

Number Theory Assignment 4
Due by 12.12.21

Q 1. (From Burton's book)

- (i) Prove that the congruence $6x^2 + 5x + 1 \equiv 0 \pmod{p}$ has a solution for every prime p . Does $6x^2 + 5x + 1 = 0$ have integer solutions?
- (ii) Give an example of relatively prime integers a, n such that $a^{\phi(n)/2} \equiv 1 \pmod{n}$ but $x^2 \equiv a \pmod{n}$ does not have solutions. Can you give infinitely many examples?
- (iii) If $p > 2$ is a prime, prove $1 + \sum_{a=1}^{p-2} \left(\frac{a(a+1)}{p} \right) = 0$.
- (iv) Show that for any prime $p > 5$, there exist integers $1 \leq a, b \leq p-1$ for which both $a, a+1$ are quadratic residues while both $b, b+1$ are quadratic non-residues mod p .

Q 2. Let k be an integer of the form $k = (4n-1)^3 - 4m^2$ where m, n are integers with the property that NO prime of the form $4d+3$ divides m . Then, prove that the equation $y^2 = x^3 + k$ has no solutions for integers x, y .
Hint. Observe that for any possible solution, we must have $x \equiv 1 \pmod{4}$ and use it.

Q 3. (From NZM, after section 3.2.)

- (i) Exercise 24, P. 142.
- (ii) Exercise 25, P. 142.