
Notes for 13-20 December, 2021

0.1 A few problems/properties involving [x]

1. The power of 10 dividing n! is v5(n!) for every n. In other words, we
have a formula for the number of zeroes that n! ends in.
This is obvious from de Polignac’s formula because if 5k and 2l are the pow-
ers of 5 and 2 (respectively) dividing n!, then k ≤ l.

2. Show, for all n ≥ 1, that

[
√
n+

√
n+ 1] = [

√
4n+ 1] = [

√
4n+ 2] =

√
4n+ 3].

As n <
√
n(n+ 1) < n+ 1, we get

2n < 2
√

(n(n+ 1) = (
√
n+

√
n+ 1)2 − (2n+ 1) < 2(n+ 1).

Thus,
4n+ 1 < (

√
n+

√
n+ 1)2 < 4n+ 3.

Taking square roots,
√
4n+ 1 <

√
n+

√
n+ 1 <

√
4n+ 3.

If m = [
√
4n+ 1], we have [

√
4n+ 3] < m + 1 because no perfect square

can be either of the form 4n + 2 or of the form 4n + 3. Thus, we have the
assertion.

5. For any positive integers 2 ≤ d ≤ n, consider the base d expansion of n;
say, n = a0 + a1d+ · · ·+ ard

r with 0 ≤ ai < d. Then, for all i ≥ 0,

ai = [n/di]− d[n/di+1].

In particular, if d = p, a prime, the power of p dividing n! equals
n−

∑r
i=0 ai

p−1 .
Thus, we may determine the power of a prime dividing n! in terms of the
sum of the base p digits of n.
The assertion giving the values of ai’s is easy to see. For the second assertion
when d = p, a prime, consider n −

∑
i≥0 ai and feed the values of ai from

the first assertion. We obtain

n =
∑
i

ai = (p− 1)([n/p] + [n/p2] + · · ·+ [n/pr])

which gives the assertion using de Polignac’s formula.
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1 Arithmetic Functions

Some examples of arithmetic functions are µ(n), ϕ(n), d(n), σ(n), σk(n), ω(n),Ω(n).
An arithmetic function f is multiplicative if it is not identically zero (equiv-
alently f(1) ̸= 0) and f(mn) = f(m)f(n) for all (m,n) = 1.
The functions µ(n), ϕ(n), d(n), σ(n), σk(n) are multiplicative. The proof is
by induction on the number of prime divisors and depends on the observa-
tion that divisors of mpr for (m, p) = 1 with p prime, are of the form dps

with d|m and 0 ≤ s ≤ r.
We leave it for you to write out; we will give a general proof that includes
all these cases.
The values of a multiplicative function are determined by the values at prime
powers. For prime powers, we have:

ϕ(pr) = pr(1− 1/p);

d(pr) = r + 1;

σk(p
r) =

pk(r+1) − 1

pk − 1
;

The proof of multiplicativity A function f is completely multiplicative if it
is not the zero function and f(mn) = f(m)f(n) for all m,n.
The k-th power function n 7→ nk is completely multiplicative.
The Liouville function

λ(

r∏
i=1

paii ) = (−1)a1+···+ar

is completely multiplicative.

1.1 Dirichlet Convolution

Given arithmetic functions f, g we have a “convolution product” defined by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
d|n

f(d)g(n/d).

Combining with the natural addition f + g, we have a commutative ring A
with unity. The multiplicative identity is the function I(n) = δ1,n; that is
f ∗ I = f for all f .
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We show now that every arithmetic function f with f(1) ̸= 0 has a Dirichlet
inverse. In fact, clearly we may define the inverse f−1 recursively by

f−1(n) = − 1

f(1)

∑
d|n,d<n

f−1(d)f(n/d).

Rephrasing in terms of Dirichlet series

We shall study later series of the form
∑

n≥1
f(n)
ns in a complex variable and

f is an arithmetic function. The convolution f ∗ g of arithmetic functions
corresponds to the product of the corresponding series; that is,

F (s) :=
∑
n

f(n)

ns
, G(s) :=

∑
n

g(n)

ns

give

F (s)G(s) :=
∑
n

(f ∗ g)(n)
ns

.

The inclusion-exclusion principle.
By this title, we mean here the identity

∑
d|n µ(d) = I(n).

