
row O 15 0 0 22 0 -15
row 1 11 3 0 0 0
row 2 0 0 -6 0 0
row 3 0 0 0 0 0
row 4 91 0 0 0 0 0
row 5 0 0 28 0 0

af0].row: number of
rows of the matrix

af0].col: number of
columns of the matrix

af0].value: number of
nonzero entries

The triples are
ordered by row and
within rows by
columns.

row | col | value
a[0] 6 6 8
[1] 0 0 15
[2] 0 3 22
[3] 0 D -15
[4] 1 1 11
i 1 2 3
[6] 2 3 -6
[7] 4 0 91
[8] 5 2 28

af0].row: number of
rows of the matrix

af0].col: number of
columns of the matrix

af0].value: number of
nonzero entries

The triples are
ordered by row and
within rows by
columns.

row

0
=

value

a[0]

[1]

15

[2]

22

(3]

-15

[4]

11

[5]

[6]

[7]

91

[8]

N INN|(=|=O|O|O O

NO|lWIN|mOITlW|O|O

28

Retrieving a row information vs Retrieving a

column

How many non zero element are in a row or a
column?

To do that for a row is simple. Complexity?

To do that that a column is not so simple
Complexity?

af0].row: number of
rows of the matrix

af0].col: number of
columns of the matrix

af0].value: number of
nonzero entries

The triples are
ordered by row and
within rows by
columns.

row | col | value
a[0] 6 6 8
[1] 0 0 15
[2] 0 3 22
[3] 0 D -15
[4] 1 1 11
[5] 1 2 3
[6] 2 3 -6
[7] 4 0 91
[8] 5 2 28

Retrieving a row vs Retrieving a column

How many non zero elements are there in a
specific row or a specific column?

To do that for a row is simple. ‘=
Complexity O(p) = O(mn)

To do that that a column is not so simple
Complexity O(p*n) = O(mn?), But we can devise
an algorithm to convert it to O(mn) { we will not
prove it here}

af0].row: number of
rows of the matrix

af0].col: number of
columns of the matrix

af0].value: number of
nonzero entries

The triples are
ordered by row and
within rows by
columns.

row | col | value
a[0] 6 6 8
[1] 0 0 15
[2] 0] 3 22
[3] 0 D -15
[4] 1 1 11
[5] 1 2 3
[6] 2 3 -6
[7] 4 0 91
[8] 5 2 28

* Any important problem in dealing with sparse matrix is how to
transpose a sparse matrix by keeping its properties intact. We will not
discuss this here except to note that there are algorithms to do this
efficiently.

Multiplying Polynomials.

* How do we represent polynomials?
* How do we add? What is the time complexity?
* How do we multiply polynomials?

The Polynomial Multiplication Algorithm

The Polynomial Multiplication Algorithm

Problem:
Given two polynomials of degree n

A(z) = apg+aiz+ - -+ anx™
B(z) = bog+bixz+ ---+ bpzx™,

compute the product A(z)B(z).

The Polynomial Multiplication Algorithm

Problem:
Given two polynomials of degree n

A(x) ag + a1z + -- - + anx™
B(x) "

bo b1:1: i bnx y
compute the product A(z)B(z).

Implement each polynomial as an array of the
coefficients

 What is the complexity in terms of the degree of the polynomial ?

 What is the complexity in terms of the degree of the polynomial ?

The Direct (Brute Force) Approach

Let A(z) = Y1 5a;x’ "and B(z) = "o biT z?.

Set C(x) = Zk 0 c;xt = A(z)B(z) with

k

cp=) aby_;

i=0
forall 0 < k < 2n.

 What is the complexity in terms of the degree of the polynomial ?

The Direct (Brute Force) Approach

Let A(z) = Y1 5a;x’ "and B(z) = "o biT z?.

Set C(x) = Zk 0 c;xt = A(z)B(z) with

o The direct approach is to compute all ¢;, using the for-
cp, = Y a;b,_; mula above. The total number of multiplications and
1=0 additions needed are © (n?) and ©(n?) respectively.

forall0 < k < 2n. Hence the complexity is © (n?).

