
Number Theory Notes
8th December 2021

1 Jacobi Symbol

Jacobi extended the Legendre symbol to include

(
a
b

)
when b is any odd

positive number and a is any integer. If b = p1p2 · · · pr with odd primes pi
(not necessarily distinct) the definition is(

a

b

)
=

r∏
i=1

(
a

pi

)
.

This is convenient because the statements of QRL carry over to give the
following:

Observation.
For odd numbers r1, · · · , rk, we have:∑

i(ri − 1)/2 ≡ (r1 · · · rk − 1)/2 mod 2;∑
i(r

2
i − 1)/8 ≡ (r21 · · · r2k − 1)/8 mod 2.

To see this, write ri = 2si + 1; then

r1r2 · · · rk =

k∏
i=1

(2si + 1) ≡ 1 + 2
∑
i

si mod 4.

So,

r1r2 · · · rk − 1−
∑
i

(ri − 1) ≡ 0 mod 4.

For the second observation, write r2i = 8ti + 1; then

r21r
2
2 · · · r2k =

k∏
i=1

(8ti + 1) ≡ 1 + 8
∑
i

vi mod 64.

Hence,

r21 · · · r2k − 1− (r21 − 1)− · · · − (r2k − 1) ≡ 0 mod 64.

Corollary of QRL. Let b = p1 · · · pr where pi’s are (not necessarily distinct)
odd primes. Then,
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(i)

(
−1
b

)
= (−1)(b−1)/2;

(ii)

(
2
b

)
= (−1)(b

2−1)/8;

(iii) if a is odd,

(
a
b

)(
b
a

)
= (−1)(a−1)(b−1)/4.

The proof is immediate from QRL and the observations on parity.

1.1 Quadratic non-residues

If a is a positive integer that is a perfect square modulo all (or all but finitely
many) primes p, then is it true that it must be a perfect square? This is like
a local-global property. Surprisingly, the answer is not immediate but it is
yes, and requires QRL. It is convenient to use Jacobi symbols. The result
is:

Let a be a non-square positive integer. Then, there are infinitely many

primes p for which

(
a
p

)
= −1.

To prove this, we may assume a is square-free.
If a = 2, this is equivalent by QRL to showing that there are infinitely many
primes of the form ±3 mod 8. If p1, p2, · · · , pr are any set of primes of the
form ±3 mod 8, the number 8p1p2 · · · pr+3 is divisible by some new prime of
one of these forms because primes that are ±1 mod 8 multiply to a number
that is ±1 modulo 8.
Assume a ̸= 2; so, we write a = 2ep1p2 · · · pr where e = 0 or 1 and pi’s are
odd primes (and r ≥ 1). Start with ANY finite set of odd primes q1, · · · , qs
different from the pi’s. Fix a quadratic non-residue u mod p1. To ensure
that we obtain an odd positive integer which is a square modulo the qj ’s
and all the pi’s other than p1 while being a non-square mod p1, we simply
solve the CRT problem

b ≡ 1 mod 8p2p3 · · · prq1q2 · · · qs;

b ≡ u mod p1.

The odd number b = l1l2 · · · ln say. Note that(
a

b

)
=

(
2e

b

) r∏
i=2

(
pi
b

)(
p1
b

)
= −1
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by the properties of the Jacobi symbol.
By QRL,

−1 =

(
a

b

)
=

s∏
j=1

(
a

lj

)

which means

(
a
li

)
= −1 for some i. As li divides b which is coprime to the

qj ’s, we have produced new prime mod which a is a non-square. This proves
the assertion.
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2 Problems on QRL

The following problems are from the exercises following section 3.2 of NZM.

Exercise 17, section 3.2. If 19a2 ≡ b2 mod 7 for some integers a, b, we
claim that this congruence must hold modulo 72.
Indeed, if (7, a) = 1, then we would have 19 ≡ (a−1b)2 mod 7 which means(

19
7

)
= 1. This is clearly checked to not hold. Hence 7|a. Hence 7|b also.

So, we have 19a2 ≡ b2 mod 72.

Exercise 20, section 3.2. If x, y are integers, we shall show that x2−2
2y2+3

cannot be an integer.
Indeed, the denominator is an odd number which is either 3 or 5 mod 8.
Hence, it must have some prime divisor p ≡ ±3 mod 8. But such a prime
cannot divide the numerator as, otherwise, 2 would be a quadratic residue
mod p.

