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Ex. 30, section 1.2

If (v,y) = g,xy = b, then b = zy = (2, y)[z, y] = gz, y]. As g|[z,y], we
have ¢2|b.

Conversely, if g?h = b, take x = ¢,y = gh.

Ex. 32, section 1.2
n*—1=mn-1+1)%—-1=k(n—1)+ (n—1)% for some integer u.
Therefore, (n — 1)? divides n* — 1 if, and only if, (n — 1)]|k.

Ex. 46, section 1.2

If (a™ —b")|(a™ 4+ b"), then clearly a # b and we may assume (a,b) =1
because we may replace a and b by a/(a,b) and b/(a,b) respectively
(we may get the smaller number to be 1 when we do this). Now a" —b"
divides 2a™, 2b™ which implies it divides 2 as (a”,b") = 1.

Therefore, " —b" = (a—b)(a" ' +a"2b+---+0""1) = 1 or 2. But the
second factor is clearly > a+ b (as n > 1) which is > 3 asa > b > 1.
This is a contradiction of (a — b)(a™' +a" 20+ --- +b""') =1 or 2.

Ex. 47, section 1.2
Write a = gb+ r with ¢ > 0 and 0 < r < b. Then

2 1 =20 11 =272 — 1) + 2" + 1.

If 2° — 1 divides 2% + 1, then it divides 2" + 1; this implies 2 — 1 <
2" 4+ 1 < 2b=1 1. This is possible only when b = 2 whereas it is given
that a,b > 2.

Ex. 51, section 1.2
Let ¢ be any prime dividing a+ b and % = f;(l) aP~1="(—b)". Write
—b = qu + a. Then,
p—1 p—1 p—1
Z aP T (—b)" = Z a” " (qu+a)" = qu + Z a’™t = qu + paP?
r=0 r=0 r=0
for some integer v. As this is a multiple of g, it follows ¢ = p (otherwise,
qla and hence ¢|b which contradicts (a,b) = 1).
Now, we show that if p divides the GCD of a + b and “Zj:zp, then p?
does not divide this GCD. Indeed, similarly to the above argument,
writing —b = p*t +a, we have 372} a?~ 1" (=) == qu+ Y P2t a? ! =
1
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p?s 4 paP~! for some integer s. Thus, p? does not divide this because p
does not divide a?~*.

Ex. 53, section 1.2
'+ 1L, (n+)+1)=m0+1L(n+1)!—nl)=(n'+1nn)=1

Ex. 23, section 1.3

The given equations ad — bc = £1, u = am + bm,v = cm + dn imply
clearly that the GCD of m and n divides both u and v. Now, the
equations can also be rephrased in terms of matrices as

¢ ()=C)

where the 2 x 2 matrix has determinant +1. Inverting the matrix above,

we have
() ==(% ) C)
n —c a v
In other words, m = +(du — bv),n = £(—cu + av). Hence, the GCD
of v and v divides both m and n.

Ex. 26, section 1.3

For 4n + 3, 3,11 are the first two primes of this form, and consider
the first £ > 2 primes p; < ps < --- < pg of this form and consider
N =4ppy - - - pr. + 3. All its prime factors cannot be of the form 4m+1
9else, N itself would be of that form); hence there is a prime p > 3 of
the form 4m + 3 which divides N. Clearly, p # p1,-- - , p&.

Similarly, for 6n + 5, consider the first » > 2 primes ¢, - - , g, of this
form and M = 6q1q2 - - - ¢, + 5 is divisible by at least one prime ¢ > 5
of the form 6m + 5 (else all prime factors will be of the form 6m + 1
and so will M itself be). Then, ¢ # ¢; for all i <.

Ex. 27, section 1.3

If n > 4 is composite and p is the smallest prime dividing n, then
p < n/p. If p<n/p, then both of them occur separately as factors in
(n — 1)!. Hence, n|(n — 1)!. If p = n/p, then n = p>. Note that p is
odd as n > 4. But 2p also occurs as factor in (n —1)! = (p? — 1)! since
2p < p* —1as (p—1)? > 2. Therefore, again p? divides (n — 1)!.

Ex. 40, section 1.3

If N = (m+1)+-+ (m+n) = 22 with m > 0,n > 2,
then we will show N is not a power of 2. Indeed, if N = 2%, then
28+l = n(2m + n + 1) which means both n and 2m + n + 1 must be
powers of 2. Asn > 1, it must be even but then the number 2m-+n+1

is odd and cannot be a power of 2.
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Conversely, if N > 1 is not of the form 2*, then we will show it is
expressible as sum of two or more consecutive positive integers. Now,
there exists an odd prime dividing N and let p be the smallest such.
If N=p=2k+1say, then N=k+ (k+1). If N = pa with a > 1,
then either (p —1)/2 < a or (p —1)/2 > a (the latter happens only if
a is a power of 2 (otherwise, a > p as it has an odd prime factor). In
the first case, k = (p — 1)/2 < a and so,

po=2k+1la=(a—k)+---+(a—1)+a+(a+1)+ -+ (a+k).
If k= (p—1)/2 > a; that is, p > 2a + 1, then

_(p—2a+1 p—1 p+1 p+2a—1
ap—( 5 )—i— —|—< 5 + 5 +- 5 .

Ex. 48, section 1.3

F, =22 + 1 implies F, —2 = (22" )6 -1 = (Fp.y —1)> -1 =
anl(anl - 2)

In this manner, we obtain

Fy—2=F, 1Fy 5 F(F, —2).

Therefore, F,, is coprime to all the F,, for m < n (because a possible
common factor dividing them divides 2 and must be 1 as the numbers
are odd.

Ex. 19, section 1.4

I will leave it to students to work out a proof using generating functions,
and here I give another proof.

We assume n > 0 and prove that > ,_o (") (™" 7%) = 0. We will

observe that the sum can be viewed as (A™*!f)(0) for a polynomial
of degree m (and hence, must be 0). In fact, consider f(z) = (**").

Then, f(m+1—k) = (""""%). So, "

0= (A™1f)(0) = mf(—”k (m;j 1) (m +£ ! k)

k=0
Note that the sum is actually from k =0ton asm+n —k > m.

Ex. 21, section 1.4
Consider the polynomial f(z) = (%). Then,

T
n

Atz =n, we get Y,
On the other hand, ("}") =370, () (,%) = () + Xkt () (25)-



L 5 e,

So, we have limy_,q - ek
Taking x = n, we get the asserted identity.



