Notes for 13-20 December, 2021

0.1 A few problems/properties involving [z]

1. The power of 10 dividing n! is vs(n!) for every n. In other words, we
have a formula for the number of zeroes that n! ends in.

This is obvious from de Polignac’s formula because if 5* and 2 are the pow-
ers of 5 and 2 (respectively) dividing n!, then k <.

2. Show, for alln > 1, that
V4 vVn+ 1] = [Vin + 1] = [Van + 2] = Vdn + 3]
Asn < y/n(n+1) <n+1, we get

2n <2y/(n(n+1)=(Vn+vn+1)2=2n+1) <2(n+1).

Thus,
dn+1< (Vn+Vn+1)? <dn+3.

Taking square roots,
Vin+1<vVn++vVn+1<V4n + 3.

If m = [v4n + 1], we have [v/4n + 3] < m + 1 because no perfect square
can be either of the form 4n 4 2 or of the form 4n + 3. Thus, we have the
assertion.

5. For any positive integers 2 < d < n, consider the base d expansion of n;
say, n = ag + aid+ -+ + a,d” with 0 < a; < d. Then, for all ¢ > 0,

a; = [n/d'] — d[n/d"T].
—2 i @i

In particular, if d = p, a prime, the power of p dividing n! equals = i}

P
Thus, we may determine the power of a prime dividing n! in terms of the
sum of the base p digits of n.
The assertion giving the values of a;’s is easy to see. For the second assertion
when d = p, a prime, consider n — .., a; and feed the values of a; from

the first assertion. We obtain

n= Y= - (/s + /) ++ )

which gives the assertion using de Polignac’s formula.



1 Arithmetic Functions

Some examples of arithmetic functions are u(n), ¢(n), d(n),o(n), ox(n),w(n), Q(n).
An arithmetic function f is multiplicative if it is not identically zero (equiv-
alently f(1) # 0) and f(mn) = f(m)f(n) for all (m,n) = 1.

The functions u(n), ¢(n),d(n),o(n),or(n) are multiplicative. The proof is
by induction on the number of prime divisors and depends on the observa-
tion that divisors of mp" for (m,p) = 1 with p prime, are of the form dp*
with djm and 0 < s <.

We leave it for you to write out; we will give a general proof that includes
all these cases.

The values of a multiplicative function are determined by the values at prime
powers. For prime powers, we have:

o(p") =p"(1 - 1/p);

dp") =r+1;
. pk(T—‘rl) -1
or(p’) = ]?"37—1;

The proof of multiplicativity A function f is completely multiplicative if it
is not the zero function and f(mn) = f(m)f(n) for all m,n.

The k-th power function n — n* is completely multiplicative.

The Liouville function

Hp a1+ +ar

is completely multiplicative.
1.1 Dirichlet Convolution

Given arithmetic functions f, g we have a “convolution product” defined by

(fxg)(n) =Y fla)gd) = f(d)g(n/d).

ab=n din

Combining with the natural addition f + g, we have a commutative ring A
with unity. The multiplicative identity is the function I(n) = 61 ,; that is
fx1=fforall f.



We show now that every arithmetic function f with f(1) # 0 has a Dirichlet
inverse. In fact, clearly we may define the inverse f~! recursively by

f1<n>=—f(11) S @) fn/d).

dln,d<n

Rephrasing in terms of Dirichlet series

We shall study later series of the form anl fé?) in a complex variable and

f is an arithmetic function. The convolution f x g of arithmetic functions
corresponds to the product of the corresponding series; that is,

F(s):= Z f(n) G(s) := M

ns ’ ns

give

The inclusion-exclusion principle.
By this title, we mean here the identity }_,,, u(d) = I(n).
If n =1, it is clear. Let n > 1 and write n = [[;_, p{" where p;’s are distinct

primes. The divisors of n are of the form Hjer?j where J C {1,2,--- ,r}
and b; < a; for each j. Since p vanishes on non-(square-free) numbers, the
sum

> p(d) = p(1) + > ppi) + > ppips) + -+ + w(prp2 -+ pr)
d|n i=1 i#]

()0 (o -mirven

Later, we will see the above from a general result.



1.2 A few problems/properties involving [z]

1. The sequence [n + y/n + 1/2] takes exactly all the non-squares as values.
Proof.

Put a, = [n++/n+3]. Then a, increases and a,2 = n?+n. Hence, consider
the integers in the range

ap2 +1 <z < apq)2;

that is, inn?+n+1<z<(n+1)2+n+1)—-1=n?>+3n+1.