Divide and Conqguer — First Try
The Divide Step: Define

Ag(z) = ao+a1x+---+aL%J_lml%J_l,
Ar(e) = ajg)tag e+ a2

Then A(z) = Ag(z) 4+ Aq(z)z!2).

Similarly we define By(x) and B (z) such that

B(z) = Bo(z) + By (z)z'2).

Divide and Conquer — First Try

The Divide Step: Define

Ag(z) = ag+ajz+---+ QL%J_lml%J_l,

A(e) = ag)Faygpaz+o a2

Then A(z) = Ag(z) + A1 (z)z!2).

Similarly we define Bg(x) and B (xz) such that

B(z) = Bo(z) + By (z)z!2/.

Then

A(z)B(z) = Ag(z)Bo(z) +nAo(:z:)B1(:p)xL%J o)
A1(z)Bo(2)z!2! + A1(2) B1(z)z22!.

Remark: The original problem of size n is divided into
4 problems of input size %

Fro B (T w
Divide and Conquer — First Try A, & ()
A %y
. _ l
The Divide Step: Define] R A g
Ao(x) = @0+c1133—|----—|—a,n_3:L7J_1, n 3
LQ_J ' ”_LRJ Abg.l - - L?\-Ivl/ L’TL—L)
Ai(e) = ap +ap izt tane 2 V\Tf—an”ﬁ v . + Cw
Then A(z) = Ag(z) + Ay (z)zl3). P R lapo
o . _LM\-—L,,'T (\'\,\—\- Cvﬂ(v\)
Similarly we define Bo(z) and By () suchthat o | 3
B(z) = Bo(z) + By (2)z'2. A(z)B(z) = Ao(x)Bo(z) + Ao(z)B1(z)z3! +

A1(2)Bo(2)z' 3! + A1(2) By (2)2213).

T(3) ¢ &[n)+ em fr fom©

Remark: The original problem of size n is divided into
£ S, , i
4 problems of input size 7.

Example:

A(z) = 2+45z+3z°+2> —2*
B(z) = 14 2z+ 2z2%+4 323+ 62*
A(z)B(z) = 2+ 9z + 1722 4 23z3 + 34z* + 392°

+192° + 32" — 62°

Ao(z) =2+ 5z, Ai(x) =34z — 22,
A(z) = Ap(z) + A1 (x)2?

Bo(z) =1+ 2z, Bi(z) =2+ 3z + 6z2,
B(z) = Bo(z) + Bi(z)z?

Ao(z)Bo(z) = 2+ 9z + 10z

Ai(z)Bi(z) = 6+ 1lz+ 192° + 323 — 62*
Ao(z)Bi(z) = 4+ 16z + 272° + 302°
Ai1(z)Bo(x) = 3+ 7z + 2 — 223

Ao(z)Bi(z) + A1(z) Bo(z) 7 4+ 23z + 28a2 + 2823

Ao(z)Bo(z) + (Ao(z)B1(z) + A1(x)Bo(z))z? + A1(z) Bi(z)x*
=249z 4+ 1722 + 2323 + 34z* + 3925 + 192° + 327 — 628

The Conquer Step: Solve the four subproblems, i.e.,
computing

Ao(z)Bo(z), Ao(z)Bi(x),
Ai1(z)Bo(z), Ai1(z)Bi(x)

by recursively calling the algorithm 4 times.

The Conquer Step: Solve the four subproblems, i.e.,
computing

Ao(z)Bo(z), Ao(z)Bi(x),
Ai1(z)Bo(z), Ai1(z)Bi(x)

by recursively calling the algorithm 4 times.
The Combining Step: Adding the following four poly-

nomials
Ao(z)Bo(z)
+Ao(2)By (2)z2!
+A1(2) By ()2
+A1(2) By (2)2?13),
takes © (n) operations. Why?

