
CompSc 1
20 Sep 2021

Course description:

• Syllabus (Programming) Recommended Language: C Basic abilities of
writing, executing, and debugging programs. Basics: Conditional
statements, loops, block structure, functions and parameter passing, single
and multi-dimensional arrays, structures, pointers. Data Structures: stacks,
queues, linked lists, binary trees. Simple algorithmic problems: Some
simple illustrative examples, parsing of arithmetic expressions, matrix
operations, searching and sorting algorithms.

• Depending on how the class goes, we may or may not cover all the above.

• This is the old syllabus; look up the new syllabus on the website; most of it
is the same as above.

Text Book

• The C Programming Language | Second Edition | By Pearson. by
Brian W. Kernighan / Dennis Ritchie.

• You can try to get pdf online. E.g.

• http://cslabcms.nju.edu.cn/problem_solving/images/c/cc/The_C_Pro
gramming_Language_%282nd_Edition_Ritchie_Kernighan%29.pdf

• Many other resources available online. Will specify some as we
progress.

• http://www.marcusramos.com.br/univasf/pc-2008-2/cb-sp-dahl.pdf -
Structured Programming

• https://seriouscomputerist.atariverse.com/media/pdf/book/Science%20of
%20Programming.pdf – Science of Programming.

http://cslabcms.nju.edu.cn/problem_solving/images/c/cc/The_C_Programming_Language_%282nd_Edition_Ritchie_Kernighan%29.pdf
http://www.marcusramos.com.br/univasf/pc-2008-2/cb-sp-dahl.pdf
https://seriouscomputerist.atariverse.com/media/pdf/book/Science%20of%20Programming.pdf

Basic structure of a Computer Program

• What does a computer program do?

• Takes input, processes input, generates output.

• The entire process is written as “code”. The code specifies how to
accept inputs (from keyboard or from files) how to process and how
to generate output.

• A language to code like C is written in a English like language with its
own grammar.

• The code has to be “compiled”, “linked” etc. before it is run or
executed. – Will not discuss this process in detail at this time.

• So we need a compiler to run and execute C code.

Structure of a C Program via Examples

• Suppose you want to use C to write the following sentence on your
screen “ I am feeling great today”, what would you need to do?

• Obviously you need to know what the command in C that prints
something on screen. For reasons that will become obvious we will
call most of these commands as functions.

• Obviously you will also need to know how to put that
command/function in a few lines so as to obey the grammar of C so
that it can be compiled and executed to print that line on your screen
.

• By the way why do I keep underlining “on your screen”?

• Lets assume the function that writes on the screen has a name. It is called
“printf” in C. Suppose we write something like

printf “I am feeling great today”
and try to execute this.
• That will not work. The correct piece of code that will work is

#include <stdio.h>
main ()

{
printf(“I am feeling great today”);
}

• We will need to “compile and run the code” next. Before that discussion on
the code.

• Why do we need the first line?
• How does the program compiler, and execution know what “printf” is?
• A compiler will, among other things, look for this program in available

libraries that come with the C programming language.
• You have to tell the compiler where, which library, to look for printf
• stdio.h is such a library. #stdio.h tells the compiler to include all the functions

available in that “header file”

• What is main?
• main is a function that EVERY C program must have and will start with.

• Within main there can be other functions.

• Let us quote from the text book here.

How to Compile

• You need to (you must for this course) install a C compiler on your
computer. There are many choices. What I recommend here for those who
have a Windows machine is to please download “code blocks” from

http://www.codeblocks.org/downloads

• UNLESS YOU ARE VERY SOPHISTICATED, download the binary from the
above site.

• For quick purposes you can compile and run small programs from the cloud
such as https://

www.onlinegdb.com/online_c_compiler

We will show you both.

http://www.codeblocks.org/downloads
http://www.onlinegdb.com/online_c_compiler

Homework- 22Sep2021
(you need to do but not submit)
• Get a copy of the text book and read just upto and including section

1.1

• Download and install codeblocks and run the program discussed in
the class.

Evaluations

• In Class Quizzes (typically once in two /three weeks, the exact date to
be communicated in the previous classes. Look for Moodle
notifications.

• We will do 7 -10 quizzes. We will discard the lowest two marks.

• All quizzes will have similar portion but may not have the exact same
total marks. We will normalize each quiz to 20 marks when we
compare quizzes to decide which to discard.

• 50% from the Quizzes; Rest 50% in the final exam.

• You can contact me in utpal@isibang.ac.in contacting me over
moodle is preferred.

mailto:utpal@isibang.ac.in

Today we will focus on

• Functions

• Variables

• Data Types

• Naming variables

• Keywords in C

Functions in C

• We have already seen two functions
• main()

• printf(“”)

• Generic structure of a function in C
(function return type) name_of_function (argument1, argument2)

{

statement 1;

statement 2;

}

Variables in C

• What is a variable?

• Suppose you want to compute factorial of a number. Say 100! You
must tell the computer that you will provide (input) the program
with an integer whose value is 100. And then instruct the code what
to do with that input. The computer must provide for a space in the
memory to keep that integer which it must be able to refer to by a
name. This is done by declaring a variable by specifying its type and
its name. e.g. in the above example int apx; is a declaration that the
variable whose name is apx will be an integer. Its data type is int

Variable

• A variable is nothing but a name given to a storage area that
our programs can manipulate. Each variable in C has a
specific type, which determines the size and layout of
the variable's memory; the range of values that can be stored
within that memory; and the set of operations that can be
applied to the variable.

• Variable is the name of memory location. Unlike
constant, variables are changeable, we can change value of
a variable during execution of a program. A programmer can
choose a meaningful variable name. Example : average,
height, age, total etc.

Basic Data types in C

K&R Chapter 2.

Rules to construct a valid variable name:

1. A variable name may consists of letters,

digits and the underscore (_) characters.

2. A variable name must begin with a letter.

Some system allows to starts the variable

name with an underscore as the first

character.

3. ANSI standard recognizes a length of 31

characters for a variable name. However, the

length should not be normally more than any

combination of eight alphabets, digits, and

underscores.

4. Uppercase and lowercase are significant.

That is the variable Totamt is not the same

as totamt and TOTAMT.

5. The variable name may not be a C

reserved word (keyword).

Variable Names (From two sources on internet;
but check your latest C reference book)

Rules for naming a variable
1.A variable name can only have letters (both uppercase and
lowercase letters), digits and underscore.
2.The first letter of a variable should be either a letter or an
underscore.
3.There is no rule on how long a variable name (identifier) can
be. However, you may run into problems in some compilers if
the variable name is longer than 31 characters.

Keywords in C

Write a program to add two numbers

• In the following program, three variables of int type declared and
assigned values.

• The = sign is not the same as in math, it is an assignment operator

• Notice printf
#include <stdio.h>

int main()
{
int x, y;
x= 1;

y=2;
int sum;
sum = x + y;
printf("%d", sum);
return 0;
}

Write a program to add two numbers

• Same program using a function. #include <stdio.h>

int add(int i, int j)
{ int sum;

sum= i+j;
return sum;

}

int main()
{
int x, y;
x= 1;

y=2;
int sum;
sum = add(x,y);
printf("%d", sum);
return 0;
}

4 Oct 2020

• Quiz on 6 Oct 2021; during class hours.

• Look for notification in Moodle

Today we will

• Discuss more library functions for standard io

• Introduce conditional execution of statements

A property of C functions – worth repeating
again and again
• A C function returns a value belonging to a datatype.

• If it returns an integer, then the datatype of the function will be int

• If it does not return a value then its type is void.

• The printf function also returns a value as we will see later.

• Two more functions we will introduce today getchar and putchar,
both are integer type.

How to accept input from the standard input

• getchar(), and scanf() functions

• The C library function int getchar() gets a character, one character
at a time (an unsigned char), from stdin.

➢The function returns the integer representing the character

• int scanf() function is used to read character, string, numeric
data from keyboard.
➢The function returns the number of items of the argument list successfully

read. If a reading error happens or the end-of-file is reached while reading,
the proper indicator is set (feof or ferror) and, if either happens before any
data could be successfully read, EOF is returned.

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

int c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

int c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

The getchar() function obtains a character from stdin. It

returns the character that was read in the form of an

integer or EOF if an error occurs.

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

char c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

This will still work. Why?

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

char c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

int c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

#include <stdio.h>

int main ()

{

char any;

printf("Enter a character: ");

scanf ("%c" ,&any);

printf("Character entered: %c",any);

return(0);

}

Simple Examples using getchar, scanf

#include <stdio.h>

int main ()

{

int c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

return(0);

}

#include <stdio.h>

int main ()

{

char any;

printf("Enter a character: ");

scanf ("%c" ,&any);

printf("Character entered: %ch",any);

return(0);

}

What does &any mean in the above program?
The variable name is any. &any represents the memory location of the
variable any (declared as char) where scanf stores the entered character.

Putchar
• Opposite of getchar is putchar.

• putchar accepts an integer and returns the character the integer represents.

• What will be the output if you enter A ?