There are 2n+ 1 natural numbers in this range and this includes the 2n val-
Ues ap24 1, 5 Q(py1)2—1 = Gp242y,- Lhis range contains exactly one perfect
square; viz. (n+ 1)2. Thus, to show that the set if values of the sequence is
precisely the set of perfect squares, it suffices to show that a value not taken
by the sequence {a,} is a square.

Now, if m is a natural number missed by the sequence, then a, < m < ap41.
The first inequality a, < m implies n + /n + 3 < m.

The second inequality m < an4+1 gives

1 1
méan+1—1:[n+x/n+1+§]§n+\/n+1+§.
Thus,

1 1
n+\/ﬁ+§<m§n+\/n+1+§.
So,
1
\/ﬁ<m—n—§§\/n+1
which gives
1
n<(m—n)2+zfm+n§n+1.

Hence.
1

B~ w

<(m-n)?—m<

2:

which forces (m —n)* = m.

2. (Beatty’s theorem.)

Let «, 8 be fixed positive real numbers, and consider the integers of the form
[an] and fBn] as n varies over positive integers. Then, this is exactly the set
of all positive intgers, each occurring precisely once, if and only if, é+% =1
and «, 3 are irrational.

Samuel Beatty was the only doctoral student of Fields.



Beatty sequences are also sometimes called Rayleigh’s sequences because one
of his theorems states that when a constraint is introduced to a vibrating
system, the new frequencies of vibration interleave the old frequencies.

The Beatty sequences when « is the golden ratio gives a strategy for Wythoff’s
game that we mentioned earlier.

Proof.

Assume first that «, 8 are irrational, positive, real numbers satisfying 1/a +
1/B = 1. Therefore, (a« —1)(8 —1) = 1.

We will show that each positive integer occurs exactly once among the union

{lan] : n e N}U{[Bn] : n € N}.

We do this by giving explicitly an ordering of this union which will make it
clear. Consider all fractions of the form u/a and v/f as u,v run through
the positive integers. Firstly, we observe that they are all distinct; indeed,
if u/a =v/B, then u/v = a/ = a — 1 which is irrational, which leads to a
contradiction.

Now, let us find the number of fractions smaller than a particular v/3. The
fractions of the form u/a < v/f are clearly [va/f] in number. Thus, as it
is the v-th among fractions of the form a/f, the position of v/3 among all
the fractions considered is

[va/B]+v = [v(e—1)] + v = [va].

Similarly, the position of u/« is [uf]. Therefore, every positive integer has
a unique position given explicitly as above.

Conversely, suppose «, 3 are positive real numbers such that every positive
integer occurs precisely once among the union

{[an] : n e N} U{[An] : n € N}.

We claim 1/a+ 1/8 = 1 and that they are irrational. In fact, the first
assertion would imply the second because if « is rational, then so is § =
a/(a—1), and [na] and [nf] cannot cover all positive integers.

To show 1/a+ 1/8 = 1, the most natural proof is to look at densities of
sequences.

A sequence {a,} of positive integers is said to possesses a natural density ¢
if 7#({%1‘\;3]\7) —das N — oo.

For any positive real «, the number

N(a) := #{[na] < N}



is easily seen to satisfy

[N+1

5 }—1§N(a)<[N+1]

a

where equality can occur only when « is rational. Note that the above
inequalities show that the sequence [na] has density 1/a. Thus, as they
disjointly cover all positive integers, we have 1/a+ 1/ = 1.

Further, o, 8 must be irrational.

Remark. A beautiful interpretation of Beatty’s theorem is given in the
American Math Monthly paper by Ginosar and Yona in Volume 119, Octo-
ber 2012.

3. (This is problem 37 after section 4.1 in NZM but was originally a prob-
lem in USAMO 1981): For any real x and positive integer n, prove that
> h—rlkz]/k < [na].

Firstly, it is clear that the subtlety is in the RHS being [nx] because LHS <
Sopy kx/k = na.

As the LHS is not an integer, the problem is more difficult.

The proof goes as follows. We apply induction on n and as the proof is clear
for n =1, we fix n > 1 and assume the result for each r < n.

Let x, denote the maximum among the rational numbers [kx]/k; then,
Zn, = [nox]/ng where ng is the smallest such among 1,2,--- ,n.