If n = 1, it is clear. Let n > 1 and write n =
∏r

i=1 p
ai
i where pi’s are distinct

primes. The divisors of n are of the form
∏

j∈J p
bj
j where J ⊂ {1, 2, · · · , r}

and bj ≤ aj for each j. Since µ vanishes on non-(square-free) numbers, the
sum ∑

d|n

µ(d) = µ(1) +

r∑
i=1

µ(pi) +
∑
i ̸=j

µ(pipj) + · · ·+ µ(p1p2 · · · pr)

=

(
r

0

)
−
(
r

1

)
+

(
r

2

)
− · · ·+

(
r

r

)
(−1)r = (1− 1)r = 0 = I(n).

Later, we will see the above from a general result.
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1.2 A few problems/properties involving [x]

1. The sequence [n+
√
n+1/2] takes exactly all the non-squares as values.

Proof.
Put an = [n+

√
n+ 1

2 ]. Then an increases and an2 = n2+n. Hence, consider
the integers in the range

an2 + 1 ≤ x < a(n+1)2 ;

that is, in n2 + n+ 1 ≤ x ≤ (n+ 1)2 + (n+ 1)− 1 = n2 + 3n+ 1.
There are 2n+1 natural numbers in this range and this includes the 2n val-
ues an2+1, · · · , a(n+1)2−1 = an2+2n. This range contains exactly one perfect
square; viz. (n+1)2. Thus, to show that the set if values of the sequence is
precisely the set of perfect squares, it suffices to show that a value not taken
by the sequence {an} is a square.
Now, if m is a natural number missed by the sequence, then an < m < an+1.
The first inequality an < m implies n+

√
n+ 1

2 < m.
The second inequality m < an+1 gives

m ≤ an+1 − 1 = [n+
√
n+ 1 +

1

2
] ≤ n+

√
n+ 1 +

1

2
.

Thus,

n+
√
n+

1

2
< m ≤ n+

√
n+ 1 +

1

2
.

So,
√
n < m− n− 1

2
≤

√
n+ 1

which gives

n < (m− n)2 +
1

4
−m+ n ≤ n+ 1.

Hence.

−1

4
< (m− n)2 −m ≤ 3

4

which forces (m− n)2 = m.

2. (Beatty’s theorem.)
Let α, β be fixed positive real numbers, and consider the integers of the form
[αn] and βn] as n varies over positive integers. Then, this is exactly the set
of all positive intgers, each occurring precisely once, if and only if, 1

α+
1
β = 1

and α, β are irrational.
Samuel Beatty was the only doctoral student of Fields.
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Beatty sequences are also sometimes called Rayleigh’s sequences because one
of his theorems states that when a constraint is introduced to a vibrating
system, the new frequencies of vibration interleave the old frequencies.
The Beatty sequences when α is the golden ratio gives a strategy for Wythoff’s
game that we mentioned earlier.
Proof.
Assume first that α, β are irrational, positive, real numbers satisfying 1/α+
1/β = 1. Therefore, (α− 1)(β − 1) = 1.
We will show that each positive integer occurs exactly once among the union

{[αn] : n ∈ N} ∪ {[βn] : n ∈ N}.

We do this by giving explicitly an ordering of this union which will make it
clear. Consider all fractions of the form u/α and v/β as u, v run through
the positive integers. Firstly, we observe that they are all distinct; indeed,
if u/α = v/β, then u/v = α/β = α− 1 which is irrational, which leads to a
contradiction.
Now, let us find the number of fractions smaller than a particular v/β. The
fractions of the form u/α < v/β are clearly [vα/β] in number. Thus, as it
is the v-th among fractions of the form a/β, the position of v/β among all
the fractions considered is

[vα/β] + v = [v(α− 1)] + v = [vα].

Similarly, the position of u/α is [uβ]. Therefore, every positive integer has
a unique position given explicitly as above.
Conversely, suppose α, β are positive real numbers such that every positive
integer occurs precisely once among the union

{[αn] : n ∈ N} ∪ {[βn] : n ∈ N}.

We claim 1/α + 1/β = 1 and that they are irrational. In fact, the first
assertion would imply the second because if α is rational, then so is β =
α/(α− 1), and [nα] and [nβ] cannot cover all positive integers.
To show 1/α + 1/β = 1, the most natural proof is to look at densities of
sequences.
A sequence {an} of positive integers is said to possesses a natural density δ

if #({an}≤N)
N → δ as N → ∞.