Integer representing Character A is 65
A

#include <stdio.h>

int main ()

{

int c;

printf("Enter character: ");

c = getchar();

printf("Integer representing Character entered: %d",c);

putchar(c);

return(0);

}

Putting these together: output an input file

More on printf (formatted output)

#include <stdio.h>

int main()

{

char ch = 'A';

char str[20] = “LearningC";

float pi_upto2digits = 3.14;

int no = 150;

double dbl = 20.123456;

printf("Character is %c \n", ch);

printf("String is %s \n" , str);

printf("Float value is %f \n", flt);

printf("Integer value is %d\n" , no);

printf("Double value is %lf \n", dbl);

printf("Octal value is %o \n", no);

printf("Hexadecimal value is %x \n", no);

return 0;

}

Program

More on printf (formatted output)

#include <stdio.h>

int main()

{

char ch = 'A';

char str[20] = “LearningC";

float pi_upto2digits = 3.14;

int no = 150;

double dbl = 20.123456;

printf("Character is %c \n", ch);

printf("String is %s \n" , str);

printf("Float value is %f \n", flt);

printf("Integer value is %d\n" , no);

printf("Double value is %lf \n", dbl);

printf("Octal value is %o \n", no);

printf("Hexadecimal value is %x \n", no);

return 0;

}

Character is A
String is LearningC
Float value is 3.14
Integer value is 150
Double value is 20.123456
Octal value is 226
Hexadecimal value is 9

Program Output

More on printf (formatted output)

#include <stdio.h>

int main()

{

char ch = 'A';

char str[20] = “LearningC";

float pi_upto2digits = 3.14;

int no = 150;

double dbl = 20.123456;

printf("Character is %c \n", ch);

printf("String is %s \n" , str);

printf("Float value is %f \n", flt);

printf("Integer value is %d\n" , no);

printf("Double value is %lf \n", dbl);

printf("Octal value is %o \n", no);

printf("Hexadecimal value is %x \n", no);

return 0;

}

Character is A
String is LearningC
Float value is 3.14
Integer value is 150
Double value is 20.123456
Octal value is 226
Hexadecimal value is 9

Note the following:

1. Need \n so that the outputs are not in different lines.
2. What will the following statement print?

printf(“Integer value of %5d\n”,no);

3. printf replaces values of the variables in the order they
appear. What will the following statement print?

printf(“Integer value of %d and Octal value is %o\n”,no,no);

4. AFIK printf does not support printing binary representation of
an integer. Investigate how you can write a function to do that.

Program Output

More on printf
• The function returns an integer. The return value of printf is the total

number of characters it printed.

• What will be the output of the following code? Try to answer this
without running the code.

#include <stdio.h>

int main(){

char str[] = "I am a student at ISI";

printf(“\nThe value returned by printf() for the above string is : %d", printf("%s", str));

return 0;

}

More on printf
• The function returns an integer. The return value of printf is the total

number of characters it printed.
• What will be the output of the following code? Try to answer this without

running the code.
#include <stdio.h>

int main(){

char str[] = "I am a student at ISI";

printf(“\nThe value returned by printf() for the above string is : %d", printf("%s", str));

Return 0;

}

I am a student at ISI

The value returned by printf() for the above string is : 21
ISI () for th

Conditional execution of statement

• While, for, if are used to control execution of statements, either to
repeat them until a condition is fulfilled or to execute the statement
at all

• Loops in C

• Conditional execution of statements

• Constants in C

while and do while

while (condition)
statement;

OR

while (condition)
{
statement 1;
statement2;
}

DO..WHILE –
DO..WHILE loops are useful for things that want to
loop at least once. The structure is

do {
} while (condition);

Notice that the condition is tested at the end of
the block instead of the beginning, so the block
will be executed at least once.

If the condition is true, we jump back to the beginning of
the block and execute it again. A do..while loop is almost
the same as a while loop except that the loop body is
guaranteed to execute at least once.
A while loop says "Loop while the condition is true, and
execute this block of code", a do..while loop says
"Execute this block of code, and then continue to loop
while the condition is true".

for

for (variable initialization; condition; variable update) {
statements to execute while the condition is true

}
// variable updated after each loop BEFORE checking condition

Example:

If else, else if

if (condition)

statement1; //statement1 will be executed only if condition is true

statement 2; (will be executed whether condition is true or not??)

OR

if(condition)

statement1; //statement1 will be executed only if condition is true

else statement2; //statement2 will be executed only if condition is false

statement3; // will be executed whether condition is true of false

Else-if

A simple example of else if

#include<stdio.h>
int main() {
int marks=83;
if(marks>75)
{ printf("First class"); }

else if(marks>65)
{ printf("Second class"); }

else if(marks>55)
{ printf("Third class"); }

else{ printf("Fourth class"); }
return 0; }

11Oct2021

Using CONSTANTS for better coding

Using Symbolic Constants

Character Constants
What is the difference between

putchar(65);

and

putchar(‘A’);

Character Constants
What is the difference between

putchar(65);

and

putchar(‘A’);

BOTH WILL (likely) write A on the standard output.

Character Constants
What is the difference between

putchar(65);

and

putchar(‘A’);

BOTH WILL (likely) write A on the standard output.

• In the definition below what is the data type of ‘E ?’

• #define E 2.718

• Is it float, integer, or will it generate an error?

• Write a C Program to change cases of alphabets in input using all that we
have discussed.

e.g. the input

I see a RED bull, only ONE (1)

will become

i SEE A red BULL,ONLY one(1)

(Assume that all the upper case (lower case too) letters are represented by
contiguous letters)

• Psuedo code (very important to write something like this before
starting to code)

• Get a character
• While the character is not EOF

• If it is a character in the Egnlish Aphabet,

• change case

• Write to stdio or a file whatever

• Else if read next character

• Continue with While

• End while

• Psuedo code (very important to write something like this before
starting to code)

• Get a character
• While the character is not EOF

• If it is a character in the Egnlish Aphabet,

• change case

• Write to stdio or a file whatever

• Else if read next character

• Continue with While

• End while

HOW To do This?

• Psuedo code (very important to write something like this before
starting to code)

• Get a character
• While the character is not EOF

• If it is a character in the Egnlish Aphabet,

• change case

• Write to stdio or a file whatever

• Else if read next character

• Continue with While

• End while

HOW To do This?
One can add or subtract from a

character `A’ – `a’

Write the complete C program now.

• Psuedo code (very important to write something like this before
starting to code)

• Get a character
• While the character is not EOF

• If it is a character in the Egnlish Aphabet,

• change case

• Write to stdio or a file whatever

• Read next character

• Continue with While

• End while

HOW To do This?
One can add or subtract from a

character `A’ – `a’

A Program to Change cases of alphabets in
input

#include <stdio.h>
int main(){
int nxtlet;
nxtlet = getchar();

while (nxtlet !=EOF)
{
if ((nxtlet>='A') && (nxtlet<='Z'))
putchar(nxtlet +'a'-'A');

else if((nxtlet>='a') && (nxtlet<='z'))
putchar(nxtlet -'a'+'A');

else putchar(nxtlet);

nxtlet= getchar();
}
return 0;
}

Be careful about for syntax

Look at the for statement carefully

What is an expression in C?

Look at the for statement carefuly

What is an expression in C?

Look at the for statement carefuly

What is an expression in C?

For and While loops are equivalent

The for statement

is equivalent to

……;

while …

….;

….;

For and While loops are equivalent

The for statement

is equivalent to

……;

while …

….;

….;

expr1;
While (expr2)
statement;
expr3;

For and While loops are equivalent

The for statement

is equivalent to

……;

while …

….;

….;

expr1;
While (expr2)
statement;
expr3;

For and While loops are equivalent

The for statement

is equivalent to

……;

while …

….;

….;

expr1;
While (expr2)
statement;
expr3;

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

Program to count characters in input

Declare and initialize to zero an int variable which will count number of
characters

Every time a new character is read, count goes up UNTIL EOF

Print the value of the variable

Word count program

Word count program

Word count program

Word count program

Word count program

Word count program

NEED TO CHECK FOR THESE SITUATIONS + SOME MORE

HW: Modify the Word count program to
count number of words of different lengths

Modify the program so you can generate the
following report

Word Length Number of Words of that length

Arrays, Functions call, modular programs

Now we will focus on data structure array and
more on writing functions
• Count the number of each vowel in the input (stdio)

• Draw a histogram showing the frequency of each vowel. E.g.

• Here 1,2,3,4,5 stand for a/A,e/E,i/I,o/O,u/U

First Write a program to count the number of
each vowel
• A,a,E,e,I,i,O,o,U,u

• Stat with counting a or A

• You have to count both A and a, and give a total count of A and a, etc.

First Write a program to count the number of
each vowel
• A,a,E,e,I,i,O,o,U,u

• Stat with counting a or A

• You have to count both A and a,

and give a total count of A and a

First Write a program to count the number of
each vowel

Reviewing a program to count number of
vowels

#include <stdio.h>

int main()

{

int c=0;

int n_a , n_e, n_i, n_o,n_u;

n_a= n_e = n_i = n_o= n_u=0;

while ((c=getchar()) != EOF)

{

if(c == 'a' || c=='A')

n_a= n_a+1;

else if (c == 'e' || c=='E')

n_e= n_e+1;

else if (c == 'i' || c=='I')

n_i= n_i+1;

else if (c == 'o' || c=='O')

n_o= n_o+1;

else if (c == 'u' || c=='U')

n_u= n_u+1;

}

printf("The number of a and A is %d \n",n_a);

printf("The number of e and E is %d \n",n_e);

printf("The number of i and I is %d \n",n_i);

printf("The number of o and O is %d \n",n_o);

printf("The number of u and U is %d \n",n_u);

return 0;

}

#include <stdio.h>

int main()

{

int c=0;

int n_a , n_e, n_i, n_o,n_u;

n_a= n_e = n_i = n_o= n_u=0;

while ((c=getchar()) != EOF)

{

if(c == 'a' || c=='A')

n_a= n_a+1;

else if (c == 'e' || c=='E')

n_e= n_e+1;

else if (c == 'i' || c=='I')

n_i= n_i+1;

else if (c == 'o' || c=='O')

n_o= n_o+1;

else if (c == 'u' || c=='U')

n_u= n_u+1;

}

printf("The number of a and A is %d \n",n_a);

printf("The number of e and E is %d \n",n_e);

printf("The number of i and I is %d \n",n_i);

printf("The number of o and O is %d \n",n_o);

printf("The number of u and U is %d \n",n_u);

return 0;

}

int n_v[5]={0,0,0,0,0}; // holds numbers of vowels a/A,e/E,i/I,o/O,u/U
char vowel_lc[] = "aeiou";
char vowel_uc[] = "AEIOU";

for (int i =0; i<5; i=i+1)

printf("The number of %c and %c is %d \n", vowel_lc[i], vowel_uc[i], n_v[i]);

Using an
array to

store the
number of
each vowel

Drawing a horizontal histogram
Explain how this program works:

Assume that n_v={4,9,5,3,2}

How many variables would you need to do this?