Now kx,, > [kz| which means [kx,]| > [kz] for all k& < n.

On the other hand, x = ngz/ng > [noz|/nog = =, for all k& < n. Thus,
kx > kx, which gives the other inequality [kxz| > [kx,] for each k < n.
Therefore, we have

ka] = [kan) YV <moeeeee (W)

If ng|n, we are already done because in that case nx,, is an integer as nox,
is, and then

n
[nx] = [nxy,] = na, > Z[kx]/k:

k=1
Assume n = r mod ng with 0 < r < ng, and we will use the induction
hypothesis for 7.
We claim that z,, is the smallest number satisfying (#). Let y < z,,. Then
noy < noxn, = [nox] which gives [noy] < [noz] which means y does not
satisfy (#) for k = ny.
Now, recall we have n = r mod ng where 0 < r < ng. Now, n — r being a



multiple of ng, (n — r)z,, is an integer, Hence
[nz] = [nay] = [re, + (n—r)zy] = [ray] + (n — 7).

In order to use the induction hypothesis that [ray] > >, _, [kz]/k, we rewrite
the last expression on the right in terms of the difference [rz,,]|—>_, [kz]/k.
We have

n

[nxy] = Iraa)+(n—r)z, = [reg) =) [keal/k+ Y {kwa} /bt [kzal/k > Y [k /k.
k=1

k=1 k=r+1 k=1
Therefore,
[na] = [nan] > [kanl/k =Y [ka]/k.
k=1 k=1

4. Exercise 36 after section 4.1 of NZM.

Prove
LCM(1,2,-- ,n+1) = (n+1)LCM(<7;>, (Z) , <”>)
n
Solution.
Firstly, (n + 1)(}) = (r + 1)(?3) which means r + 1 divides RHS above.

Hence, in the asserted equality, the LHS divides the RHS.
For the converse, we present a beautiful proof by Mohan Nair.
In the next property below, we give another proof which was also used to

prove a prime number estimate.

We will show that (r+ 1)(77]) divides the LHS LCM (1,2, -+ ,n +1).

Fix n. For each r < n, consider the definite integral
1
I(r) = /0 2" (1 —z)" "dx.
Using the binomial expansion for (1 — x)"~", we will obtain
— n—7 1
0= (")

Therefore, LCM (1,2,--- ,n + 1)I(r) € Z. On the other hand, using the
so-called Beta-Gamma identity (look up the formula and accept it without



proof for now!) and using the fact that I'(d) = (d—1)! for a positive integer,
we have

Pr+H'(n—r+1) (@FH(n—r)! 1
I(r)=pB(r+1,n—r+1) = = = .
(r) = 5( ) I'(n+2) (n+1)! (r + 1)(:}1%)
Hence, since LCM (1,2, -+ ,n + 1)I(r) € Z, we have that this LCM is a

multiple of (r + 1) ("I ) for each r < n.

5. Here is a property involving the ceiling function [z]:
(a) [n/2] ([n’;ﬂ) > 2" if n > 6.

(b) Further, lem(1,2,...,n) = 10111(2(3),3(3), - ,n(")>

n

Therefore, lem(1,2,...,n) > 2" for n > 6.
Note that on changing n to n+ 1 in (b), this is just the previous exercise.

Proof.
The property (a) follows easily by induction on n > 6. For n = 7, we have
4(1) = 140 > 27. We assert

(n+1) (2;?12) —2(n+1) <2:++11>,

(n+2) (2” +23> > 4(n + 1)<2”+ 1).

n 4+ n+1

2n+1) < 92n+1

These are easy to see and imply that the assumption (n + 1) ( i

leads to the conclusion [n/2] ((nn/ﬂ) > 2™ for n > 6.

For (b), we make use of the little observation below that interprets the power
of a prime dividing the lem being considered:

For a natural number n, if p® is the highest power of a prime p dividing
lem(1,2,...,n), then p® < n < p®!. In other words, a + 1 is the number of
digits of n when written in base p.

Indeed, consider any prime p dividing lem(1,2,...,n); then p < n. If a is the
largest integer so that p® < n, then p® evidently divides lem(1,2,...,p%, ..., n).
As the power of p dividing lem(1,2,...,n) is the maximum of the powers
of p dividing the numbers 1,2, ...,n, it follows that p®*! does not divide
lem(1,2,...,n) as n < p®l. Thus, p® < n < p*! clearly implies that the
number of digits of n written in base p is a + 1.



