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1 Primitive Roots in terms of group theory

We have already discussed these results in the last week’s notes in an ele-
mentary manner. In this section, these results are described in the modern
group theoretic language. These proofs have been put here for the sake of
completion, and may be skipped on the first reading.
Notation. We write Z/nZ or Z/n or Zn for the additive group of integers
mod n under the operation of addition mod n. Similarly, we also write
(Z/nZ)∗ and (Z/n)∗ for Z∗

n, the group of integers coprime to n under the
operation of multiplication mod n.

• Proposition. (Z/nZ)∗ is cyclic if, and only if, n = 2, 4, pr or 2pr for some
odd prime p. In these cases, a generator is called a primitive root modulo
n.
Proof.
If n = pa11 · · · parr , then consider the homomorphism

Z/n → Z/pa11 × · · ·Z/parr

given by 1̄ 7→ (1̄, · · · , 1̄).
Here, of course, we have used 1̄ to denote elements in different groups.
Clearly, θ is 1-1 and, therefore, onto as well as the sets are finite. This is
nothing but the usual Chinese remainder theorem.
Now, let us consider the restriction of θ above to the subset (Z/n)∗ con-
sisting of all r̄ with r ≤ n and (r, n) = 1. This subset is a subgroup under
multiplication modulo n. Its image under the above θ maps into the subset
(Z/pa11 )∗ × · · · (Z/parr )∗ of Z/pa11 × · · ·Z/parr .
Note that θ restricted to this subset is actually, a group homomorphism
under multiplication modulo n.
Once again, this is 1-1 as it has trivial kernel because a ≡ 1 mod n if a ≡ 1
mod paii for all i ≤ r. Hence, being finite a map of finite sets, it is onto as
well and thus

(Z/n)∗ ∼= (Z/pa11 )∗ × · · · (Z/parr )∗.

Let us note that a direct product of r > 1 cyclic groups is cyclic if, and only
if, their orders are pairwise co-prime.
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Therefore, it suffices to check that (Z/pa)∗ for a prime p is cyclic if, and only
if, p is odd or p = 2 and a = 1, 2.
Of course, (Z/pa)∗ has order pa−1(p − 1). Let p be odd first. It suffices to
produce elements g and h of the coprime orders pa−1 and p− 1 respectively
since gh would then have order pa−1(p− 1).
By the binomial theorem, if a ≥ 2 and p > 2,

(1 + p)p
a−2 ≡ 1 + pa−1 modulo pa,

(1 + p)p
a−1 ≡ 1 modulo pa.

In other words, the element 1 + p ∈ (Z/pa)∗ has order pa−1 if p is odd and
a > 1.
We shall now show the existence of an element of order p− 1 in (Z/pa)∗ for
p odd and a ≥ 1.
First, in the field Z/p of p elements, every non-zero polynomial has at the
most its degree number of roots by the remainder theorem. Thus, for each
d, there are at most d elements x of (Z/p)∗ satisfying xd = 1. By what we
have proved earlier, the group (Z/p)∗ must be cyclic. If r̄ is a generator,
then the corresponding element ¯rp−1 in (Z/pa)∗ has order some power pk of

p. Therefore, in (Z/pa)∗, the element rp
k
has order p−1. Thus, the problem

is solved when p is odd.
For p = 2, a > 2, we see by the binomial theorem that

(1 + 4)2
a−3 ≡ 1 + 2a−2 modulo 2a,

(1 + 4)2
a−2 ≡ 1 modulo 2a.

Hence, if a ≥ 2, the group (Z/2a)∗ of order 2a−1 is generated by the element
−1 of order 2 and the element 5 of order 2a−2. Now, if −1 were to be a
power of 5, the orders would force −1 = 52

a−2
in (Z/2a)∗.

Then, we would get

−1 ≡ 1 + 2a−1 modulo 2a

which is impossible when a > 2.
Therefore, if a > 2, then (Z/2a)∗ is isomorphic to the direct product of the
group of order 2 and the cyclic group of order 2a−2; so it is not cyclic.
Of course, (Z/2)∗ is trivial and (Z/4)∗ is the cyclic group of order 2.

Let us note from the above proof that, for n ≥ 3,

(Z/2n)∗{±5k : 1 ≤ k ≤ 2n−2} ∼= Z/2n−2 × Z/2.
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Recall that we already proved the following proposition in an elementary
manner. We give a proof using group theory now.