For any positive real α, the number

N(α) := #{[nα] ≤ N}
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is easily seen to satisfy[
N + 1

α

]
− 1 ≤ N(α) <

[
N + 1

α

]
where equality can occur only when α is rational. Note that the above
inequalities show that the sequence [nα] has density 1/α. Thus, as they
disjointly cover all positive integers, we have 1/α+ 1/β = 1.
Further, α, β must be irrational.
Remark. A beautiful interpretation of Beatty’s theorem is given in the
American Math Monthly paper by Ginosar and Yona in Volume 119, Octo-
ber 2012.

3. (This is problem 37 after section 4.1 in NZM but was originally a prob-
lem in USAMO 1981): For any real x and positive integer n, prove that∑n

k=1[kx]/k ≤ [nx].
Firstly, it is clear that the subtlety is in the RHS being [nx] because LHS ≤∑n

k=1 kx/k = nx.
As the LHS is not an integer, the problem is more difficult.
The proof goes as follows. We apply induction on n and as the proof is clear
for n = 1, we fix n > 1 and assume the result for each r < n.
Let xn denote the maximum among the rational numbers [kx]/k; then,
xn = [n0x]/n0 where n0 is the smallest such among 1, 2, · · · , n.
Now kxn ≥ [kx] which means [kxn] ≥ [kx] for all k ≤ n.
On the other hand, x = n0x/n0 ≥ [n0x]/n0 = xn for all k ≤ n. Thus,
kx ≥ kxn which gives the other inequality [kx] ≥ [kxn] for each k ≤ n.
Therefore, we have

[kx] = [kxn] ∀ k ≤ n · · · · · · · · · (♠).

If n0|n, we are already done because in that case nxn is an integer as n0xn
is, and then

[nx] = [nxn] = nxn ≥
n∑

k=1

[kx]/k.

Assume n ≡ r mod n0 with 0 < r < n0, and we will use the induction
hypothesis for r.
We claim that xn is the smallest number satisfying (♠). Let y < xn. Then
n0y < n0xn = [n0x] which gives [n0y] < [n0x] which means y does not
satisfy (♠) for k = n0.
Now, recall we have n ≡ r mod n0 where 0 < r < n0. Now, n − r being a
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multiple of n0, (n− r)xn is an integer, Hence

[nx] = [nxn] = [rxn + (n− r)xn] = [rxn] + (n− r)xn.

In order to use the induction hypothesis that [rxn] ≥
∑r

k=1[kx]/k, we rewrite
the last expression on the right in terms of the difference [rxn]−

∑r
k=1[kx]/k.

We have

[nxn] = [rxn]+(n−r)xn = [rxn]−
r∑

k=1

[kxn]/k+
n∑

k=r+1

{kxn}/k+
n∑

k=1

[kxn]/k ≥
n∑

k=1

[kxn]/k.

Therefore,

[nx] = [nxn] ≥
n∑

k=1

[kxn]/k =

n∑
k=1

[kx]/k.

4. Exercise 36 after section 4.1 of NZM.
Prove

LCM(1, 2, · · · , n+ 1) = (n+ 1)LCM(

(
n

1

)
,

(
n

2

)
, · · · ,

(
n

n

)
).

Solution.
Firstly, (n + 1)

(
n
r

)
= (r + 1)

(
n+1
r+1

)
which means r + 1 divides RHS above.

Hence, in the asserted equality, the LHS divides the RHS.
For the converse, we present a beautiful proof by Mohan Nair.
In the next property below, we give another proof which was also used to
prove a prime number estimate.
We will show that (r + 1)

(
n+1
r+1

)
divides the LHS LCM(1, 2, · · · , n+ 1).

Fix n. For each r ≤ n, consider the definite integral

I(r) =

∫ 1

0
xr(1− x)n−rdx.

Using the binomial expansion for (1− x)n−r, we will obtain

I(r) =
n−r∑
j=0

(−1)j
(
n− r

j

)
1

r + j + 1
.

Therefore, LCM (1, 2, · · · , n + 1)I(r) ∈ Z. On the other hand, using the
so-called Beta-Gamma identity (look up the formula and accept it without
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proof for now!) and using the fact that Γ(d) = (d−1)! for a positive integer,
we have

I(r) = β(r+1, n−r+1) =
Γ(r + 1)Γ(n− r + 1)

Γ(n+ 2)
=

(r!)(n− r)!