Exercise 22, section 3.2. If p is an odd prime not dividing ab, we show
that the number of solutions for x, y satisfying ax2 + by2 ≡ 1 mod p is

p−
(

−ab
p

)
.

For any solution x, y we have, mod p,

a2x2 ≡ a− aby2 = (−ab)(y2 − b−1).

That is,

(
−ab(y2−b−1)

p

)
= 1.

We have already counted the number of solutions (as y varies) earlier, and
have the expression

p−1∑
y=0

(
1 +

(
−ab

p

)(
y2 − b−1

p

))
.

As we have shown earlier that
∑p−1

y=0

(
y2−b−1

p

)
= −1 (since −b−1 is coprime

to p), we get the expression asserted.

Exercise 23, section 3.2. If a, b are positive integers, then we claim

[a/2]∑
r=1

[rb/a] +

[b/2]∑
s=1

[sa/b] = [a/2][b/2]− [GCD(a, b)/2].
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This is exactly similar to Eisenstein’s proof of QRL we discussed that used
counting lattice points excepting that we have two integers a, b that may
not be primes.
Look at the line ay = bx and we first look at all the lattice points (x, y)
with 1 ≤ x ≤ a/2 and 1 ≤ y ≤ b/2. These are clearly [a/2][b/2] in number.
Among them exactly [GCD(a, b)/2] lie on the line. The other lattice points
we counted are either below or above the line. Clearly, these are the two
sums on the LHS of our assertion.

.

2.1 More Problems on QRL

Exercise. If p is a prime such that a is not a multiple of p, we show that
the number of solutions mod p to the congruence ax2 + bx+ c ≡ 0 (mod p)

is equal to 1 +

(
b2−4ac

p

)
.

Note the particular case that x2 ≡ d mod p has 1 +

(
d
p

)
solutions.

We may consider odd p as p = 2 can be easily checked. Now, since (a, 4p) =
1, we have modulo p,

ax2 + bx+ c ≡ 0 ⇔ 4a(ax2 + bx+ c) ≡ 0

⇔ (2ax+ b)2 ≡ b2 − 4ac.

Thus, there are no solutions if b2−4ac is not a square mod p and 2 solutions
when it is a non-zero square, and exactly one solution when b2 − 4ac ≡ 0
mod p.

Exercise. For a prime p, we claim that
∑p−1

y=0

(
y2+a
p

)
equals p − 1 or −1

according as to whether p divides a or not.
We may assume p does not divide a; else, it is clear.
By the above exercise, the number of solutions of x2 ≡ y2 + a mod p is

1+

(
y2+a
p

)
. Therefore, varying y also, it follows that the number of solutions

in x, y of x2 − y2 ≡ a mod p is

p−1∑
y=0

(
1 +

(
y2 + a

p

))
= p+

p−1∑
y=0

(
y2 + a

p

)
.
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On the other hand, the number of solutions of x2 − y2 ≡ a is exactly p− 1
since this congruence is equivalent to uv ≡ a where u = x + y, v = x − y,
and since (a, p) = 1, each v ̸= 0 has exactly one u. Comparison of the

two expressions for the number of solutions proves
∑p−1

y=0

(
y2+a
p

)
equals −1

when (a, p) = 1.

Exercise. We prove that every prime p dividing a number of the form
n4 − n2 + 1 must be 1 mod 12.
Clearly, p must be odd first. Now, modulo p,

n4 − n2 + 1 ≡ 0 ⇔ 4n4 − 4n2 + 4 ≡ 0 ⇔ (2n2 − 1)2 ≡ −3.

So

(
−3
p

)
= 1. By QRL, this is equivalent to

(
p
3

)
= 1 which means p ≡ 1

mod 3.
Now, n4 ≡ n2 − 1 mod p implies n2 − 1 is a square mod p. But,

−1 ≡ n4 − n2 = n2(n2 − 1)

which means −1 is a square mod p. Hence p ≡ 1 mod 4 also; we get p ≡ 1
mod 12.

Exercise. Let D be an odd, square-free, positive integer. We show there

exists b such that

(
D
b

)
= −1.

Write D = [1· · · pr. Let u be a quadratic non-residue mod p1. By CRT,
choose an integer b satisfying

b ≡ 1 mod 4p2 · · · pr;

b ≡ u mod p1.

Clearly, (
b

D

)
=

r∏
i=1

(
b

pi

)
= −1

which gives

(
D
b

)
=

(
b
D

)
= −1.