Finally, to prove (b), firstly, it is evident that left-hand side is at most equal
to the right-hand side because each of 2,3, ..., n divides the numbers on the
right-hand side whose least common multiple is being considered.

To prove the other inequality, we will prove that the power of p dividing
r(f) for any 0 < r < n is less than the number a + 1 of digits of n in base p
(and, hence, is at most a). This will imply our assertion. We use the Kum-
mer formula asserting that the power of p dividing a binomial coefficient (:f)
(0 < r < n) is the number of carry-overs while adding r and n — r written
in base p.

Write

in base p where there are precisely u > 0 zeros at the end.

Next, observe that if n = 7+ (n — ) in base p and n has a+ 1 digits in base
p, then at most a of those digits incorporate a carry, since the top digit does
not incorporate a carry. As r ends in precisely u zeros in base p, those u
places do not propagate carries, and the first digit of n that includes a carry
from earlier places is place u + 1 or later. Thus, the number of carries is at
most a — u. So, the power of p in r(:f) is at most u + (a — u) = a, and the
proof is complete.

2 Arithmetic Functions, Mobius inversion.

Lemma. If f, g are multiplicative, then so is f * g. Conversely, if f,g are
arithmetic functions such that f+g and one of f, g are multiplicative, then so
is the other. In particular, the Dirichlet inverse of a multiplicative function
is also multiplicative. That is, the set of multiplicative functions forms a
subgroup of the group A* of units.

Proof.

The proof is very simple. Assume f, g are multiplicative and consider h =
[ *g. Let (m,n) =1. Then

h(mn) =y f(d)g(mn/d).

dlmn



Each divisor d of mn is uniquely expressible as d = ab, with a unique a|m
and a unique b|n because (m,n) = 1. Hence,

Z f(ab)g(mn/ab) = Zf g(m/a)) Zf g(n/b)) = h(m)h(n).

alm,b|n alm bln

We used the fact that (m/a,n/b) =1 and that f, g are multiplicative.

Now, we consider f,g such that g and f % g are multiplicative (note that =
is commutative and the assumption is without loss of generality).

We show f(mn) = f(m)f(n) for co-prime m,n by induction on mn.

If mn =1, then m =n = 1 and we have

which gives f(mn) = f(1) = f(1)? = .
Let mn > 1 and assume that f(ab) = f(a)f(b) for all co-prime a,b such
that ab < mn. Now

Y. flabg(mnfab) = Y~ f(ab)g(mn/ab)+ f(mn)g(1)

alm,bln alm,b|n,ab<mn
= > f@f(b)g(mn/ab) + f(mn).
alm,bln,ab<mn

We have used the fact that f(ab) = f(a)f(b) when ab < mn.
Clearly, by the multiplicativity of g, the last sum equals

O fla)ygtm/a) (D f(b)g(n/b)) — f(m)f(n) + f(mn).

alm bln

That is,
h(mn) = h(m)h(n) — f(m)f(n) + f(mn).
As h is multiplicative, this forces f(mn) = f(m)f(n).
Finally, the fact that the Dirichlet inverse of a multiplicative function f is
multiplicative follows from the previous assertion because f * f~1 = I is a

multiplicative function where the identity I(n) = d1 5.
The proof is complete.

Corollary. An arithmetic function f is multiplicative if, and only if, g(n) :=

Zd|n f(d) is

10



Proof.
We note that g = f*1 where 1 is the constant function 1 which is evidently
multiplicative.

Remark.

For a completely multiplicative function f (that is, f(mn) = f(m)f(n) for
all m,n), the Dirichlet inverse is simply f~'(n) = p(n)f(n). This is checked
by using the above inclusion-exclusion principle.

Mo6bius inversion formula

For an arbitrary arithmetic function f (not necessarily multiplicative), we
have g(n) =>4, f(d) if, and only if, f(n) =734, 9(d)u(n/d).

Proof.