How many (for) loops you have to run through?

Drawing a horizontal histogram
Explain how this program works:

Assume that n_v={4,9,5,3,2}

What will this print?

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Drawing a horizontal histogram
Write a function that does that.

Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1) // first loop controlling going over each of the FIVE vowels
{
for (int k=n_v[j]; k>0; k=k-1) printf("x"); //second loop printing as many x as the number of each vowel

printf("\n");
}

Drawing a horizontal histogram
Write a function that does that.
Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Declare the function:
function type
function parameters

Define the function

Calling the function

Drawing a horizontal histogram
Write a function that does that.
Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Declare the function:
function type
function parameters

Define the function

Calling the function

Drawing a horizontal histogram
Write a function that does that.
Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Declare the function:
function type
function parameters

void draw_hist_h(int entry, int data[])

Drawing a horizontal histogram
Write a function that does that.
Assume that n_v={4,9,5,3,2}

// display horizontal histogram

for (int j=0; j<5; j= j+1)
{
for (int k=n_v[j]; k>0; k=k-1) printf("x");

printf("\n");
}

Declare the function:
function type
function parameters

void draw_hist_h(int entries, int entry_values[])

void draw_hist_h(int entries, int entry_values[])

{

for (int j=0; j<entries; j= j+1)

{

for (int k=entry_values[j]; k>0; k=k-1) printf("x");

printf("\n");

}

}

………..

draw_hist_h(5, n_v);

#include <stdio.h>

void draw_hist_h(int entries, int entry_values[])

{

for (int j=0; j<entries; j= j+1)

{ for (int k=entry_values[j]; k>0; k=k-1) printf("x");

printf("\n");

}

}

//---

int main()

{

int c=0;

int n_v[5]={0,0,0,0,0}; // holds numbers of vowels a/A,e/E,i/I,o/O,u/U

char vowel_lc[] = "aeiou";

char vowel_uc[] = "AEIOU";

while ((c=getchar()) != EOF)

{

if(c == 'a' || c=='A')

n_v[0]= n_v[0]+1;

else if (c == 'e' || c=='E')

n_v[1]= n_v[1]+1;

else if (c == 'i' || c=='I')

n_v[2]= n_v[2]+1;

else if (c == 'o' || c=='O')

n_v[3]= n_v[3]+1;

else if (c == 'u' || c=='U')

n_v[4]= n_v[4]+1;

}

for (int i =0; i<5; i=i+1)

printf("The number of %c and %c is %d \n",vowel_lc[i],vowel_uc[i], n_v[i]);

// Draw histogram using the function draw_hist_h, the parameter entries 5 and the entry_value[] is n_v

draw_hist_h(5, n_v);

return 0;}

13Oct2021

Arrays in C

• Arrays is a datatype consisting of other (usually but not necessarily
more primitive) datatypes.

• An array is a collection of similar data items stored at contiguous
memory locations

• Elements of an array can be accessed randomly using indices of the
array – In C, the index begins with 0.

• They can be used to store collection of primitive data types such as
int, float, double, char, etc of any particular type. To add to it, an array
in C can store derived data types such as the structures, pointers etc.

In this example, memory space is created to hold 10 items of double data type. At this
stage, they are NOT initialized and the memory locations may have garbage/unusuable
data .

Another way to declare and initialize, for example; int marks[]={5,9,3,10,2}. This will create
an array of just five elements initialized to these values.

Accessing Array elements

Note that the variable salary is declared and initialized through an
assignment.

Also, it is important that balance[9] has already been initialized.

In general, it is important to initialize all the array elements to some
default value as soon as possible.

#include <stdio.h>

int main ()

{ int n[10]; /* n is an array of 10 integers */

int i,j; /* initialize elements of array n to 0 */

for (i = 0; i < 10; i++)

{ n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element's value */

for (j = 0; j < 10; j++)

{ printf("Element[%d] = %d\n", j, n[j]); }

return 0; }

What is the
output?

#include <stdio.h>

int main ()

{ int n[10]; /* n is an array of 10 integers */

int i,j; /* initialize elements of array n to 0 */

for (i = 0; i < 10; i++)

{ n[i] = i + 100; /* set element at location i to i + 100 */ }

/* output each array element's value */

for (j = 0; j < 10; j++)

{ printf("Element[%d] = %d\n", j, n[j]); }

return 0; }

What is the
output?

• Suppose we wish to store the marks of the students of a class in an integer array so that
we can calculate the average, the max etc.

• Keep in mind the class size differs from class to class but you can assume a maximum of
100 students.

• Assume that for a particular class we have 25 students and their marks are populated in
the first 25 elements in the array.

• We want to write a generic function find the maximum mark that works for other classes
too. What should be the arguments for such a function

int maxMarks(????)

• We will continue this discussion in the next class. YOU MAY TRY TO WRITE A COMPLETE
PROGRAM WITH SOME DUMMY MARKS, to see if you can write such a function and if it
works.

• This is a prelude to working with character arrays and strings which we will be discussing
in the next few classes.

Quiz on 20Oct2021

• Everything from minus infinity to today.

18Oct2021

• Passing arguments to a function

• Call by Value vs call by reference. Introducing Pointers.

• Operator Precedence

• Passing an array to a function

• Character Arrays; Strings

• String Operations

Quiz on 20Oct2021

• Everything from minus infinity to last class but today.

Arguments to functions – from the KR book

Example: The power function

Example: The power function

In function declaration it is better to have int power(int base, int n)
Here the variable i is redundant.

Example: The power function

In function declaration it is better to have int power(int base, int n)
Here the variable i is redundant.

Example: The power function

In function declaration it is better to have int power(int base, int n)
Here the variable i is redundant.

Call by value and Call by reference

• Call by value in C
• In call by value method, the value of the actual parameters is copied into the

formal parameters. In other words, we can say that the value of the variable is
used in the function call in the call by value method.

• In call by value method, we can not modify the value of the actual parameter
by the formal parameter.

• In call by value, different memory is allocated for actual and formal
parameters since the value of the actual parameter is copied into the formal
parameter.

• The actual parameter is the argument which is used in the function call
whereas formal parameter is the argument which is used in the function
definition.

• Call by reference in C
• In call by reference, the address of the variable is passed into the function call

as the actual parameter.

• The value of the actual parameters can be modified by changing the formal
parameters since the address of the actual parameters is passed.

• In call by reference, the memory allocation is similar for both formal
parameters and actual parameters. All the operations in the function are
performed on the value stored at the address of the actual parameters, and
the modified value gets stored at the same address.

Call by value and Call by references

1. #include<stdio.h>

2. void change(int num) {

3. printf("Before adding value inside function num=%d \n",num);

4. num=num+100;

5. printf("After adding value inside function num=%d \n", num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(x);//passing value in function

11. printf("After function call x=%d \n", x);

12.return 0;

13.}

Call by value and Call by references

1. #include<stdio.h>

2. void change(int num) {

3. printf("Before adding value inside function num=%d \n",num);

4. num=num+100;

5. printf("After adding value inside function num=%d \n",)um;

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(x);//passing value in function

11. printf("After function call x=%d \n", x);

12.return 0;

13.}

1. #include <stdio.h>

2. void swap(int , int); //prototype of the function’

3. void swap(int a; int b)

4. {

5. int temp;

6. temp = a;

7. a=b;

8. b=temp;

9. printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a = 20, b = 10

10. }

11.

12. int main()

13. {

14. int a = 10;

15. int b = 20;

16. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

17. swap(a,b);

18. printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the formal parameters in c
all by value, a = 10, b = 20

19. }

20.

1. #include <stdio.h>

2. void swap(int , int); //prototype of the function

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(a,b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the for
mal parameters in call by value, a = 10, b = 20

10.}

11.void swap (int a, int b)

12.{

13. int temp;

14. temp = a;

15. a=b;

16. b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a = 20, b = 10

18.}

CALL BY REFERENCE does not swap:

Call by reference – a example.

1. #include<stdio.h>

2. void change(int* num) {

3. printf("Before adding value inside function num=%d \n",*num);

4. (*num) += 200;

5. printf("After adding value inside function num=%d \n", *num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(&x);//passing reference in function

11. printf("After function call x=%d \n", x);

12. return 0;

13. }

Call by reference – a example.

1. #include<stdio.h>

2. void change(int* num) {

3. printf("Before adding value inside function num=%d \n",*num);

4. (*num) += 200;

5. printf("After adding value inside function num=%d \n", *num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(&x);//passing reference in function

11. printf("After function call x=%d \n", x);

12. return 0;

13. }

Call by reference does the swap! INTRODUCING POINTER VARIABLES:

1. #include <stdio.h>

2. void swap(int *, int *); //prototype of the function

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(&a,&b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call
by reference, a = 10, b = 20

10.}

11.void swap (int *a, int *b)

12.{

13. int temp;

14. temp = *a;

15. *a=*b;

16. *b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10

18.}

1. #include <stdio.h>

2. void swap(int *, int *); //prototype of the function

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(&a,&b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call
by reference, a = 10, b = 20

10.}

11.void swap (int *a, int *b)

12.{

13. int temp;

14. temp = *a;

15. *a=*b;

16. *b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10

18.}

Call by reference does the swap! INTRODUCING POINTER VARIABLES

Passing an array to a function in C

HOMEWORK

• Please read up on precedence of Operators from the text book on
your own. The following slides will serve as a guide

Operators

• Arithmetic Operators

• Relational and Logical Operators

• Increment and Decrement Operators

• Bitwise Operators

• Assignment Operators and Expressions

• Conditional Expressions

• Precedence and Order of Evaluaion

For example,

can be written more compactly as

We will discuss the rest of the
operands like sizeof, (type) *,
& and BIT WISE OPERATORS
LATER

27Oct2021

• Pointers

• Passing an array to a function

• Character Arrays; Strings

• String Operations

Detailed Discussion on Pointers

• Pointer Arithmetic

• Array of pointers

• Pointer to Pointers

• Passing pointers to functions (already doing it)

• Return a pointer from functions in C

Pointer Arithmetic

• Basic Idea is this: A pointer in c is an address, which is a numeric
value. Therefore, One can perform arithmetic operations on a
pointer just as one can on a numeric value.