(n+ 1)!
=

1

(r + 1)
(
n+1
r+1

) .
Hence, since LCM(1, 2, · · · , n + 1)I(r) ∈ Z, we have that this LCM is a
multiple of (r + 1)

(
n+1
r+1

)
for each r ≤ n.

5. Here is a property involving the ceiling function ⌈x⌉:
(a) ⌈n/2⌉

(
n

⌈n/2⌉
)
> 2n if n > 6.

(b) Further, lcm(1, 2, . . . , n) = lcm

(
2
(
n
2

)
, 3
(
n
3

)
, . . . , n

(
n
n

))
.

Therefore, lcm(1, 2, . . . , n) > 2n for n > 6.
Note that on changing n to n+ 1 in (b), this is just the previous exercise.

Proof.
The property (a) follows easily by induction on n > 6. For n = 7, we have
4
(
7
4

)
= 140 > 27. We assert

(n+ 1)

(
2n+ 2

n+ 1

)
= 2(n+ 1)

(
2n+ 1

n+ 1

)
,

(n+ 2)

(
2n+ 3

n+ 2

)
> 4(n+ 1)

(
2n+ 1

n+ 1

)
.

These are easy to see and imply that the assumption (n+1)
(
2n+1
n+1

)
> 22n+1

leads to the conclusion ⌈n/2⌉
(

n
⌈n/2⌉

)
> 2n for n > 6.

For (b), we make use of the little observation below that interprets the power
of a prime dividing the lcm being considered:
For a natural number n, if pa is the highest power of a prime p dividing
lcm(1, 2, . . . , n), then pa ≤ n < pa+1. In other words, a+1 is the number of
digits of n when written in base p.
Indeed, consider any prime p dividing lcm(1, 2, . . . , n); then p ≤ n. If a is the
largest integer so that pa ≤ n, then pa evidently divides lcm(1, 2, . . . , pa, . . . , n).
As the power of p dividing lcm(1, 2, . . . , n) is the maximum of the powers
of p dividing the numbers 1, 2, . . . , n, it follows that pa+1 does not divide
lcm(1, 2, . . . , n) as n < pa+1. Thus, pa ≤ n < pa+1 clearly implies that the
number of digits of n written in base p is a+ 1.
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Finally, to prove (b), firstly, it is evident that left-hand side is at most equal
to the right-hand side because each of 2, 3, . . . , n divides the numbers on the
right-hand side whose least common multiple is being considered.
To prove the other inequality, we will prove that the power of p dividing
r
(
n
r

)
for any 0 < r < n is less than the number a+ 1 of digits of n in base p

(and, hence, is at most a). This will imply our assertion. We use the Kum-
mer formula asserting that the power of p dividing a binomial coefficient

(
n
r

)
(0 < r < n) is the number of carry-overs while adding r and n − r written
in base p.

Write
r = ∗ ∗ · · · ∗ 0 · · · 0

in base p where there are precisely u ≥ 0 zeros at the end.

Next, observe that if n = r+(n− r) in base p and n has a+1 digits in base
p, then at most a of those digits incorporate a carry, since the top digit does
not incorporate a carry. As r ends in precisely u zeros in base p, those u
places do not propagate carries, and the first digit of n that includes a carry
from earlier places is place u+ 1 or later. Thus, the number of carries is at
most a− u. So, the power of p in r

(
n
r

)
is at most u+ (a− u) = a, and the

proof is complete.

2 Arithmetic Functions, Möbius inversion.

Lemma. If f, g are multiplicative, then so is f ∗ g. Conversely, if f, g are
arithmetic functions such that f ∗g and one of f, g are multiplicative, then so
is the other. In particular, the Dirichlet inverse of a multiplicative function
is also multiplicative. That is, the set of multiplicative functions forms a
subgroup of the group A∗ of units.
Proof.
The proof is very simple. Assume f, g are multiplicative and consider h =
f ∗ g. Let (m,n) = 1. Then

h(mn) =
∑
d|mn

f(d)g(mn/d).
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Each divisor d of mn is uniquely expressible as d = ab, with a unique a|m
and a unique b|n because (m,n) = 1. Hence,

h(mn) =
∑

a|m,b|n

f(ab)g(mn/ab) = (
∑
a|m

f(a)g(m/a))(
∑
b|n

f(b)g(n/b)) = h(m)h(n).

We used the fact that (m/a, n/b) = 1 and that f, g are multiplicative.