The assertion is equivalent to showing g = f = 1 if, and only if, f = g * u.
Clearly, the inclusion-exclusion principle above asserts that p* 1 = I; that
is, the Dirichlet inverse of p is 1

2.1 Some examples of Mobius inversion formulae

1

The Mobius inversion formula also has a multiplicative version which can
be proved using the same ideas but can also be deduced by considering
logarithms when the function is positive. The assertion is:

If f(n) >0 for all n, we have
=[1/@ & fn) =] g(@y/?.
dln dln
As a consequence, we have the cyclotomic polynomial expressed as
O (x) = [J(a — 1)/ D.
dln

More generally, let a(n) be a real-valued arithmetic function with a(1) # 0,
and let b(n) be its Dirichlet inverse. Then,

Hf a n/d Hg n/d

d|n

2. ¢(n) = Xy, du(n/d) =n) g, n(d)/d; that is, ¢ = Idx p where Id is
the identity function. Cautionary note: The identity function is NOT the

11



identity in the ring A.

Indeed, counting the n-th roots of unity according to their orders, we have
n = de #(d); that is Id = ¢ x 1. Since u~! = 1, we have the identity.

By the way, here is another way to see > din ¢(d) = n. Count the n fractions
1/n,2/n,--- ;n/n in their reduced forms. Clearly, those with a particular
denominator d|n are exactly ¢(d) in number!

8. The Liowville function X satisfies 3 g, A(d) = sq(n), where sq(n) =1 if
n is a perfect square, and 0, otherwise. The Dirichlet inverse of X is |p|.
As the LHS >, A(d) is multiplicative, we may calculate it by computing
on prime powers. We obtain the value at p* to be 0 or 1 according as to
whether a is odd or even. This clearly gives the value at any n to be 0 if n
is not a perfect square and the value 1 when n is a square.

Finally, by complete multiplicativity of A, we have A~!(n) = u(n)A(n). But,
evidently

Therefore p(n)A(n) = u(n)? = |u(n)|.

4. The Dirichlet inverse of o, is given by o, *(n) = 2 @ () p(n/d).
In fact, o0, = N, % 1 where N, is the r-th power map. Therefore,

ot =17 % N = ok (uiy)
because N, is completely multiplicative.

5. Define the von Mangoldt function A by A(n) = log p if n is a power
of p, and equals 0 otherwise. Then, A(n) = 3 ,, n(d)log(n/d); that is,
A =log*p.

(Recall that we had used this identity while discussing a geometric problem
that involved cyclotomic polynomials.)

Indeed, if n = [];_, p;", taking logarithms gives us

T
log n = Zai log p;.
i=1

Now, de A(d) = Zpl?ln log p; = > i ajlog p; because the powers of p;
dividing n are 1,2, --- ,a; which are a; in number.
Thus,

log n = ZA(d)

dln

which means log = A % 1. Therefore, A = log * .

12



A beautiful geometric application.

Letn > 1 andlet Py, --- , P, be points on a circle of radius 1 dividing the cir-
cumference into n equal parts. Then, the product of lengths H(l,n):l,l<n |PLP 1| =
p or 1 accordingly as to whether n = pF for a prime p or n is not a power

of a prime.

To answer this, we may assume that the origin is the center and that points

are Py = e2dm/n for d = 0,1,--- ,n — 1. Note that the product of lengths

of all the chords P, P; is simply [[4—] |1 — e*¥™/"|. Since the polynomial

1+ X +---+ X" ! has as roots all the n-th roots of 1 excepting 1 itself, we
have

n—1
H(1 _ eZidfr/n) =n
d=1
by evaluating at X = 1. Notice that we have the equality (1 —

e2idr/ ™) = n as complex numbers; that is, even without c0n51der1ng ab-
solute values.

Now, let us consider our problem. Here, the product under consideration is

H ’1 _ 622’d7T/7’L|‘

(dn)=1
Writing P(n) = ( Cl) and Q(n) = H (d,n)= (1= ¢ ), where ( = e2in/n,

we can see that
=@

rln

By Mébius inversion, Q(n) =[], P(d)* p(n/d) = [Lyn d""/@) by the simpler
first assertion observed at the beginning of the pr of the proposition. The
function
log Q(n) =Y _ u(n/d)log(d)
dln

can be identified with the so-called von Mangoldt function A(n) which is
defined to have the value log(p) if n is a power of p and 0 otherwise. Using
this identification, exponentiation gives also the value asserted in the propo-
sition; viz., Q(n) = p or 1 according as to whether n is a power of a prime

p or not.
To see why A(n) = >y, n(n/d)log(d), we write n = Hp‘npvp(”) and note

that
log(n Z vp(n) log(p)

pn

13



But, the right hand side is clearly }_;,, A(d). Hence, Mobius inversion yields

Aln) = 3" log(d)u(n/d).

d|n

14



2.2 Exercises on arithmetic functions

n__ *(d)
o Prove 5y = 3 djn 1y -
Solution.
As the function p%(n)/¢(n) is multiplicative, (and so is the LHS), we need

to check the identity on prime powers only. But,
RHS(p") = 3o 1> (%) /6(0%) = 1 +1/(p = 1) = =7 = LHS(p").

e Prove that deln w(d) =0 if m*|n for some m > 1, and = 1 otherwise.