• There are four arithmetic operators that can be used on
pointers: ++, --, +, and –

Pointer Arithmetic

• Basic Idea is this: A pointer in c is an address, which is a numeric
value. Therefore, One can perform arithmetic operations on a pointer
just as one can on a numeric value.

• There are four arithmetic operators that can be used on pointers: ++,
--, +, and –

• Suppose we have

int *pt1;

pt1 = 1000;

char *pt2; pt2 = 5000;

What will be the values of
pt1=++pt1; pt2= ++pt2

Pointer Arithmetic

• Basic Idea is this: A pointer in c is an address, which is a numeric
value. Therefore, One can perform arithmetic operations on a
pointer just as one can on a numeric value.

• There are four arithmetic operators that can be used on
pointers: ++, --, +, and –

• Suppose we have

int *pt1 = 1000; char *pt2 = 5000

What will be the values of

pt1=++pt1; pt2= ++pt2; [NOT advisable without proper casting or
appropriate context – will discuss in a later slide]

Pointer arithmetic: An example

#include <stdio.h>

const int MAX = 3;

int main ()

{ int var[] = {10, 100, 200};

int i, *ptr; /* let us have array address in

pointer */

ptr = var;

for (i = 0; i < MAX; i++)

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */

ptr++; } return 0; }

Pointer arithmetic: An example

#include <stdio.h>

const int MAX = 3;

int main ()

{ int var[] = {10, 100, 200};

int i, *ptr; /* let us have array address in

pointer */

ptr = var;

for (i = 0; i < MAX; i++)

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */

ptr++; } return 0; }

What does this var mean in this
statement?

Pointer arithmetic: An example

#include <stdio.h>

const int MAX = 3;

int main ()

{ int var[] = {10, 100, 200};

int i, *ptr; /* let us have array address in

pointer */

ptr = var;

for (i = 0; i < MAX; i++)

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */

ptr++; } return 0; }

In C an array name is the address to the
first element of the array; it is a pointer

#include <stdio.h>

const int MAX = 3;

int main ()

{ int var[] = {10, 100, 200};

int i, *ptr; /* let us have array address in

pointer */

ptr = var;

for (i = 0; i < MAX; i++)

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */

ptr++; } return 0; }

Address of var[0] = bf882b30

Value of var[0] = 100

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38

Value of var[2] = 200

#include <stdio.h>

const int MAX = 3;

int main ()

{ int var[] = {10, 100, 200};

int i, *ptr; /* let us have array address in

pointer */

ptr = var;

for (i = 0; i < MAX; i++) {

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */

ptr++; } return 0; }

Address of var[0] = bf882b30

Value of var[0] = 100

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38

Value of var[2] = 200

At least two mistakes in this slide

• Type Conversion

• Type Conversion

• Type Conversion

Comparing 2 data types in the
same expression.

An example of implicit
conversion

Type Casting

• A type cast is basically a conversion from one type to another.

• Implicit Type Conversion – done by the compiler on its own

• Explicit Type Casting

Type Casting

• A type cast is basically a conversion from one type to another.

• Implicit Type Conversion – done by the compiler on its own

• Explicit Type Casting
// An example of implicit conversion
#include<stdio.h>
int main()
{

int x = 10; // integer x
char y = 'a'; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
x = x + y;

// x is implicitly converted to float
float z = x + 1.0;

printf("x = %d, z = %f", x, z);
return 0;

}

Type Casting

• A type cast is basically a conversion from one type to another.

• Implicit Type Conversion – done by the compiler on its own

• Explicit Type Casting
// An example of implicit conversion
#include<stdio.h>
int main()
{

int x = 10; // integer x
char y = 'a'; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
x = x + y;

// x is implicitly converted to float
float z ; z= x + 1.0;

printf("x = %d, z = %f", x, z);
return 0;

}

Type Casting

• A type cast is basically a conversion from one type to another.

• Implicit Type Conversion – done by the compiler on its own

• Explicit Type Casting
// An example of implicit conversion
#include<stdio.h>
int main()
{

int x = 10; // integer x
char y = 'a'; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
x = x + y;

// x is implicitly converted to float
float z ; z= x + 1.0;

printf("x = %d, z = %f", x, z);
return 0;

}

Type Casting

• A type cast is basically a conversion from one type to another.

• Implicit Type Conversion – done by the compiler on its own

• Explicit Type Casting
// An example of implicit conversion
#include<stdio.h>
int main()
{

int x = 10; // integer x
char y = 'a'; // character c

// y implicitly converted to int. ASCII
// value of 'a' is 97
x = x + y;

// x is implicitly converted to float
float z ; z= x + 1.0;

printf("x = %d, z = %f", x, z);
return 0;

}

Explicit type casting

• Syntax: (type) expression

// C program to demonstrate explicit type casting
#include<stdio.h>

int main()
{

double x = 1.2;

// Explicit conversion from double to int
int sum = (int)x + 1;

printf("sum = %d", sum);

return 0;
}

Strings, String functions, Pointers ….

• In C programming, a string is a sequence of characters terminated
with a null character \0

• Example: char c[]=“c string”;

• When the compiler encounters a sequence of characters enclosed in
the double quotation marks, it appends a null character \0 at the end
by default

• char c[5]; is a declaration. Then you can feed a string into it subject
to the storage you have specified for space for \0

Common string functions

Simple program to find string length

#include <stdio.h>

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string: %d", i);

return 0; }

Simple program to find string length

• Convert this program into a function

• What should be the function declaration?

• What are the parameters?

• What is the function definition?

#include <stdio.h>

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string: %d", i);

return 0; }

Simple program to find string length

• Convert this program into a function
• What should be the function declaration?
• What are the parameters
• What is the function definition

int StringL(char s[])
{

for (int i=0; s[i] != ‘\0’; ++i);
return i;
}

#include <stdio.h>

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string:

%d", i); return 0; }

Simple program to find string length

• Convert this program into a function
• What should be the function declaration?
• What are the parameters
• What is the function definition

int StringL(char s[])
{

for (int i=0; s[i] != ‘\0’; ++i);
return i;
}

#include <stdio.h>

\\ include def of StringL here

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string: %d",

StringL(s));

return 0; }

There is a FATAL Mistake in the
definition of the function StringL

Simple program to find string length

• Convert this program into a function
• What should be the function declaration?
• What are the parameters
• What is the function definition

int StringL(char s[])
{

for (int i=0; s[i] != ‘\0’; ++i);
return i;
}

#include <stdio.h>

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string: %d",

StringL(s));

return 0; }

Rewrite this program using
pointers

Simple program to find string length

• Convert this program into a function
• What should be the function declaration?
• What are the parameters
• What is the function definition

int StringL(char s[])
{

for (int i=0; s[i] != ‘\0’; ++i);
return i;
}

#include <stdio.h>

int main() {

char s[] = “C Programming";

int i;

for (i = 0; s[i] != '\0'; ++i);

printf("Length of the string:

%d", i); return 0; }

int String_L(char*s) /* s=&str[0] */
{

int count = 0;
while (*s != '\0') {

count++;
s++;

}
return count;

}

Now we can write a number of sophisticated
programs/functions with arrays.
• Sort an integer array

• Insert into an array

• Reverse a string

• Copy a string

• Sorting an array. Merge sort, Quick sort.

Insert a number in an array of integers

void insert(int a[], int n, int i,) // insert i in the beginning, zeroth place

PLEASE WRITE THE FUNCTION NOW

Insert a number in an array of integers

void insert(int a[], int n, int i,) // insert in in the beginning, zeroth place

7 29 8

1st

2nd

Insert a number in an array of integers

void insert(int a[], int n, int i,) // insert in in the beginning, zeroth place

void insert(int a[], int n, int i)

//n is length of array, insert i in the 0th place

{ for (int k=n-1; k >= 0; k--)

{ *(a+k+1)=*(a+k); }

*a=i;

}

7 29 8

1st

2nd

Insert a number in an array of integers

REWRITE THE FUNCTION TO insert at the jth place (array[j-1])

void insert(int a[], int n, int i, int j) // insert integer i at the j-th place

Insert a number in an array of integers

REWRITE THE FUNCTION TO insert at the jth place (array[j-1])

void insert(int a[], int n, int i, int j) // insert integer i at the j-th place

VERY SIMPLE MODIFICATION TO

{ for (int k=n-1; k >= 0; k--)

{ *(a+k+1)=*(a+k); }

*a=i;

}

Insert a number in an array of integers

void insert(int a[], int n, int i,) // insert in in the beginning, zeroth place

void insert(int a[], int n, int i)

//n is length of array, insert i in the jth place

{ for (int k=n-1; k >= j; k--)

{ *(a+k+1)=*(a+k); }

*(a+j)=i;

}

Sample Code1
#include <stdio.h>
void insert(int a[], int n, int i) //n is length of array, insert i in the 0th place
{
for (int k=n-1; k >= 0; k--)
{ *(a+k+1)=*(a+k); }
*a=i;}

int main(){
int N[50] = {3,7};

for(int i=0; i<2; i++)
{ printf("%d\n",*(N+i));
}
printf("\nwill insert a number now and then print it out\n");

insert(N,2,5);

for(int i=0; i<3; i++){
printf("%d\n",*(N+i));
}

return 0;
}

Sample Code2
#include <stdio.h>
void insert(int a[], int n, int i, int j) //n is length of array, insert i in the jth place
{
for (int k=n-1; k >= j; k--)
{ *(a+k+1)=*(a+k); }
*(a+j)=i;
}

int main(){
int N[50] = {3,7};

for(int i=0; i<2; i++)
{ printf("%d\n",*(N+i));
}
printf("\nwill insert a number now and then print it out\n");

insert(N,2,5,1);

for(int i=0; i<3; i++){
printf("%d\n",*(N+i));
}

return 0;
}

What is the time complexity of insertion in an
array?
• On the average how many operations needed to insert at a random

array index?