Exercise∗.
The purpose of this exercise is to prove that a prime p which is 1 mod 4,
we have 2 to be a 4-th power modulo p, if and only if, p is expressible as
A2 + 64B2.
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Let p ≡ 1 mod 4 be a prime, and write p = a2 + b2 with a odd, say without
loss of generality.

Claim I.

(
a
p

)
= 1.

This is because p = a2 + b2 ≡ b2 mod a which gives the Jacobi symbol(
p
a

)
= 1. By QRL, we get

(
a
p

)
= 1.

Claim II.

(
a+b
p

)
= (−1)((a+b)2−1)/8.

Note that a+ b is odd and p ≡ 1 mod 4 which gives(
a+ b

p

)
=

(
p

a+ b

)
.

Now 2p = (a+ b)2 + (a− b)2 ≡ (a− b)2 mod a+ b. Hence(
2p

a+ b

)
=

(
2

a+ b

)(
p

a+ b

)
= 1.

Therefore, (
p

a+ b

)
=

(
2

a+ b

)
= (−1)((a+b)2−1)/8.

Claim III. (a+ b)(p−1)/2 ≡ (2ab)(p−1)/4.
This is immediate from (a+ b)2 ≡ 2ab mod p.
Claim IV. 2(p−1)/4 ≡ fab/2 where f2 ≡ −1.
Indeed, let f = ba−1 mod b, then f2 ≡ −1 since b2 ≡ −a2.
Also, since the LHS’s in claims II and III are the same modulo p, we get

(−1)((a+b)2−1)/8 ≡ (2ab)(p−1)/4.

LHS here is f ((a+b)2−1)/4 = f (p−1)/4fab/2, and
the RHS is 2(p−1)/4a(p−1)/2f (p−1)/4 after putting b ≡ af .
Therefore, since a(p−1)/2 ≡ 1 mod p by claim I, we get claim IV.
Finally, we note that 2 is a 4-th power mod p if, and only if, 2(p−1)/4 ≡ 1
mod p. This is if, and only if, fab/2 ≡ 1 mod p.
As f2 ≡ −1, the above happens if and only if, 4 divides ab/2. As a is odd,
this is equivalent to 8|b. This completes the characterization that 2 is a 4-th
power modulo a prime p ≡ 1 mod 4 if, and only if, p = a2 + 64B2.
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2.2 Greatest Integer Function

The ubiquitous functions x 7→ ⌊x⌋ and x 7→ ⌈x⌉ from the set of real numbers
to the set of integers are very useful in number theory. These are, respec-
tively, the largest integer that is at the most x and the smallest integer that
is at least x. The former is the one that occurs more often, and one often
writes [x] for it, and calls it informally ‘the greatest integer function’. We
will not have occasion to discuss ⌈x⌉ at this point. The definition of ]x]
is deceptively simple, its properties are very handy (for example, we have
already seen it appear in some proofs of the quadratic reciprocity law), and
there are many questions involving them that are difficult to answer. We
put together some of its basic properties that are less obvious on a first look
- these are left as easy exercises.

Some basic properties of [x]:

(i) [x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1.
(ii) [x] + [−x] = −1 if x is not an integer.
(iii) −[−x] = ⌈x⌉.
(iv) [x+ 1/2] is the nearest integer to x where the nearest is the larger one
in case of half-integers.
(v) −[−x+ 1/2] is the nearest integer to x where the nearest is the smaller
one in case of half-integers.

de Polignac’s formula. The power of a prime p dividing n! (denoted
vp(n!)) equals the sum

∑
r≥1[n/p

r].
Firstly, the note that the sum is a finite sum. The proof of the formula is
easy - observe that [n/a] counts the number of multiples of a from 1 to n;
therefore, the summands [n/p] + [n/p2] count the multiples of p2 once each
etc.

As an immediate application, we can see that the multinomial coefficient
n!

a1!a2!···ar! (where a1 + · · ·+ ar = n) is an integer - just observe that

r∑
i=1

[ai/p
k] ≤ [(a1 + · · ·+ ar)/p

k]

for all k.
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2.2.1 A few problems/properties involving [x]

1. The power of 10 dividing n! is v5(n!) for every n. In other words, we
have a formula for the number of zeroes that n! ends in.
This is obvious from de Polignac’s formula because if 5k and 2l are the pow-
ers of 5 and 2 (respectively) dividing n!, then k ≤ l.

2. Show, for all n ≥ 1, that

[
√
n+

√
n+ 1] = [

√
4n+ 1] = [

√
4n+ 2] =

√
4n+ 3].