In particular, for k = 2, we get the RHS to be p?(n).

Solution.

If mF|n implies m = 1, then the value is clearly 1. Suppose now that mF|n
for some m > 1 and we write

r b s
n=p-pirglt g = PQ

say, where 0 < a; < k; b; > kand P =[], p{",Q = Hj q?j. Then, the sum is

dould)= Y pldidy)

d*|PQ dk|P,dk|Q

since (P, Q) = 1. Therefore, only terms with d; = 1 survive and the sum

equals
> ulda) = D w( e
d5|Q kej<b; j
= > Iwule) =TTk + ula) =o0.
c;=0,1 3 J

e Prove that _,, p1(d)log™(d) = 0 if m > 1 and n has more than m distinct
prime factors.
Solution.
We apply induction on m > 1. If m = 1 and n has at least two prime factors,
then >, u(d)log(d) = A(n) = 0. Assume m > 1 and that the result holds
for m — 1. Let n = kp” with (p,k) = 1, w(n) > m; that is, w(k) > m — 1.
Then,

D ud)log™(d) = Y p(di)p(ds)log™ (dids)

d|n d1|k‘,d2‘pr

15



in which only the terms corresponding to do = 1,p survive. Therefore, the
sum is

57 () (1) o™ ) () o™ o) ) = 3 ) (o)™~ (o) +105(0)" )

di|k di|k

= —Zu d1) << >log(d1)m "log(p) + -+ + (Z) log(p)m> =0

where the last equality is by induction hypothesis since w(k) > m — 1.

e Prove that [, t = ndm)/2,
Solution. Combine each d|n with n/d.

o Prove Y, d(r)? = (Zrm d(r)>2.

Solution.
As the functions appearing in the sums are multiplicative, it suffices to check
the identity for prime powers. Then

=134+ 24 (k413 =(1 424+ (k+1)) (Zd >

o Let ¢p(n) denote the sum of the k-th powers of the numbers < n and
coprime to n. Note ¢y = ¢, Prove

Z¢k(d):1k+2’“+---+n’“

nk
din
Solution. .
Express each 77 as a reduced fraction. If (r,n) = d, then writing r =
dR,n = dN, we have ;—IZ = ﬁ—z in reduced form. As R < N,(R,N) =1,

there are exactly ¢(N) fractions in reduced form with denominator N*. As
N runs through the divisors of n, we get the asserted equality.

e Prove that an even number is perfect if, and only if, it is of the form
2P=1(2P — 1) where 2P — 1 is prime.

16



Solution.
It is easy to see that if 2P — 1 is prime, then p is prime and

o(2P N (2P — 1) = (2P — 1)2P

which shows that 2P~1(2P — 1) is perfect. This was known to Euclid’s school
already! For the converse proved by Euler, assume n = 2%m is perfect where
a > 0 and m is odd. Obviously m > 1 as 2% cannot be perfect. We are given

2t m = o(2%m) = (24T — D)o (m).

Thus, since 2¢t! and 2%t — 1 are co-prime, we have 2%t1 — 1 divides m.
Write
m = (2971 — 1) M.

Then, 2T M = o(m) = o((2¢T1 — 1)M).
If M > 1, then m would have distinct divisors 1, M, 2Tt —1, m and perhaps
other divisors. So, we would have

U(m) 2 1+M+(2a+1_1)+(2a+1_1)M — 2a+1M+2a+1 > 2&+1M — O'(m),

a contradiction. Hence M = 1; so, m = 2°T! — 1 and o(m) =29 =m +1
which means m must be prime.

e Prove that f(n) = [/n] — [V/n — 1] is a multiplicative function which is
not completely multiplicative.

Solution.

If n is not a perfect square, say r < /n < r + 1, then r < y/n — 1, which
shows f(n) = 0. If n is a perfect square, clearly f(n) = 1. Obviously, f is
multiplicative.