What is the time complexity of insertion in an
array?
• On the average how many operations needed to insert at a random

array index?

• O(n), Can be substantial if n is large.

• How can we make it O(1), that is independent of the length of the
array?

• This leads us to a discussion on linked lists, and structures in general
which we will discuss later in the course.

Some loose ends to be covered

• Scope of Variables

• How to read and write into files….

• Break, switch…. Etc.

Later to come

• Structures
• Defining structures

• calling structures

• memory allocation, deallocation,

• Some basic data structures

• Some basic algorithm and basic algorithmic complexity
considerations.

• Some of these will not be covered ibn the K&R book, and
supplementary material available on the net will be used for these.

1Nov2021

• Scope of Variables

Variable Scope

• An object is recognized by its identifier or name. The object may
be a variable of basic type or a function, a structure, or a union.

• The scope of a variable is the range of program statements that
can access that variable.

• A variable is visible within its scope and invisible or hidden
outside it

• We will Look at an example.

Variable Scope, Global variables

// C program to illustrate the global scope

#include <stdio.h>

// Global variable
int global = 5;

// global variable accessed from
// within a function
void display()
{

printf("%d\n", global);
}

// main function
int main()
{

printf("Before change within main: ");
display();

// changing value of global
// variable from main function
printf("After change within main: ");
global = 10;
display();

}

Time Permitting we will discuss storage classes in C later in the course. IN that context we will
discuss static and auto variables.

Structure

• A structure is a user defined data type. A structure creates a data type that
can be used to group items of possibly different types into a single type.

• Example:

struct address

{

char street[100];

char city[50];

char state[20];

int pin;

};

struct ind_address
{
char name[50];
struct address name_add;
};

Declaring Structure (Example)

// A variable declaration with structure declaration.

struct Point

{

int x, y;

} p1; // The variable p1 is declared with 'Point'

// A variable declaration like basic data types

struct Point

{

int x, y;

};

int main()

{

struct Point p1; // The variable p1 is declared like a normal variable

}

Initializing Structures
• Wrong

struct Point

{

int x = 0; // COMPILER ERROR: cannot initialize members here

int y = 0; // COMPILER ERROR: cannot initialize members here

};

• Right

struct Point

{

int x, y;

};

int main()

{

// A valid initialization. member x gets value 0 and y

// gets value 1. The order of declaration is followed.

struct Point p1 = {0, 1};

}

Accessing structure elements
#include<stdio.h>

struct Point

{

int x, y;

};

int main()

{

struct Point p1 = {0, 1};

// Accessing members of point p1

p1.x = 20;

printf ("x = %d, y = %d", p1.x, p1.y);

printf(“Area= %d”, int Area = (p1.x*p1.y)); //WRONG, Area needs to be declared

return 0;

}

Array of Structure
#include<stdio.h>

struct Point

{

int x, y;

};

int main()

{

// Create an array of structures

struct Point arr[10];

// Access array members

arr[0].x = 10;

arr[0].y = 20;

printf("%d %d", arr[0].x, arr[0].y);

return 0;

}

Pointer to a Structure
#include<stdio.h>

struct Point

{

int x, y;

};

int main()

{

struct Point p1 = {1, 2};

// p2 is a pointer to structure p1

struct Point *p2 = &p1;

// Accessing structure members using structure pointer

printf("%d %d", p2->x, p2->y);

return 0;

}

Nested Structure

• Nested structure in C is structure within structure. One
structure can be declared inside other structure as we
declare structure members inside a structure. (give an
example)

• The structure variables can be a normal structure
variable or a pointer variable to access the data.

• More on these later.

struct rect

{

struct Point

{

int x, y;

}

int perimeter;

Int area ;

// you can refer to the structure Point if Point declared outside and global

}

Important Data Structures

• Arrays

• Linked Lists

• Stacks

• Queues

• Trees

• Binary Trees

• Heaps

• We will cover some of these

8Nov2021

Important Data Structures

• Arrays

• Linked Lists

• Stacks

• Queues

• Trees

• Binary Trees

• Heaps

• We will cover some of these

Typical Operations involving Data Structures

• Arrays, Linked Lists, Stacks, Queues, Trees, Binary Trees, Heaps

• All data structures typically have these following functions
I. Create

II. Insert

III. Delete

IV. Read (Retrieve data (information))

Pointers (continued discussion)

• There are a few important operations with pointers very
frequently.

• (a) define a pointer variable,

• (b) assign the address of a variable to a pointer and

• (c) finally access the value at the address available in the pointer
variable. This is done by using unary operator * that returns the value
of the variable located at the address specified by its operand.

• NULL Pointers

• It is a good practice to assign a NULL value to a pointer variable
in case an exact address is yet to be assigned. This is done at
the time of variable declaration. A pointer that is assigned NULL
is called a null pointer.

• The NULL pointer is a constant with a value of zero defined in
several standard libraries.

• In most of the operating systems, programs are not permitted to
access memory at address 0 because that memory is reserved
by the operating system. However, the memory address 0 has
special significance; it signals that the pointer is not intended to
point to an accessible memory location. But by convention, if a
pointer contains the null (zero) value, it is assumed to point to
nothing

• To check that the ptr is pointing to something at all,
we can and should that the pointer is not NULL

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

OR

if(ptr == NULL) /* succeeds if p is
not null */

If(ptr != NULL) /* succeeds if p is
null */

Linked List

// A linked list node containing integers

struct Node {

int data1;

struct Node* next;

};

Linked List

// A linked list node containing integers and another structure.

struct Node {

int data1;

struct ind_address data2;

struct Node* next;

};

• Like arrays, Linked List is a linear data structure.

• Unlike arrays, linked list elements are not stored at a contiguous
location

• elements are linked using pointers

• Clearly you need to identify beginning and end of a linearly linked
list!! How?

• Like arrays, Linked List is a linear data structure.

• Unlike arrays, linked list elements are not stored at a contiguous
location

• elements are linked using pointers

• Clearly you need to identify beginning and end !! How?

Linked List Creation

• Define the node type

• Define a function that allocates memory for a single node (consistent
with the “sizeof” the node and returns a pointer.

Sizeof is a much used operator in the C. It is a compile time unary operator which can
be used to compute the size of its operand. sizeof can be applied to any data-type,
including primitive types such as integer and floating-point types, pointer types, or
compound datatypes such as Structure, union etc.

#include <stdio.h>
int main()
{

printf("%lu\n", sizeof(char));
printf("%lu\n", sizeof(int));
printf("%lu\n", sizeof(float));
printf("%lu", sizeof(double));
return 0;

}

Sizeof is a much used operator in the C. It is a compile time unary operator which can
be used to compute the size of its operand. sizeof can be applied to any data-type,
including primitive types such as integer and floating-point types, pointer types, or
compound datatypes such as Structure, union etc.

#include <stdio.h>
int main()
{

printf("%lu\n", sizeof(char));
printf("%lu\n", sizeof(int));
printf("%lu\n", sizeof(float));
printf("%lu", sizeof(double));
return 0;

}

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

};

// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap
head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third
head second third

| |
|

| |
|

+---+-----+ +----+----+ +----+----+
| # | # | | # | # | | # | # |
+---+-----+ +----+----+ +----+----+

represents any random value. Data is random because we haven’t assigned anything yet */

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

};

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

};

// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap
head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third
head second third

| |
|

| |
|

+---+-----+ +----+----+ +----+----+
| # | # | | # | # | | # | # |
+---+-----+ +----+----+ +----+----+

represents any random value. Data is random because we haven’t assigned anything yet */

// A simple C program to introduce a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

};

// Program to create a simple linked list with 3 nodes
int main()
{

struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;

// allocate 3 nodes in the heap
head = (struct Node*)malloc(sizeof(struct Node));
second = (struct Node*)malloc(sizeof(struct Node));
third = (struct Node*)malloc(sizeof(struct Node));

/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third
head second third

| |
|

| |
|

+---+-----+ +----+----+ +----+----+
| # | # | | # | # | | # | # |
+---+-----+ +----+----+ +----+----+

represents any random value. Data is random because we haven’t assigned anything yet */

head->data = 1; // assign data in first node
head->next = second; // Link first node with
// the second node

/* data has been assigned to the data part of the first
block (block pointed by the head). And next
pointer of first block points to second.
So they both are linked.

head second third
| |
|

| |
|

+---+---+ +----+----+ +-----+----+
| 1 | o----->| # | # | | # | # |
+---+---+ +----+----+ +-----+----+

*/

// assign data to second node
second->data = 2;

// Link second node with the third node
second->next = third;

/* data has been assigned to the data part of the second block (block pointed by second).
And next pointer of the second block points to the third block. So all three blocks are linked.

head second third
| | |
| | |

+---+---+ +---+---+ +----+----+
| 1 | o----->| 2 | o-----> | # | # |
+---+---+ +---+---+ +----+----+ */

third->data = 3; // assign data to third node
third->next = NULL;

/* data has been assigned to data part of third block (block pointed by third). And next pointer of the third block is made NULL to indicate
that the linked list is terminated here.

We have the linked list ready.

head
|
|

+---+---+ +---+---+ +----+------+
| 1 | o----->| 2 | o-----> | 3 | NULL |
+---+---+ +---+---+ +----+------+

Note that only head is sufficient to represent the whole list. We can traverse the complete list by following next pointers. */

return 0;
}

Append a node

Inserting a node

Sorting an array of integers

• Bubble sort

Sorting an array of integers

• Bubble sort
• Bubble sort, sometimes referred to as sinking sort, is a simple

sorting algorithm that repeatedly steps through the list, compares
adjacent elements and swaps them if they are in the wrong order. The
pass through the list is repeated until the list is sorted. The algorithm,
which is a comparison sort, is named for the way smaller or larger
elements "bubble" to the top of the list.