Now, we consider f, g such that g and f ∗ g are multiplicative (note that ∗
is commutative and the assumption is without loss of generality).
We show f(mn) = f(m)f(n) for co-prime m,n by induction on mn.
If mn = 1, then m = n = 1 and we have

1 = h(1)) = f(1)g(1) = f(1)

which gives f(mn) = f(1) = f(1)2 = f(m)f(n).
Let mn > 1 and assume that f(ab) = f(a)f(b) for all co-prime a, b such
that ab < mn. Now

h(mn) =
∑

a|m,b|n

f(ab)g(mn/ab) =
∑

a|m,b|n,ab<mn

f(ab)g(mn/ab) + f(mn)g(1)

=
∑

a|m,b|n,ab<mn

f(a)f(b)g(mn/ab) + f(mn).

We have used the fact that f(ab) = f(a)f(b) when ab < mn.
Clearly, by the multiplicativity of g, the last sum equals

(
∑
a|m

f(a)g(m/a))(
∑
b|n

f(b)g(n/b))− f(m)f(n) + f(mn).

That is,
h(mn) = h(m)h(n)− f(m)f(n) + f(mn).

As h is multiplicative, this forces f(mn) = f(m)f(n).

Finally, the fact that the Dirichlet inverse of a multiplicative function f is
multiplicative follows from the previous assertion because f ∗ f−1 = I is a
multiplicative function where the identity I(n) = δ1,n.
The proof is complete.

Corollary. An arithmetic function f is multiplicative if, and only if, g(n) :=∑
d|n f(d) is.
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Proof.
We note that g = f ∗1 where 1 is the constant function 1 which is evidently
multiplicative.

Remark.
For a completely multiplicative function f (that is, f(mn) = f(m)f(n) for
all m,n), the Dirichlet inverse is simply f−1(n) = µ(n)f(n). This is checked
by using the above inclusion-exclusion principle.

Möbius inversion formula

For an arbitrary arithmetic function f (not necessarily multiplicative), we
have g(n) =

∑
d|n f(d) if, and only if, f(n) =

∑
d|n g(d)µ(n/d).

Proof.
The assertion is equivalent to showing g = f ∗ 1 if, and only if, f = g ∗ µ.
Clearly, the inclusion-exclusion principle above asserts that µ ∗ 1 = I; that
is, the Dirichlet inverse of µ is 1.

2.1 Some examples of Möbius inversion formulae

1
The Möbius inversion formula also has a multiplicative version which can
be proved using the same ideas but can also be deduced by considering
logarithms when the function is positive. The assertion is:
If f(n) > 0 for all n, we have

g(n) =
∏
d|n

f(d) ⇔ f(n) =
∏
d|n

g(d)µ(n/d).

As a consequence, we have the cyclotomic polynomial expressed as

Φn(x) =
∏
d|n

(xd − 1)µ(n/d).

More generally, let a(n) be a real-valued arithmetic function with a(1) ̸= 0,
and let b(n) be its Dirichlet inverse. Then,

g(n) =
∏
d|n

f(d)a(n/d) ⇔ f(n) =
∏
d|n

g(d)b(n/d).

2. ϕ(n) =
∑

d|n dµ(n/d) = n
∑

d|n µ(d)/d; that is, ϕ = Id ∗ µ where Id is
the identity function. Cautionary note: The identity function is NOT the
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identity in the ring A.
Indeed, counting the n-th roots of unity according to their orders, we have
n =

∑
d|n ϕ(d); that is Id = ϕ ∗ 1. Since µ−1 = 1, we have the identity.

By the way, here is another way to see
∑

d|n ϕ(d) = n. Count the n fractions
1/n, 2/n, · · · , n/n in their reduced forms. Clearly, those with a particular
denominator d|n are exactly ϕ(d) in number!

3. The Liouville function λ satisfies
∑

d|n λ(d) = sq(n), where sq(n) = 1 if
n is a perfect square, and 0, otherwise. The Dirichlet inverse of λ is |µ|.
As the LHS

∑
d|n λ(d) is multiplicative, we may calculate it by computing

on prime powers. We obtain the value at pa to be 0 or 1 according as to
whether a is odd or even. This clearly gives the value at any n to be 0 if n
is not a perfect square and the value 1 when n is a square.
Finally, by complete multiplicativity of λ, we have λ−1(n) = µ(n)λ(n). But,
evidently

µ(n)(λ(n)− µ(n)) = 0.