As f(p?) =1 # 0 = f(p)? for any prime p, it is not completely multiplicative.
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e A result due to Erdés:

If g is totally multiplicative, f(1) # 0 and monotonically increasing, then
there exists a constant ¢ > 0 such that g(n) = n¢ for all n.

To see this, it is convenient to call an arithmetic function f totally additive
if f(mn) = f(m) + f(n) for all m,n. If we show that any totally additive,
monotonically increasing function f must admit a constant ¢ > 0 satisfying
f(n) = clog(n) for all n, then g(n) = e/ would satisfy the assertion. So,
we prove the additive version below.

Let p # ¢ be primes. We can find infinite sequences {a,, } and {b, } of positive
integers such that

pan < qbn <pan+1‘

So, ap log(p) < bylog(q) < (an + 1)log(p) V n > 1; and hence

5
Q

log(q) n
by~ log(p) ~ bn

Therefore, the sequence ay, /b, converges to log(q)/log(p). As f is totally
additive, and monotonically increasing, the inequalities p» < ¢b» < p@»+1

imply

L1
by,

anf(p) < buflq) < (an+1)f(p) ¥V n > 1.
Thus, the sequence a,/b, converges also to f(q)/f(p). Hence, we have

obtained
f(p) _ log(p)

flq)  log(q)
for any two distinct primes p # ¢. Fixing one of them, say ¢ = 2, we
get f(p) = clog(p) where ¢ = f(2)/log(2). As p is arbitrary, and c is
independent of it, the total additivity shows f(n) = clog(n) for all n.
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3 Binary Recurrences

The Fibonacci sequence is ubiquitous in the scientific world, right from the
petals of a sunflower to strategies for two-person games. This sequence is
defined by the recursion:

Fopo=Fy1+F, vV n>0
and the initial values Fy = 0, F; = 1. The first few terms are
0,1,1,2,3,5,8,13,21,34,55,89,144, - - -

Given a similar recurrence up+2 = aun41 + bup4+; for some fixed constants
a, b and initial values u1, ug, can the sequence {u,} be determined in closed
form? Indeed, not only can this recursion be solved, the method can treat
any linear recursion

Uptk = QpUntk—1 + -+ A1Up

with constants a;’s and k initial values ug, - - - ,ur_1. The method is simple,
and depends on the roots of the so-called ‘characteristic polynomial’ of the
recurrence:
_ Lk k—1
p(x) =2 —apx™ " — - —agx — ay.
Note that if u is a root of p(x), then w, := u™ is a sequence that solves the
recurrence because
uF :akuk_l—i—'--—i—al
implies

n+k unJrkf 1 +

U = ay, coodagu™.

We will just discuss recurrences of order 2; that is, k = 2. The characteristic
polynomial of the recurrence u,19 = atnt1 + buy, is

2 _az—0b.

p(z) ==
We may assume b # 0; otherwise, clearly the recurrence is simply a geometric
progression. The polynomial p(z) has roots u, v say.
Case 1. Suppose first v # v.
Then, we claim that every sequence {u,} solving the recurrence can be
written as u, = su™ + tv™ for all n, where the constants s, ¢ are determined
by the two equations

ug =S +1;
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ur = su + tv.

This is the matrix equation <1 1) <S> = <u0>.
U v t Ul

. . . . . 1 1Y\ . .
Evidently, there is a unique solution s, ¢ because the matrix <u v) is in-

vertible. For these s,t, we have u, = su™ 4+ tv™ simply by induction on n
(with the cases n = 0,1 validated by the way s,t are obtained). Indeed,
assuming this valid for n and n + 1, we have

Upto = AUpy1 + bu, = a(su”+1 + tv"“) + b(su™ + tv™)

= su"(au + b) + tv" (av + b) = su™2 + t" 2,

Case II. If u = v.
In this case p(z) = (z — u)?; that is, a = 2u and b = —u?.
Note that the sequence {nu"} is a solution of the recurrence because

a(n + Du™™ 4 bnu" = 2u(n + D)u" ™ — u?nu” = (n + 2)u™ 2

Once again, given any sequence {uy} solving the recurrence, we may de-
termine s,t uniquely satisfying u,, = su” + tnu” for all n. Indeed, s,t are
determined by the equations for n = 0, 1; that is,

ug = S; U1 = su + tu.

That is, s = ug,t = u1 — uug.
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