PolyMultii1(A(x), B(x))
{
Aog(z) =ag+ a1z + --- + aL%J_l;BLQ'J—l;

A@) =ag tag o+t anz" 12,

Bo(z) =bg+ bz + --- + bz lmL?J_l-
Bi(2) = bjg) +bjg 4z + -+ baa" 2,

U(x) = PolyMultil (Ap(x), Bo(x));
V(z) = PolyMultil(Ag(x), B1(x));
W(xz) = PolyMultil(A1(x), Bo(z));
Z(x) = PolyMultil(A1(x), B1(z));

return (U (@) + [V(2) + W(@)]='2) 4 Z(m)xﬂ%i)

Running Time of the Algorithm

Assume n is a power of 2, n = 2". By substitution (expansion),

—0 o b
T(n) = 4T(g +cn Rt)PM,«? ai_)L/C‘

Tl = 9T

i—1

— 4iT (QE) +3 2en (induction)

j=0 + C V)
| h—1 N vt "36 h
= a4t (%) +22jcﬂ. e 2

= n?*T(1) +cn(n—1) Py —TC\“\ :’O(\AL—B M
(since n = 2" and hi?-’z?“—lzn—l} gmbﬂl\#\«/b\ A ba -
'T(v\ ﬁv\ v () [\AL) ’r(""—L\ Lc/x

(= ©m?). > OF}\HL) "

The same order as the brute force approach!

Lesson

* Divide and Conquer may not be the silver bullet
* You have to think deeper.

What can we do? How can we reduce steps?
Then

A(z)B(z) = Ao(z)Bo(z) + Ao(z)By(z)z!2!
A1(2)Bo(2)z'3! + A1(z) By (2)22L3),

Remark: The original problem of size n is divided into
¢4mouemsoﬁanSMeg.

Note that these middle two terms can be combined because they have the same coefficients!!!
So we need to only compute

What can we do? How can we reduce steps?
Then

A(z)B(z) = Ao(z)Bo(z) + Ao(z)By(z)z!2!
A1(2)Bo(2)z!3! + A;(2) By (2)22!2).

Remark: The original problem of size n is divided into

4 problems of input size 7. A8 4R 8= CD- RS

T[‘L\b_‘l(\;jﬁ: I %)
Note that these middle two terms can be combined because they have the same coefficients!!!
— 0
So we need to only compute pn+L= A A= (g¥ R0+ R, OL(\%
Ao(z)Bi(z) +A1(z)Bo(z) » = [FotA))+ (B81) S

NN

T(g) =larEE) (2t e)

[

Define

Y(z) = (Ao(z) + A1(z)) x (Bo(z) + Bi(z))
U(z) = Ao(z)Bo(z)

Z(z) = Ai(z)Bi(z)

Then

Y(z)-U(z)—Z(z) = Ao(z)B1(z)+ A1(z) Bo(z).
Hence A(z)B(x) is equal to

U(I)-I—[Y(:E)—U(:E)—Z(:E)]J 7! +Z(:E)>(J 7]

Conclusion: You need to call the multiplication pro-
cedure 3, rather than 4 times.

PolyMulti2(A(z), B(z))

{

Ao(z) = ap + a1z + -+ aL%J_lmL%J—l:
Ar(e) = ayg +ajg e+ +ane"lE,

i

Bo(z) = by + b1z + -+ + bL%J_lmLEJ_l:
Bi(z) = bL%J + bL%J+1I + o bz 1B
Y (z) = PolyMulti2(Ao(z) + A1(z), Bo(z) + Bi(z))

U(z) = PolyMulti2(Ag(z), Bo(z));
Z(x) = PolyMulti2(A,(z), B1(z));

T

return (U(:c) +[Y(z) — Ule) — Z(2)]z'Z) + Z(m)miL%J) ;

Assume n = 2". Let Ig = denote log, z.
By the substitution method,

T(n)

3T(%) +cn
3 [ST(%) +ng| +cn

BET(%) + (1 —|—%)cn
(3 3]+ (142)

3T (55) + (1 +%+ Er) en

Assume n = 2". Let Ig = denote log, z.
By the substitution method,

T(n) = (n)+cﬂ—
= 3[3&“()—I—c 5| +en
= 327 (22)+(1+§)cn
= 32 [3’]"(%)4—6%}4—(14—%)611
— ?ST(%)+(1+%+E]).-:ﬂ.