Take an array of numbers " 5 1 4 2 8", and sort the array from lowest number to greatest number using bubble

sort. In each step, elements written in bold are being compared. Three passes will be required;

First Pass

(5 1 4 2 8) → (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(1 5 4 2 8) → (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) → (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) → (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass

(1 4 2 5 8) → (1 4 2 5 8)

(1 4 2 5 8) → (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

Now, the array is already sorted, but the algorithm does not know if it is completed. The algorithm needs

one whole pass without any swap to know it is sorted.

Third Pass

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

• Write a C function to do a bubble sort using a C function to swap.

• Write a bubble sort function that uses a swap function

//Improved Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)
{

int temp = *xp;
*xp = *yp;
*yp = temp;

}

// An optimized version of Bubble Sort
void bubbleSort(int arr[], int n)
{
int i, j;
//bool swapped;
for (i = 0; i < n-1; i++)
{

//swapped = false;
for (j = 0; j < n-i-1; j++)
{

if (arr[j] > arr[j+1])
{
swap(&arr[j], &arr[j+1]);
//swapped = true;
}

}

// IF no two elements were swapped by inner loop, then break
//if (swapped == false)

//break;
}
}

• Write a C function to do a bubble sort using a C function to swap.

• Write the bubblesort function

int main()
{

int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;

}

// Optimized implementation of Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)
{

int temp = *xp;
*xp = *yp;
*yp = temp;

}

Homework

• Please understand the C program for bubble sort and optimized
bubble sort. Understand how exactly it works.

15Nov2021

A reference to practice C programs (with
strings etc.)
• There are many references on the net. You may look up any one of

them. In particular take a look at

https://www.w3schools.in/c-program/

• Take a look at many of these programs and practice.

https://www.w3schools.in/c-program/

Last time we began to discuss two distinct things

- how to define and work with a linear but non-contiguously placed
data structure, namely a linearly linked list.

A GOOD REF on LINKED LIST: GO To:

http://cslibrary.stanford.edu/103/

- Search and sorting algorithms.

http://cslibrary.stanford.edu/103/

Today we will continue the discussion on different aspects of search
and sort algorithm; how to determine correctness of an algorithm, how
to measure complexities of algorithms etc.

Introductory Statements

• Typically we need to search for a data item.

• We can search for an item by going linearly across the data set. If the
size of the data set is n, then it is plausible that we will take time
proportional to n.

• Why do we need to sort then???

• Two reasons:

1. searching a sorted list is cheaper than searching an unsorted list.

2. Typically we need to search more than once !!

Sorting Algorithms

• Bubble sort

• Insertion Sort (will discuss today)

• Selection sort

• Merge Sort

• Heap sort

229

Insertion Sort

• Idea: like sorting a hand of playing cards

• Start with an empty left hand and the cards facing down on the table.

• Remove one card at a time from the table, and insert it into the correct

position in the left hand

• compare it with each of the cards already in the hand, from right to left

• The cards held in the left hand are sorted

• these cards were originally the top cards of the pile on the table

230

To insert 12, we need to make
room for it by moving first 36
and then 24.

Insertion Sort

231

Insertion Sort

232

Insertion Sort

233

Insertion Sort

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

234

Insertion Sort

235

INSERTION-SORT
Alg.: INSERTION-SORT(A)

for j ← 2 to n

do key ← A[j]

Insert A[j] into the sorted sequence A[1 . . j -1]

i ← j - 1

while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i ← i – 1

A[i + 1] ← key

• Insertion sort – sorts the elements in place

a8a7a6a5a4a3a2a1

1 2 3 4 5 6 7 8

key

How do we know an algorithm works or that
it is correct?
• The idea is define and track a loop invariant.

• A loop invariant is something that remains constant throughout the
loop.

• It ensures that the algorithm is correct and if it terminates, then it will
give a correct result.

237

Proving Loop Invariants
• Proving loop invariants works like induction

• Initialization (base case):

• It is true prior to the first iteration of the loop

• Maintenance (inductive step):

• If it is true before an iteration of the loop, it remains true before the

next iteration

• Termination:

• When the loop terminates, the invariant gives us a useful property that

helps show that the algorithm is correct

• Stop the induction when the loop terminates

238

Loop Invariant for Insertion Sort
Alg.: INSERTION-SORT(A)

for j ← 2 to n

do key ← A[j]

Insert A[j] into the sorted sequence A[1 . . j -1]

i ← j - 1

while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i ← i – 1

A[i + 1] ← key

Invariant: at the start of the for loop the elements in A[1 . . j-1] are in
sorted order

239

Loop Invariant for Insertion Sort
• Initialization:

• Just before the first iteration, j = 2:

the subarray A[1 . . j-1] = A[1], (the

element originally in A[1]) – is sorted

240

Loop Invariant for Insertion Sort
• Maintenance:

• the while inner loop moves A[j -1], A[j -2], A[j -3], and
so on, by one position to the right until the proper position
for key (which has the value that started out in A[j]) is
found

• At that point, the value of key is placed into this position.

241

Loop Invariant for Insertion Sort
• Termination:

• The outer for loop ends when j = n + 1  j-1 = n
• Replace n with j-1 in the loop invariant:

• the subarray A[1 . . n] consists of the elements originally in A[1 . .
n], but in sorted order

• The entire array is sorted!

jj - 1

Invariant: at the start of the for loop the elements in A[1 . . j-1] are in
sorted order

242

Insertion Sort - Summary

We will discuss these notations

• Advantages
• Good running time for “almost sorted” arrays ((n))

• Disadvantages
 n2/2 comparisons and exchanges ((n2) running time in worst and average
case)

243

Insertion Sort - Summary

244

Bubble Sort

• Idea:
• Repeatedly pass through the array

• Swaps adjacent elements that are out of order

• Easier to implement, but slower than Insertion sort

1 2 3 n

i

1329648

j

246

Selection Sort
• Idea:

• Find the smallest element in the array

• Exchange it with the element in the first position

• Find the second smallest element and exchange it with the
element in the second position

• Continue until the array is sorted

• Disadvantage:
• Running time depends only slightly on the amount of order

in the file

What are the loop invariants in Bubble and
Selection sort?

How do we evaluate algorithms?

Bottom line idea on growth of algorithmic
time
• A+B ln (n) < A+B ln(n) + C n < …. + D(n2) for large enough n (B, C, D

are positive constants, depends on machine etc.

Some References

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/MIT6_0001F16_Lec10.pdf

• https://www.cse.unr.edu/~bebis/CS477/Lect/InsertionSortBubbleSort
SelectionSort.ppt

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/MIT6_0001F16_Lec10.pdf
https://www.cse.unr.edu/~bebis/CS477/Lect/InsertionSortBubbleSortSelectionSort.ppt

Detailed Analysis of Insertion Sort

a8a7a6a5a4a3a2a1

1 2 3 4 5 6 7 8

key

a8a7a6a5a4a3a2a1

1 2 3 4 5 6 7 8

key

a8a7a6a5a4a3a2a1

1 2 3 4 5 6 7 8

key

263

Analysis of Insertion Sort
cost times

c1 n

c2 n-1

0 n-1

c4 n-1

c5

c6

c7

c8 n-1

 =

n

j jt
2

 =
−

n

j jt
2

)1(

 =
−

n

j jt
2

)1(

() ())1(11)1()1()(8

2

7

2

6

2

5421 −+−+−++−+−+= 
===

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

INSERTION-SORT(A)

for j ← 2 to n

do key ← A[j]

Insert A[j] into the sorted sequence A[1 . . j -1]

i ← j - 1

while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i ← i – 1

A[i + 1] ← key

tj: # of times the while statement is executed at iteration j

264

Best Case Analysis
• The array is already sorted

• A[i] ≤ key upon the first time the while loop test is run

(when i = j -1)

• tj = 1

• T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) =

(c1 + c2 + c4 + c5 + c8)n + (c2 + c4 + c5 + c8)

= an + b = (n)

“while i > 0 and A[i] > key”

() ())1(11)1()1()(8

2

7

2

6

2

5421 −+−+−++−+−+= 
===

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

265

Worst Case Analysis

• The array is in reverse sorted order

• Always A[i] > key in while loop test

• Have to compare key with all elements to the left of the j-th position

 compare with j-1 elements  tj = j

a quadratic function of n

• T(n) = (n2) order of growth in n2

1 2 2

(1) (1) (1)
1 (1)

2 2 2

n n n

j j j

n n n n n n
j j j

= = =

+ + −
= = = − = − =  

)1(
2

)1(

2

)1(
1

2

)1(
)1()1()(8765421 −+

−
+

−
+








−

+
+−+−+= nc

nn
c

nn
c

nn
cncncncnT

cbnan ++= 2

“while i > 0 and A[i] > key”

() ())1(11)1()1()(8

2

7

2

6

2

5421 −+−+−++−+−+= 
===

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

using we have:

266

Comparisons and Exchanges in Insertion Sort

INSERTION-SORT(A)

for j ← 2 to n

do key ← A[j]

Insert A[j] into the sorted sequence A[1 . . j -1]

i ← j - 1

while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i ← i – 1

A[i + 1] ← key

cost times

c1 n

c2 n-1

0 n-1

c4 n-1

c5

c6

c7

c8 n-1

 =

n

j jt
2

 =
−

n

j jt
2

)1(

 =
−

n

j jt
2

)1(

 n2/2 comparisons

 n2/2 exchanges

Summary

• When you add all these terms, the terms proportional to n-square
will win !

Growth of Functions. Given functions f and g, we wish to show

how toquantify the statement : “g grows as fast as f ”.

The growth of functions is directly related to the complexity of

algorithms. We are guided by the following principles.

• We only care about the behavior for “large” problems.

• We may ignore implementation details such as loop counter incrementation.

Let f and g be functions from the natural numbers to the real numbers.
Then g asymptotically dominates f, or

f is big-O of g

if there are positive constants C and k such that

|f (x)| ≤ C|g(x)| for x ≥ k.