Therefore µ(n)λ(n) = µ(n)2 = |µ(n)|.

4. The Dirichlet inverse of σr is given by σ−1
r (n) =

∑
d|n d

rµ(d)µ(n/d).
In fact, σr = Nr ∗ 1 where Nr is the r-th power map. Therefore,

σ−1
r = 1−1 ∗N−1

r = µ ∗ (µNr)

because Nr is completely multiplicative.

5. Define the von Mangoldt function Λ by Λ(n) = log p if n is a power
of p, and equals 0 otherwise. Then, Λ(n) =

∑
d|n µ(d) log(n/d); that is,

Λ = log ∗µ.
(Recall that we had used this identity while discussing a geometric problem
that involved cyclotomic polynomials.)
Indeed, if n =

∏r
i=1 p

ai
i , taking logarithms gives us

log n =

r∑
i=1

ai log pi.

Now,
∑

d|n Λ(d) =
∑

pki |n
log pi =

∑r
i=1 ai log pi because the powers of pi

dividing n are 1, 2, · · · , ai which are ai in number.
Thus,

log n =
∑
d|n

Λ(d)

which means log = Λ ∗ 1. Therefore, Λ = log ∗µ.
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A beautiful geometric application.
Let n > 1 and let P1, · · · , Pn be points on a circle of radius 1 dividing the cir-
cumference into n equal parts. Then, the product of lengths

∏
(l,n)=1,l<n |P1Pl+1| =

p or 1 accordingly as to whether n = pk for a prime p or n is not a power
of a prime.
To answer this, we may assume that the origin is the center and that points
are Pd+1 = e2idπ/n for d = 0, 1, · · · , n− 1. Note that the product of lengths
of all the chords P1Pi is simply

∏n−1
d=1 |1 − e2idπ/n|. Since the polynomial

1+X + · · ·+Xn−1 has as roots all the n-th roots of 1 excepting 1 itself, we
have

n−1∏
d=1

(1− e2idπ/n) = n

by evaluating at X = 1. Notice that we have the equality
∏n−1

d=1 (1 −
e2idπ/n) = n as complex numbers; that is, even without considering ab-
solute values.
Now, let us consider our problem. Here, the product under consideration is∏

(d,n)=1

|1− e2idπ/n|.

Writing P (n) =
∏n−1

l=1 (1−ζ l) and Q(n) =
∏

(d,n)=1(1−ζd), where ζ = e2iπ/n,
we can see that

P (n) =
∏
r|n

Q(r).

By Möbius inversion, Q(n) =
∏

d|n P (d)µ(n/d) =
∏

d|n d
µ(n/d) by the simpler

first assertion observed at the beginning of the pr of the proposition. The
function

logQ(n) =
∑
d|n

µ(n/d) log(d)

can be identified with the so-called von Mangoldt function Λ(n) which is
defined to have the value log(p) if n is a power of p and 0 otherwise. Using
this identification, exponentiation gives also the value asserted in the propo-
sition; viz., Q(n) = p or 1 according as to whether n is a power of a prime
p or not.
To see why Λ(n) =

∑
d|n µ(n/d) log(d), we write n =

∏
p|n p

vp(n) and note
that

log(n) =
∑
p|n

vp(n) log(p)

13



But, the right hand side is clearly
∑

d|n Λ(d). Hence, Möbius inversion yields

Λ(n) =
∑
d|n

log(d)µ(n/d).

14



2.2 Exercises on arithmetic functions

• Prove n
ϕ(n) =

∑
d|n

µ2(d)
ϕ(d) .

Solution.
As the function µ2(n)/ϕ(n) is multiplicative, (and so is the LHS), we need
to check the identity on prime powers only. But,
RHS(pr) =

∑1
k=0 µ

2(pk)/ϕ(pk) = 1 + 1/(p− 1) = 1
1−1/p = LHS(pr).

• Prove that
∑

dk|n µ(d) = 0 if mk|n for some m > 1, and = 1 otherwise.