As n <
√
n(n+ 1) < n+ 1, we get

2n < 2
√

(n(n+ 1) = (
√
n+

√
n+ 1)2 − (2n+ 1) < 2(n+ 1).

Thus,
4n+ 1 < (

√
n+

√
n+ 1)2 < 4n+ 3.

Taking square roots,

√
4n+ 1 <

√
n+

√
n+ 1 <

√
4n+ 3.

If m = [
√
4n+ 1], we have [

√
4n+ 3] < m + 1 because no perfect square

can be either of the form 4n + 2 or of the form 4n + 3. Thus, we have the
assertion.

5. For any positive integers 2 ≤ d ≤ n, consider the base d expansion of n;
say, n = a0 + a1d+ · · ·+ ard

r with 0 ≤ ai < d. Then, for all i ≥ 0,

ai = [n/di]− d[n/di+1].

In particular, if d = p, a prime, the power of p dividing n! equals
n−

∑r
i=0 ai

p−1 .
Thus, we may determine the power of a prime dividing n! in terms of the
sum of the base p digits of n.
The assertion giving the values of ai’s is easy to see. For the second assertion
when d = p, a prime, consider n −

∑
i≥0 ai and feed the values of ai from

the first assertion. We obtain

n =
∑
i

ai = (p− 1)([n/p] + [n/p2] + · · ·+ [n/pr])

which gives the assertion using de Polignac’s formula.
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3 Arithmetic Functions

Some examples of arithmetic functions are µ(n), ϕ(n), d(n), σ(n), σk(n), ω(n),Ω(n).
An arithmetic function f is multiplicative if it is not identically zero (equiv-
alently f(1) ̸= 0) and f(mn) = f(m)f(n) for all (m,n) = 1.
The functions µ(n), ϕ(n), d(n), σ(n), σk(n) are multiplicative. The proof is
by induction on the number of prime divisors and depends on the observa-
tion that divisors of mpr for (m, p) = 1 with p prime, are of the form dps

with d|m and 0 ≤ s ≤ r.
We leave it for you to write out; we will give a general proof that includes
all these cases.
The values of a multiplicative function are determined by the values at prime
powers. For prime powers, we have:

ϕ(pr) = pr(1− 1/p);

d(pr) = r + 1;

σk(p
r) =

pk(r+1) − 1

pk − 1
;

The proof of multiplicativity A function f is completely multiplicative if it
is not the zero function and f(mn) = f(m)f(n) for all m,n.
The k-th power function n 7→ nk is completely multiplicative.
The Liouville function

λ(

r∏
i=1

paii ) = (−1)a1+···+ar

is completely multiplicative.

3.1 Dirichlet Convolution

Given arithmetic functions f, g we have a “convolution product” defined by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
d|n

f(d)g(n/d).

Combining with the natural addition f + g, we have a commutative ring A
with unity. The multiplicative identity is the function I(n) = δ1,n; that is
f ∗ I = f for all f .

10



We show now that every arithmetic function f with f(1) ̸= 0 has a Dirichlet
inverse. In fact, clearly we may define the inverse f−1 recursively by

f−1(n) = − 1

f(1)

∑
d|n,d<n

f−1(d)f(n/d).

Rephrasing in terms of Dirichlet series

We shall study later series of the form
∑

n≥1
f(n)
ns in a complex variable and

f is an arithmetic function. The convolution f ∗ g of arithmetic functions
corresponds to the product of the corresponding series; that is,

F (s) :=
∑
n

f(n)

ns
, G(s) :=

∑
n

g(n)

ns

give

F (s)G(s) :=
∑
n

(f ∗ g)(n)
ns

.

The inclusion-exclusion principle.
By this title, we mean here the identity

∑
d|n µ(d) = I(n).

If n = 1, it is clear. Let n > 1 and write n =
∏r

i=1 p
ai
i where pi’s are distinct

primes. The divisors of n are of the form
∏

j∈J p
bj
j where J ⊂ {1, 2, · · · , r}

and bj ≤ aj for each j. Since µ vanishes on non-(square-free) numbers, the
sum ∑

d|n

µ(d) = µ(1) +

r∑
i=1

µ(pi) +
∑
i ̸=j

µ(pipj) + · · ·+ µ(p1p2 · · · pr)

=

(
r

0

)
−
(
r

1

)
+

(
r

2

)
− · · ·+

(
r

r

)
(−1)r = (1− 1)r = 0 = I(n).

Later, we will see the above from a general result.
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