Usually we will deal with functions that are manifestly positive at least

for “large values of x”.

If f is big-O of g, then we write

f (x) is O(g(x))or f ∈ O(g).

Example:

Show that x2 + 10 is O(x2).

Let C = 3 and k = 3.

Then, if x ≥ 3,3x2 = x2 + 2x2 ≥ x2 + 2 · 32 ≥ x2 + 10

Or,

Let C = 2 and k = 4. Then, if x ≥ 4,

2x2 = x2 + x2 ≥ x2 + 42 ≥ x2 + 10.

So the values of C and k are flexible.

Also note that 3x2 = O(x2)

Clearly some general theorems are useful.

THEOREMS: (Without Proof).

x2 + 10 ∈ O(x2).

How do you interpret the statement f i s n o t O(g)? That is, how do you

negate the definition? The definition says:

f ∈ O(g) if and only if there exist constants C and k such that, forall

x, if x ≥ k, then |f (x)| ≤ C|g(x)|.

The negation would then read:

f is not O(g) if and only if for all constants C and k, there exist x
suchthat x ≥ k and |f (x)| > C|g(x)|.

Show that x2 is not O(x). (Prove it)

Show that 2x3 + x2 − 3x + 2 is O(x3).

In general,

Then

If k>=d, p(n) is O(xk)

A polynomial of degree n is O(xn).

How about log(x) vs x ?

We already know that x is NOT O(log x); easy to show that log x = O(x)
Definition of small o(): If f and g are such that

Theorem: If f is o(g), then f is O(g).

Useful results:

If f1 is O(g1) and f2 is O(g2), then (f1+f2) is O(max{|g1|, |g2|}).

If f1 and f2 are both O(g), then (f1 + f2) is O(g).

If f1 is O(g1) and f2 is O(g2), then (f1f2) is O(g1g2).

If f1 is O(f2) and f2 is O(f3), then f1 is O(f3).

If f is O(g), then (af) is O(g) for any constant a.

22Nov2021

• Growth of Functions

• Divide and Conquer algorithms

• Merge sort

• Recurrence relation for Merge sort.

• Solving recurrence relations.

MERGE SORT

Suppose you are sorting A = [5, 2, 4, 7, 1, 3, 2, 6].
We divide this into the arrays [5, 2, 4, 7] and [1, 3, 2, 6], and MergeSort each of
those arrays.
To sort [5, 2, 4, 7], we divide it into the arrays [5, 2] and [4, 7], and MergeSort each
of those arrays.
To sort [5, 2], we divide it into the arrays [5] and [2].

At this point we have reached the base case, so MergeSorting the array [5] just
returns the array [5], and MergeSorting the array [2] just returns the array [2].

But now we need to merge together [5] and [2], which gives us [2, 5].

Merging together [2, 5] and [4, 7] gives us [2, 4, 5, 7].

Finally, merging together [2, 4, 5, 7] and [1, 2, 3, 6] gives us [1, 2, 2, 3, 4, 5, 6, 7].

Substitution method of Solving Recurrence Relations:.

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

Lets try to solve a recurrence relations using this.

Substitution method of Solving Recurrence Relations:.

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

Lets try to solve a recurrence relations using this.

Ref

• https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
1.pdf

• https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
2.pdf

• https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
3.pdf

• https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture
2.pdf

• https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall14/Lecture
s/02-recurrences/recurrences.pdf

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture1.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture2.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture2.pdf
https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall14/Lectures/02-recurrences/recurrences.pdf

24Nov2021

• Last time we discussed the time complexity of merge – sort.

• The complexity is O(n log n).

• We did this assuming that the time complexity of merging two sorted
arrays of length m and n into a sorted array of length m+n is O(m+n)

• We will complete this today.

• Input: sorted array a of length m, and sorted array b of length n

• Create an empty array c of length m+n, set index_a and index_b to 0

• While (index_a < length of a) and (index_b < length of b)
a. Add the smaller of a[index_a] and b[index_b] to the end of c.

b. Increment the index of c.

c. Increment the index of the list with the smaller element

• If any elements are left over in a or b, add them to the end of c, in
order

• Return c.

#include <stdio.h>
#include <stdlib.h>
int merge_two_sorted_arrays(int arr1[], int arr2[], int arr3[], int
m, int n)
{
int i,j,k;
i = j = k = 0;
for(i=0;i < m && j < n;)
{
if(arr1[i] < arr2[j])
{
arr3[k] = arr1[i];
k++;
i++;
}
else
{
arr3[k] = arr2[j];
k++;
j++;
}
}

while(i < m)
{
arr3[k] = arr1[i];
k++;
i++;
}
while(j < n)
{
arr3[k] = arr2[j];
k++;
j++;
}
}

29NOv2021

• Back to Important Structures
• Link List

• Stack

• Binary Trees

• Etc.

• Adding a node at the header of a link list.

(Ref. http://cslibrary.stanford.edu/103/LinkedListBasics.pdf)

Adding a node at the beginning of the code

Adding a link to the head

• Wrong code. Why?

Adding a node to the head of a linked list

Stack as abstract data type

Stack as abstract data type

How to implement a Stack

• Can be implemented as array
• Needs maximum size of the stack to create an empty stack, then all the

functions.

• Can be implemented as a linked list
• Create a single node.

• Push is attaching a node to the top

• Pop is reading value at the top and then deleting it from the top (head)

• How will you write Is_full and Is_empty?

Reversing a string using stack and checking if
it is a palindrome

Stack implemented as an array

• A bounded stack can be implemented as array

• We have to know the maximum size

• We have to have an indication when the stack is empty (or full)

• We need to store the data in the stack.

So how to we define a stack structure consistent with these?

Stack structure implemented as array

// Data structure for stack
struct stack
{

int maxsize; // define max capacity of stack
int top; //set top to -1 for an empty stack
int *items; // can also write items[]?? items[maxsize]??

};

Functions related to stack implemented as
array
// Utility function to initialize stack
struct stack* newStack(int capacity)
{

struct stack *pt = (struct stack*)malloc(sizeof(struct stack));

pt->maxsize = capacity;
pt->top = -1;
pt->items = (int*)malloc(sizeof(int) * capacity);

return pt;
}

Functions related to stack implemented as
array
// Utility function to initialize stack
struct stack* newStack(int capacity)
{

struct stack *pt = (struct
stack*)malloc(sizeof(struct stack));

pt->maxsize = capacity;
pt->top = -1;
pt->items = (int*)malloc(sizeof(int) * capacity);

return pt;
}

// Utility function to check if the stack is empty or not
int isEmpty(struct stack *pt)
{

return pt->top == -1; // or return size(pt) == 0;
}

// Utility function to check if the stack is full or not
int isFull(struct stack *pt)
{

return pt->top == pt->maxsize - 1;
// or return size(pt) == pt->maxsize;
}

Push and Pop an element

// Utility PUSH function to add an element x in the stack
void push(struct stack *pt, int x)
{

// check if the stack is already full. Then inserting an element
would

// lead to stack overflow
if (isFull(pt))
{

printf("OverFlow\nProgram Terminated\n");
exit(EXIT_FAILURE);

}

// add an element and increments the top index
pt->items[++pt->top] = x;

}

Explain how the last line works.
How is it adding to the array?
Pushed to which location or index
to the array?

Push and Pop an element

// Utility PUSH function to add an element x in the stack
void push(struct stack *pt, int x)
{

// check if the stack is already full. Then inserting an element
would

// lead to stack overflow
if (isFull(pt))
{

printf("OverFlow\nProgram Terminated\n");
exit(EXIT_FAILURE);

}

// add an element and increments the top index
pt->items[++pt->top] = x;

}

// Utility function to pop top element from the stack
int pop(struct stack *pt)
{

// check for stack underflow
if (isEmpty(pt))
{

printf("UnderFlow\nProgram Terminated\n");
exit(EXIT_FAILURE);

}

// decrement stack size by 1 and (optionally) return the
popped element

return pt->items[pt->top--];
}

Peek at the top of the stack

// Utility function to return top element in a stack
int peek(struct stack *pt)
{

// check for empty stack
if (!isEmpty(pt))

return pt->items[pt->top];
else

exit(EXIT_FAILURE);
}

Sample Program illustrating a stack using all
these functions

int main()
{

// create a stack of capacity 5
struct stack *pt = newStack(5);

push(pt, 1);
push(pt, 2);
push(pt, 3);

printf("Top element is %d\n", peek(pt));
printf("Stack size is %d\n", size(pt));

pop(pt);
pop(pt);
pop(pt);

if (isEmpty(pt))
printf("Stack is empty");

else
printf("Stack is not empty");

return 0;
}

Output:

Inserting 1
Inserting 2
Inserting 3
Top element is 3
Stack size is 3
Removing 3
Removing 2
Removing 1
Stack is empty

Using Header files to define structure as per
you need

Using Header files to define structure as per
you need

https://www.cs.uah.edu/~rcoleman/Common/CodeVault/Code
/Code120_Stack.html

Application of Stack

• Checking parenthesis

• Expression handling (in fix to Pre fix or post fix)

• What else?

Check for balanced expressions

• Identify what you want to see balanced and what rules apply

e.g. Given an expression string exp, write a program to examine
whether the pairs and the orders of “{“, “}”, “(“, “)”, “[“, “]” are correct
in exp

#include <stdio.h>
#include <stdlib.h>
#define bool int

// structure of a stack node
struct sNode {

char data;
struct sNode* next;

};

// Function to push an item to stack
void push(struct sNode** top_ref, int new_data);

// Function to pop an item from stack
int pop(struct sNode** top_ref);

// Returns 1 if character1 and character2 are matching left
// and right Brackets
bool isMatchingPair(char character1, char character2)
{

if (character1 == '(' && character2 == ')')
return 1;

else if (character1 == '{' && character2 == '}')
return 1;

else if (character1 == '[' && character2 == ']')
return 1;

else
return 0;

}

// Return 1 if expression has balanced Brackets
bool areBracketsBalanced(char exp[])
{

int i = 0;

// Declare an empty character stack
struct sNode* stack = NULL;

// Traverse the given expression to check matching
// brackets
while (exp[i])
{

// If the exp[i] is a starting bracket then push

01Dec2021

Stack structure implemented as array

// Data structure for stack
struct stack
{

int maxsize; // define max capacity of stack
int top; //set top to -1 for an empty stack
int *items; // can also write items[]?? items[maxsize]??

