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Ex. 30, section 1.2
If (x, y) = g, xy = b, then b = xy = (x, y)[x, y] = g[x, y]. As g|[x, y], we
have g2|b.
Conversely, if g2h = b, take x = g, y = gh.

Ex. 32, section 1.2
nk − 1 = (n− 1 + 1)k − 1 = k(n− 1) + (n− 1)2u for some integer u.
Therefore, (n− 1)2 divides nk − 1 if, and only if, (n− 1)|k.
Ex. 46, section 1.2
If (an − bn)|(an + bn), then clearly a ̸= b and we may assume (a, b) = 1
because we may replace a and b by a/(a, b) and b/(a, b) respectively
(we may get the smaller number to be 1 when we do this). Now an−bn

divides 2an, 2bn which implies it divides 2 as (an, bn) = 1.
Therefore, an−bn = (a−b)(an−1+an−2b+ · · ·+bn−1) = 1 or 2. But the
second factor is clearly ≥ a + b (as n > 1) which is ≥ 3 as a > b ≥ 1.
This is a contradiction of (a− b)(an−1 + an−2b+ · · ·+ bn−1) = 1 or 2.

Ex. 47, section 1.2
Write a = qb+ r with q ≥ 0 and 0 ≤ r < b. Then

2a + 1 = 2qb+r + 1 = 2r(2qb − 1) + 2r + 1.

If 2b − 1 divides 2a + 1, then it divides 2r + 1; this implies 2b − 1 ≤
2r + 1 ≤ 2b−1 + 1. This is possible only when b = 2 whereas it is given
that a, b > 2.

Ex. 51, section 1.2
Let q be any prime dividing a+b and ap+bp

a+b
=

∑p−1
r=0 a

p−1−r(−b)r. Write
−b = qu+ a. Then,
p−1∑
r=0

ap−1−r(−b)r =

p−1∑
r=0

ap−1−r(qu+ a)r = qv +

p−1∑
r=0

ap−1 = qv + pap−1

for some integer v. As this is a multiple of q, it follows q = p (otherwise,
q|a and hence q|b which contradicts (a, b) = 1).
Now, we show that if p divides the GCD of a + b and ap+bp

a+b
, then p2

does not divide this GCD. Indeed, similarly to the above argument,
writing −b = p2t+ a, we have

∑p−1
r=0 a

p−1−r(−b)r == qv+
∑p−1

r=0 a
p−1 =

1
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p2s+ pap−1 for some integer s. Thus, p2 does not divide this because p
does not divide ap−1.

Ex. 53, section 1.2
(n! + 1, (n+ 1)! + 1) = (n! + 1, (n+ 1)!− n!) = (n! + 1, n!n) = 1.

Ex. 23, section 1.3
The given equations ad − bc = ±1, u = am + bm, v = cm + dn imply
clearly that the GCD of m and n divides both u and v. Now, the
equations can also be rephrased in terms of matrices as(

a b
c d

)(
m
n

)
=

(
u
v

)
where the 2×2 matrix has determinant ±1. Inverting the matrix above,
we have (

m
n

)
= ±

(
d −b
−c a

)(
u
v

)
.

In other words, m = ±(du − bv), n = ±(−cu + av). Hence, the GCD
of u and v divides both m and n.

Ex. 26, section 1.3
For 4n + 3, 3, 11 are the first two primes of this form, and consider
the first k ≥ 2 primes p1 < p2 < · · · < pk of this form and consider
N = 4p1p2 · · · pk+3. All its prime factors cannot be of the form 4m+1
9else, N itself would be of that form); hence there is a prime p > 3 of
the form 4m+ 3 which divides N . Clearly, p ̸= p1, · · · , pk.
Similarly, for 6n + 5, consider the first r ≥ 2 primes q1, · · · , qr of this
form and M = 6q1q2 · · · qr + 5 is divisible by at least one prime q > 5
of the form 6m + 5 (else all prime factors will be of the form 6m + 1
and so will M itself be). Then, q ̸= qi for all i ≤ r.

Ex. 27, section 1.3
If n > 4 is composite and p is the smallest prime dividing n, then
p ≤ n/p. If p < n/p, then both of them occur separately as factors in
(n − 1)!. Hence, n|(n − 1)!. If p = n/p, then n = p2. Note that p is
odd as n > 4. But 2p also occurs as factor in (n− 1)! = (p2 − 1)! since
2p ≤ p2 − 1 as (p− 1)2 ≥ 2. Therefore, again p2 divides (n− 1)!.

Ex. 40, section 1.3

If N = (m + 1) + · · · + (m + n) = n(2m+n+1)
2

with m ≥ 0, n ≥ 2,

then we will show N is not a power of 2. Indeed, if N = 2k, then
2k+1 = n(2m + n + 1) which means both n and 2m + n + 1 must be
powers of 2. As n > 1, it must be even but then the number 2m+n+1
is odd and cannot be a power of 2.



3

Conversely, if N > 1 is not of the form 2k, then we will show it is
expressible as sum of two or more consecutive positive integers. Now,
there exists an odd prime dividing N and let p be the smallest such.
If N = p = 2k + 1 say, then N = k + (k + 1). If N = pa with a > 1,
then either (p− 1)/2 ≤ a or (p− 1)/2 > a (the latter happens only if
a is a power of 2 (otherwise, a ≥ p as it has an odd prime factor). In
the first case, k = (p− 1)/2 ≤ a and so,

pa = (2k + 1)a = (a− k) + · · ·+ (a− 1) + a+ (a+ 1) + · · ·+ (a+ k).

If k = (p− 1)/2 > a; that is, p > 2a+ 1, then

ap =

(
p− 2a+ 1

2

)
+ · · ·+

(
p− 1

2

)
+

(
p+ 1

2

)
+ · · ·+

(
p+ 2a− 1

2

)
.

Ex. 48, section 1.3
Fn = 22

n
+ 1 implies Fn − 2 = (22

n−1
)6 − 1 = (Fn−1 − 1)2 − 1 =

Fn−1(Fn−1 − 2).
In this manner, we obtain

Fn − 2 = Fn−1Fn−2 · · ·F1(F1 − 2).

Therefore, Fn is coprime to all the Fm for m < n (because a possible
common factor dividing them divides 2 and must be 1 as the numbers
are odd.

Ex. 19, section 1.4
I will leave it to students to work out a proof using generating functions,
and here I give another proof.
We assume n > 0 and prove that

∑n
k=0

(
m+1
k

)(
m+n−k

m

)
= 0. We will

observe that the sum can be viewed as (∆m+1f)(0) for a polynomial
of degree m (and hence, must be 0). In fact, consider f(x) =

(
x+n−1

m

)
.

Then, f(m+ 1− k) =
(
m+n−k

m

)
. So,

0 = (∆m+1f)(0) =
m+1∑
k=0

(−1)k
(
m+ 1

k

)(
m+ n− k

m

)
.

Note that the sum is actually from k = 0 to n as m+ n− k ≥ m.

Ex. 21, section 1.4
Consider the polynomial f(x) =

(
x
n

)
. Then,

f ′(x) = lim
h→0

(
x+h
n

)
−
(
x
n

)
h

.

At x = n, we get
∑n

k=1
1
k
.

On the other hand,
(
x+h
n

)
=

∑n
k=0

(
h
k

)(
x

n−k

)
=

(
x
n

)
+
∑n

k=1

(
h
k

)(
x

n−k

)
.
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So, we have limh→0
(x+h

n )−(xn)
h

=
∑n

k=1
(−1)k−1

k

(
x

n−k

)
.

Taking x = n, we get the asserted identity.