= ()5 [e T(n) = ©MIT(1) + 2cn9%) = O(n93).

J

—
=~
[

Il
o

13 Dec. 2021

e Quick Sort.

Quicksort is a sorting algorithm based on the divide and conquer
approach where

1.An array is divided into subarrays by selecting a pivot element (element
selected from the array).

2.While dividing the array, the pivot element should be positioned in such a
way that elements less than pivot are kept on the left side and elements
greater than pivot are on the right side of the pivot.

3.The left and right subarrays are also divided using the same approach. This
process continues until each subarray contains a single element.

4.At this point, elements are already sorted. Finally, elements are combined
to form a sorted array.

Basic Ideas

(Another divide-and-conquer algorithm)
= Pick an element, say P (the pivot)
= Re-arrange the elements into 3 sub-blocks,
1. those less than or equal to (=) P (the left-block S,)

2. P (the only element in the middle-block)

3. those greater than or equal to (=) P (the right-
block S.,)

= Repeat the process recursively for the left- and
right- sub-blocks. Return {quicksort(S,), P,

C{UiCkSOI"l'(Sz)}. (That is the results of quicksort(S,), followed by
P, followed by the results of quicksort(S,))

Basic Ideas

<§ is a set of num@

Pick a “Pivot” value, P
Create 2 new sets without P

Iltems smaller than or equal to P

I ltems greater than or equal to P

quicksort(S,)

qumksort S,)

oP G

013 2631 43 57

l
65

7581 92

There are many different versions of
quickSort that pick pivot in different ways.
1.Always pick first element as pivot.
2.Always pick last element as pivot
3.Pick a random element as pivot.
4.Pick median as pivot.

Note:

= [he main idea is to find the “right” position for the
pivot element P.

= After each “pass”, the pivot element, P, should
be “in place”.

= Eventually, the elements are sorted since each
pass puts at least one element (i.e., P) into its
final position.

Issues:
= How to choose the pivot P ?
= How to partition the block into sub-blocks?

Quick Sort

Implementation

Algorithm |:
int partition(int A[], int left, int right);

// sort A[left..right]
void quicksort(int A[], int left, int right)
{ 1int g ;
1if (right > left)
{
q = partition(A, left, right);
// after ‘partition’
//~> A[left..q-1] < A[g] £ A[g+l..right]
quicksort(A, left, g-1);
quicksort(A, g+l1, right);

Implementation

// select A[left] be the pivot element)
1ntlpart1tlon(1nt4A[], int left, int right);

{ P = A[left];
i = left;
j = right + 1;

for(;;) //infinite for-loop, break to exit
{ while (A[++1i] < P) 1f (1 >= right) break;
// Now, A[i] 2 P
while (A[--3j] > P) if (j <= left) break,
// Now, A[j] S P
if (i >= j) break; // break the for-loop
else swap(A[i]l, Al7]);
}
1f (7 == left) return j
swap(A[left] , A[7F]1) ;
return 7j;

L]
r

Input:
P: 65

Pass 1

(1)

60

70

70

i

45

45

45

45

45

75

75

i

50

50

50

50

Example
75 80 85 60 55

80

80

80

i

95

95

55

Items smaller than or equal to 65

85 60 55
85 60 55

85 60 55

J
85 60 80
|
60 85 80
§ 1

65 85 80

50
50
50
J

75
75

75

75

45

45
j € swap (A[i], A[j])

70

€ swap (A[il, A[j])
70

< swap (A[i], A[j])
70

€ swap (A[i], A[j])
70

if (i>=3) break

70 swap (A[left], A[j])

Items greater than or equal to 65

Quick Sort

Example

Result of Pass 1: 3 sub-blocks:

60 45 50 55
Pass 2a (left sub-block):

Pass 2b (right sub-block):

65

856 80 75 70

60
60

55

45
i
45

45
80
I

80

80

50 55 (P =60)