In particular, for k = 2, we get the RHS to be µ2(n).
Solution.
If mk|n implies m = 1, then the value is clearly 1. Suppose now that mk|n
for some m > 1 and we write

n = pa11 · · · parr qb11 · · · qbss = PQ

say, where 0 < ai < k; bi ≥ k and P =
∏

i p
ai
i , Q =

∏
j q

bj
j . Then, the sum is∑

dk|PQ

µ(d) =
∑

dk1 |P,dk2 |Q

µ(d1d2)

since (P,Q) = 1. Therefore, only terms with d1 = 1 survive and the sum
equals ∑

dk2 |Q

µ(d2) =
∑

kcj≤bj

µ(
∏
j

q
cj
j )

=
∑

cj=0,1

∏
j

µ(q
cj
j ) =

∏
j

(µ(1) + µ(qj)) = 0.

• Prove that
∑

d|n µ(d) log
m(d) = 0 if m ≥ 1 and n has more than m distinct

prime factors.
Solution.
We apply induction on m ≥ 1. If m = 1 and n has at least two prime factors,
then

∑
d|n µ(d) log(d) = Λ(n) = 0. Assume m > 1 and that the result holds

for m − 1. Let n = kpr with (p, k) = 1, ω(n) > m; that is, ω(k) > m − 1.
Then, ∑

d|n

µ(d) logm(d) =
∑

d1|k,d2|pr
µ(d1)µ(d2) log

m(d1d2)

15



in which only the terms corresponding to d2 = 1, p survive. Therefore, the
sum is∑
d1|k

µ(d1)

(
µ(1) logm(d1)+µ(p) logm(d1p)

)
=

∑
d1|k

µ(d1)

(
log(d1)

m−(log(d1)+log(p))m
)

= −
∑
d1|k

µ(d1)

((
m

1

)
log(d1)

m−1 log(p) + · · ·+
(
m

m

)
log(p)m

)
= 0

where the last equality is by induction hypothesis since ω(k) > m− 1.

• Prove that
∏

t|n t = nd(n)/2.
Solution. Combine each d|n with n/d.

• Prove
∑

r|n d(r)
3 =

(∑
r|n d(r)

)2

.

Solution.
As the functions appearing in the sums are multiplicative, it suffices to check
the identity for prime powers. Then

∑
r|pk

d(r)3 =
k∑

l=0

d(pl)3 =
k∑

l=0

(l + 1)3

= 13 + 23 + · · ·+ (k + 1)3 = (1 + 2 + · · ·+ (k + 1))2 =

(∑
r|pk

d(r)

)2

.

• Let ϕk(n) denote the sum of the k-th powers of the numbers ≤ n and
coprime to n. Note ϕ0 = ϕ, Prove

∑
d|n

ϕk(d)

dk
=

1k + 2k + · · ·+ nk

nk
.

Solution.
Express each rk

nk as a reduced fraction. If (r, n) = d, then writing r =

dR, n = dN , we have rk

nk = Rk

Nk in reduced form. As R ≤ N, (R,N) = 1,

there are exactly ϕ(N) fractions in reduced form with denominator Nk. As
N runs through the divisors of n, we get the asserted equality.

• Prove that an even number is perfect if, and only if, it is of the form
2p−1(2p − 1) where 2p − 1 is prime.

16



Solution.
It is easy to see that if 2p − 1 is prime, then p is prime and

σ(2p−1)σ(2p − 1) = (2p − 1)2p

which shows that 2p−1(2p− 1) is perfect. This was known to Euclid’s school
already! For the converse proved by Euler, assume n = 2am is perfect where
a > 0 and m is odd. Obviously m > 1 as 2a cannot be perfect. We are given

2a+1m = σ(2am) = (2a+1 − 1)σ(m).

Thus, since 2a+1 and 2a+1 − 1 are co-prime, we have 2a+1 − 1 divides m.
Write

m = (2a+1 − 1)M.

Then, 2a+1M = σ(m) = σ((2a+1 − 1)M).
If M > 1, then m would have distinct divisors 1,M, 2a+1−1,m and perhaps
other divisors. So, we would have

σ(m) ≥ 1+M+(2a+1−1)+(2a+1−1)M = 2a+1M+2a+1 > 2a+1M = σ(m),

a contradiction. Hence M = 1; so, m = 2a+1 − 1 and σ(m) = 2a+1 = m+ 1
which means m must be prime.

• Prove that f(n) = [
√
n] − [

√
n− 1] is a multiplicative function which is

not completely multiplicative.
Solution.
If n is not a perfect square, say r <

√
n < r + 1, then r ≤

√
n− 1, which

shows f(n) = 0. If n is a perfect square, clearly f(n) = 1. Obviously, f is
multiplicative.
As f(p2) = 1 ̸= 0 = f(p)2 for any prime p, it is not completely multiplicative.