};

Last time there was a discussion as to whether int *items is correct, how it knows that it is an array ,
and whether int items[], int items[maxsize] would work as well.

A simpler question.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int *elements;

elements = malloc(50*sizeof(int)); // what does this do???

return 0;

}

A simpler question.

#include <stdio.h>
#include <stdlib.h>
int main()
{
int *elements;
elements = malloc(50*sizeof(int)); // what does this do???
elements[19] = 5;
printf(“%d”,elements[19]);
return 0;
}

int main()
{
struct mystructure* myStack;
int myStacksize = 100;
myarray = createmyarrayStack(myStacksize);
return 0;
}

DECLARATION ONLY; NO
ITILIALIZATION

int main()
{
struct mystructure* myStack;
int myStacksize = 100;
myarray = createmyarrayStack(myStacksize);

myStack->elements[10]=7;
printf("%d", myStack->elements[10]);
return 0;
}

Compare stack implementations
ARRAY

Compare stack implementations
ARRAY

LINKED LIST

File handling in C

• Suppose you have a “text file” in C and you want to append a line at
the end.

• For example, you have a list of integers and you want to append
another integer

• Or you want to sort these integers and save the sorted one in another
list.

• All this calls for reading from a file. Basic Operations are opening a file
for a specific purpose (read, write, append) and closing a file.

• When working with files, we need to declare a pointer of type file.
This declaration is needed for communication between the file and
the program.

• In other words, the pointer will store the address required to access
the file

• When working with files, we need to declare a pointer of type file.
This declaration is needed for communication between the file and
the program.

• In other words, the pointer will store the address required to access
the file

• Declaration:
FILE *filepointervariablename;

Opening a file

• The C function to open a file is fopen

Opening a file

• The C function to open a file is fopen

Useful to check if the file could be opened

EXAMPLE:

FILE *fptr;
fptr = fopen("trial1.txt","a");

if(fptr == NULL)
{

printf("Error!");
exit(1);

}

Exercise adding an integer to a file containing
integers

HW

• Study the following functions

fscanf, fgets, fgetc, fputc ….

• fgetc() function is a file handling function in C
programming language which is used to read a character
from a file. It reads single character at a time and moves
the file pointer position to the next address/location to
read the next character.

HW:

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

8Dec

HW: Has anyone tried this??

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

HW: Has anyone tried this??

Sort the numbers in a file containing integers separated by a blank or a
newline and save it into a sorted file.

- Open the File to read:

- Store the numbers in an array or a linked list.

- Sort the array or the linked list as you find new numbers – What sort
program will you use here?

- End with End of File.

- WRITE THIS PROGRAM – not so easy, neither too difficult

Two Dimensional Arrays.

• A way to store a m x n matrix

data_type array_name[x][y];
Example: int x[10][20];

Can store a 10x20 matrix whose elements are integers.

Is there another way to store matrices for
practical purposes.
• Many applications deal with very very large matrices most of whose

elements are zero.

Matrix Operations for Large but Sparse Matrix

• Sparse matrix is a matrix (typically A VERY LARGE matrix) most of
whose elements are zero.

• The idea is to represent such matrices with a data structure that
retains only the non zero elements.

• The challenge is to find such a representation and develop time
efficient functions such that the “sparse representation” or sparsity is
maintained through out.

Unstructured Sparse Matrices

Airline flight matrix.
▪ airports are numbered 1 through n

▪ flight(i,j) = list of nonstop flights from airport i
to airport j

▪ n = 1000 (say)

▪ n x n array of list references => 4 million bytes

▪ total number of flights = 20,000 (say)

▪ need at most 20,000 list references => at most
80,000 bytes

Unstructured Sparse Matrices

Web page matrix.
web pages are numbered 1 through n

web(i,j) = number of links from page i to page j

Web analysis.
authority page … page that has many links to it

hub page … links to many authority pages

Web Page Matrix

▪ n = 2 billion (and growing by 1 million a day)
▪ n x n array of ints => 16 * 1018 bytes (16 * 109

GB)
▪ each page links to 10 (say) other pages on

average
▪ on average there are 10 nonzero entries per

row
▪ space needed for nonzero elements is

approximately 20 billion x 4 bytes = 80 billion
bytes (80 GB)

Unstructured Sparse Matrices

A typical representation

• Define a structure that has a tuplet array
• Each array element is a tuplet[N] (row, column, value)

• We can use the zero element of the array to retain some key information
about the original matrix

• E.g. tuplet[0] = {no. of rows, no. of columns, no. of nonzero elements Are we
saving any space? Only if sparsity <1/3

• p = number of non zero elements, p <= (mn)/3 for a m x n matrix

Representation Of Unstructured
Sparse Matrices

Single linear list in row-major order.
scan the nonzero elements of the sparse matrix in

row-major order

each nonzero element is represented by a triple

(row, column, value)

the list of triples may be an array list or a linked list
(chain)

Retrieving a row information vs Retrieving a
column

How many non zero element are in a row or a
column?

To do that for a row is simple. Complexity?

To do that that a column is not so simple
Complexity?

Retrieving a row vs Retrieving a column

How many non zero elements are there in a
specific row or a specific column?

To do that for a row is simple. ‘=
Complexity O(p) = O(mn)

To do that that a column is not so simple
Complexity O(p*n) = O(mn2), But we can devise
an algorithm to convert it to O(mn) { we will not
prove it here}

• Any important problem in dealing with sparse matrix is how to
transpose a sparse matrix by keeping its properties intact. We will not
discuss this here except to note that there are algorithms to do this
efficiently.

Multiplying Polynomials.

• How do we represent polynomials?

• How do we add? What is the time complexity?

• How do we multiply polynomials?

The Polynomial Multiplication Algorithm

The Polynomial Multiplication Algorithm

The Polynomial Multiplication Algorithm

Implement each polynomial as an array of the
coefficients

• What is the complexity in terms of the degree of the polynomial ?

• What is the complexity in terms of the degree of the polynomial ?

• What is the complexity in terms of the degree of the polynomial ?

Divide and Conquer – First Try

Divide and Conquer – First Try

Divide and Conquer – First Try

Lesson

• Divide and Conquer may not be the silver bullet

• You have to think deeper.

What can we do? How can we reduce steps?

Note that these middle two terms can be combined because they have the same coefficients!!!
So we need to only compute

What can we do? How can we reduce steps?

Note that these middle two terms can be combined because they have the same coefficients!!!
So we need to only compute

+

13 Dec. 2021

• Quick Sort.

Quicksort is a sorting algorithm based on the divide and conquer
approach where

1.An array is divided into subarrays by selecting a pivot element (element
selected from the array).

2.While dividing the array, the pivot element should be positioned in such a
way that elements less than pivot are kept on the left side and elements
greater than pivot are on the right side of the pivot.

3.The left and right subarrays are also divided using the same approach. This
process continues until each subarray contains a single element.

4.At this point, elements are already sorted. Finally, elements are combined
to form a sorted array.

There are many different versions of
quickSort that pick pivot in different ways.
1.Always pick first element as pivot.
2.Always pick last element as pivot
3.Pick a random element as pivot.
4.Pick median as pivot.

Quick sort

20Dec2021

Miscellaneous and Closing

int main()

/* Explain the code – what is it doing?*/

{

FILE *fp;

int no_lines = 0;

char filename[40]; //what is this line doing?

char sample_chr;

printf("Enter file name: ");

scanf("%s", filename);

fp = fopen(filename, "r"); //what is this line doing?

sample_chr = getc(fp);

int main()

/* Explain the code – what is it doing?*/

{

FILE *fp;

int no = 0;

char filename[40], //what is this line doing?

char sample_chr;

printf("Enter file name: ");

scanf("%s", filename);

fp = fopen(filename, "r"); //what is this line doing?

sample_chr = getc(fp);//what dies this line do?

while (sample_chr != EOF) {

if (sample_chr == ‘/n')

{

//increment variable 'no' by 1

no=no+1;

}

//take next character from file.

sample_chr = getc(fp);

}

// WHAT IS THE WHILE LOOP DOING?

fclose(fp); //close file.

printf(" %d %s ", no, filename);

return 0;

}

Tower of Hanoi

Tower of Hanoi is a mathematical puzzle where we have three rods and
n disks. The objective of the puzzle is to move the entire stack to
another rod, obeying the following simple rules:

1.Only one disk can be moved at a time.

2.Each move consists of taking the upper disk from one of the stacks
and placing it on top of another stack i.e. a disk can only be moved if
it is the uppermost disk on a stack.

3.No disk may be placed on top of a smaller disk.

#include <stdio.h>
void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-1,x,z,y);
//printf("\n%c to %c",x,y);

TOH(1,x,y,z);

TOH(n-1,z,y,x);
}
}

int main()
{
int n=5;

TOH(n,'A','B','C');
return 0;}

#include <stdio.h>
void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-1,x,z,y);
//printf("\n%c to %c",x,y);

TOH(n-1,z,y,x);
}
}

int main()
{
int n=5;

TOH(n,'A','B','C');
return 0;}

How many time printf executed?

How will you modify the program to
count it?

#include <stdio.h>
void TOH(int n,char x,char y,char z)
{ if(n>0)

{ TOH(n-1,x,z,y);
printf("\n%c to %c",x,y);

TOH(n-1,z,y,x);
}
}

int main()
{
int n=5;

TOH(n,'A','B','C');
return 0;}

What the time complexity of
this algorithm?

T(n) = T(n-1) + c + T(n-1)
T(n) - 2 T(n-1) + c

The End