J
50 55
JI if (i>=j) break
50 60 swap (A[left], A[j])

75 70 (P = 85)

J
75 70

Jji if (i>=j) break
75 85 swap (A[left], A[])

Quick sort

The Worst-case (7)
The Best-case (?)
The Average-case (7)

Running time analysis
Best case:

= The pivotis in the middle (median) (at each partition
step), i.e. after each partitioning, on a block of size n, the
result

¢ YVyields two sub-blocks of approximately equal size and
the pivot element in the “middle” position

¢ takes n data comparisons.
= Recurrence Equation becomes
{ T(1) =1
T(n) = 2T(n/2) + cn
Solution: 6(n logn)
Comparable to Mergesort!!

Running time analysis
Worst-Case (Data is sorted already)

= When the pivot is the smallest (or largest) element at
partitioning on a block of size n, the result

¢ YVyields one empty sub-block, one element (pivot) in the
“correct” place and one sub-block of size (n-1)

¢ takes 6(n) times.
= Recurrence Equation:
{ T(1) =1
T(n) = T(n-1) + cn
Solution: 6(n?)
Worse than Mergesort!!!

Running time analysis
Average case:
It turns out the average case running time also is 8(n logn).

20Dec2021

Miscellaneous and Closing

int main()
/* Explain the code - what is it doing?*/
{
FILE *fp;
int no_lines = 0;
char filename[40]; //what is this line doing?

char sample chr;
printf("Enter file name: ");
scanf("%s", filename);

fp = fopen(filename, "r"); //what is this line doing?

sample _chr = getc(fp);

int main()

/* Explain the code - what is it doing?*/ while (sample chr != EOF) {

{ if (sample chr == “/n")
FILE *fp; {
int no = 0; //increment variable 'no' by 1
char filename[40], //what is this line doing? no=no+1:
char sample chr; }

//take next character from file.
printf("Enter file name: ");

sample chr = getc(fp);
scanf("%s", filename); }
fp = fopen(filename, "r"); //what is this line doing?

// WHAT IS THE WHILE LOOP DOING?
sample_chr = getc(fp);//what dies this line do? fclose(fp); //close file.
printf(" %d %s ", no, filename);

return 9;

Tower of Hanoi

Tower of Hanoi is a mathematical puzzle where we have three rods and
n disks. The objective of the puzzle is to move the entire stack to
another rod, obeying the following simple rules:

1.0nly one disk can be moved at a time.

2.Each move consists of taking the upper disk from one of the stacks

and placing it on top of another stack i.e. a disk can only be moved if
it is the uppermost disk on a stack.

3.No disk may be placed on top of a smaller disk.

Step 1 : Shift first disk from 'A' to

Step 2 : Shift second disk from 'A' to

Step 3 : Shift first disk from 'B' to

The pattern here is

Shift "n-1' disks from 'A' to 'B'.
Shift last disk from 'A' to 'C'.
Shift 'n-1' disks from "B’ to 'C'.

Image illustration for 3 disks

1 Dsk 1

'B'.
Ch.
'C'.

A 8 c
_;ILI_EJ:l_]lI_ | |
B o A E c A

-t

§ 8 T
A E = A B | A

B C

#include <stdio.h>

void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-llXIZIy);
//printf("\n%c to %c",x,y);

TOH(1,x,y,2);

TOH(n-1,z,y,x);
}
}

int main()

{

int n=5;

TOH(n,'A",'B",'C");
return O;}

#include <stdio.h>

void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-llXIZIy);
//printf("\n%c to %c",x,y);

TOH(n-1,z,y,x);
}
}

int main()

{

int n=5;

TOH(n,'A",'B",'C");
return O;}

How many time printf executed?

How will you modify the program to
count it?

#include <stdio.h>

void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-llXIZIy);
printf("\n%c to %c",x,y);

TOH(n-1,z,y,x);
}
}

int main()

{

int n=5;

TOH(n,'A",'B",'C");
return O;}

T(n) = T(n-1) + ¢ + T(n-1)

T(n)-2T(n-1) +c

What the time complexity of
this algorithm?

The End