17



• A result due to Erdős:
If g is totally multiplicative, f(1) ̸= 0 and monotonically increasing, then
there exists a constant c ≥ 0 such that g(n) = nc for all n.
To see this, it is convenient to call an arithmetic function f totally additive
if f(mn) = f(m) + f(n) for all m,n. If we show that any totally additive,
monotonically increasing function f must admit a constant c ≥ 0 satisfying
f(n) = c log(n) for all n, then g(n) = ef(n) would satisfy the assertion. So,
we prove the additive version below.
Let p ̸= q be primes. We can find infinite sequences {an} and {bn} of positive
integers such that

pan < qbn < pan+1.

So, an log(p) < bn log(q) < (an + 1) log(p) ∀ n ≥ 1; and hence

an
bn

<
log(q)

log(p)
<

an
bn

+
1

bn
.

Therefore, the sequence an/bn converges to log(q)/ log(p). As f is totally
additive, and monotonically increasing, the inequalities pan < qbn < pan+1

imply
anf(p) < bnf(q) < (an + 1)f(p) ∀ n ≥ 1.

Thus, the sequence an/bn converges also to f(q)/f(p). Hence, we have
obtained

f(p)

f(q)
=

log(p)

log(q)

for any two distinct primes p ̸= q. Fixing one of them, say q = 2, we
get f(p) = c log(p) where c = f(2)/ log(2). As p is arbitrary, and c is
independent of it, the total additivity shows f(n) = c log(n) for all n.
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3 Binary Recurrences

The Fibonacci sequence is ubiquitous in the scientific world, right from the
petals of a sunflower to strategies for two-person games. This sequence is
defined by the recursion:

Fn+2 = Fn+1 + Fn ∀ n ≥ 0

and the initial values F0 = 0, F1 = 1. The first few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·

Given a similar recurrence un+2 = aun+1 + bun+1 for some fixed constants
a, b and initial values u1, u2, can the sequence {un} be determined in closed
form? Indeed, not only can this recursion be solved, the method can treat
any linear recursion

un+k = akun+k−1 + · · ·+ a1un

with constants ai’s and k initial values u0, · · · , uk−1. The method is simple,
and depends on the roots of the so-called ‘characteristic polynomial’ of the
recurrence:

p(x) = xk − akx
k−1 − · · · − a2x− a1.

Note that if u is a root of p(x), then un := un is a sequence that solves the
recurrence because

uk = aku
k−1 + · · ·+ a1

implies
un+k = aku

n+k−1 + · · ·+ a1u
n.

We will just discuss recurrences of order 2; that is, k = 2. The characteristic
polynomial of the recurrence un+2 = aun+1 + bun is

p(x) = x2 − ax− b.

Wemay assume b ̸= 0; otherwise, clearly the recurrence is simply a geometric
progression. The polynomial p(x) has roots u, v say.
Case I. Suppose first u ̸= v.
Then, we claim that every sequence {un} solving the recurrence can be
written as un = sun + tvn for all n, where the constants s, t are determined
by the two equations

u0 = s+ t;
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u1 = su+ tv.

This is the matrix equation

(
1 1
u v

)(
s
t

)
=

(
u0
u1

)
.

Evidently, there is a unique solution s, t because the matrix

(
1 1
u v

)
is in-

vertible. For these s, t, we have un = sun + tvn simply by induction on n
(with the cases n = 0, 1 validated by the way s, t are obtained). Indeed,
assuming this valid for n and n+ 1, we have

un+2 = aun+1 + bun = a(sun+1 + tvn+1) + b(sun + tvn)

= sun(au+ b) + tvn(av + b) = sun+2 + tvn+2.

Case II. If u = v.
In this case p(x) = (x− u)2; that is, a = 2u and b = −u2.
Note that the sequence {nun} is a solution of the recurrence because

a(n+ 1)un+1 + bnun = 2u(n+ 1)un+1 − u2nun = (n+ 2)un+2.

Once again, given any sequence {un} solving the recurrence, we may de-
termine s, t uniquely satisfying un = sun + tnun for all n. Indeed, s, t are
determined by the equations for n = 0, 1; that is,

u0 = s;u1 = su+ tu.

That is, s = u0, t = u1 − uu0.
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