Proposition. Let m be a positive integer such that a primitive root mod m
exists (that is, Z∗

m is a cyclic group). Then, for a positive integer n and an
integer a co-prime to m, the congruence xn ≡ a mod m has a solution if,
and only if, aϕ(m)/(n,ϕ(m)) ≡ 1 mod m. In this case, the number of solutions
is (n, ϕ(m)).
Proof using group theory.
The proof is clear because an element of the cyclic group Z∗

m is an n-th power
if, and only if, it is an (n, ϕ(m))-th power. An element of a cyclic group of
order N is a d-th power for a divisor of N if, and only if, its (N/d)-th power
is 1. Further, the kernel of the (N/d)-th power map is precisely the unique
subgroup of order N/d. Hence, for our case N = ϕ(m), d = n/(n, ϕ(m)); so
xn ≡ a mod m has exactly (n, ϕ(m)) solutions.
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2 Power residues mod prime powers

Let us look at the question of solvability of congruences of the form

xn ≡ a mod pr

for odd as well as even primes p.
Recall that the proposition below was proved by us in class using elementary
arguments and the last section gave a group theoretic proof.

Proposition. Let m be a positive integer such that a primitive root mod m
exists. Then, for a positive integer n and an integer a co-prime to m, the
congruence xn ≡ a mod m has a solution if, and only if, aϕ(m)/(n,ϕ(m)) ≡ 1
mod m. In this case, the number of solutions is (n, ϕ(m)).

We also have:

Proposition. Let p be an odd prime, and let n > 0, a be integers coprime
to p. If xn ≡ a mod p has a solution, then the congruences xn ≡ a mod pr

have solutions for all r ≥ 1. The number of solutions of each of them is the
same.
The proof is simple. If xnk ≡ a mod pk (for some k ≥ 1), consider xk+1 =
xk + upk for any u (to be determined suitably). Write xnk = a+ bpk.

xnk+1 ≡ xnk + nupk ≡ a+ (b+ nu)pk mod pk+1.

We may choose u so that b+ nu ≡ 0 mod p since (p, n) = 1. Hence,

xnk+1 ≡ a mod pk+1.

Moreover, the number of solutions is the same because (n, ϕ(pk)) = (n, p−1)
for all k ≥ 1.
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The analogues of the above two results for powers of 2 are more difficult.
We have:

Proposition. Let e ≥ 3. Consider xn ≡ a mod 2e with a odd.
(a) If n is odd, there is a unique solution for x mod 2e.
(b) If n is even, then the congruence has a solution if, and only if, a ≡ 1
mod 4, a2

e−2/(n,2e−2) ≡ 1 mod 2e. In this case, the number of solutions is
2(n, 2e−2).
Proof.
Note that Z∗

2e has order 2e−1. Hence the power map by any odd number is
an automorphism. Hence (a) follows immediately. For (b), once again, it
suffices to consider only those n > 1’s which are powers of 2. We put n = 2N

with N ≥ 1. Now, first assume that xn = a has a solution Z∗
2e . Then, since

the order of the group is 2e−1, we have

xn = y(n,2
e−1) = a.

So, firstly a ≡ 1 mod 4 sinceN > 0. Also, recalling that the group Z∗
2e = ±5k

where 5 has order 2e−2, we have y = ±5k for some k. Now,

a2
e−2/(n,2e−2) == 1

writing a as a power of y and y as ±5k because we will then have a power
of 5 which has 2e−2 times an integer in the exponent.
Let us now show the converse that if a ≡ 1 mod 4 satisfies a2

e−2/(n,2e−2) = 1
in our group, then there exists x with xn = a. Now, writing a = 5k (minus
sign is not there as a is assumed to be 1 mod 4) and n = 2N , we get in terms
of powers of 5 that a2

e−2/(n,2e−2) = 5t = 1 where

t = 2e−2k/2min(N,e−2).

As the order of 5 is 2e−2, we have k to be a multiple of 2min(N,e−2). Write
k = 2min(N,e−2)v for some v. This is given to us. To solve for x or y such
that xn = y(n,2

e−1) = y2
min(N,e−1)

= a, put y = ±5u.
Then, a = 5k = 5v with v = 2min(N,e−1)u. Thus, the order 2e−2 of 5 divides
2min(N,e−1)u− k.
That is, given N and k (which is a multiple of 2min(N,e−2)), we want to
choose u so that 2e−2 divides 2min(N,e−1)u− 2min(N,e−2)v.
Dividing by 2min(N,e−2), this divisibility is equivalent to 2e−2−min(N,e−2) di-
viding 2min(N,e−1)−min(N,e−2)u− v.
If N ≥ e− 2, this is no condition.
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Assume N < e− 2. The condition 2e−2−N divides u− v.
Therefore, we can clearly choose u = v+ multiple of 2e−2−N .
Finally, let us count the number of solutions given that there is a solution.
We have already shown that if N ≥ e− 2, every x is a solution.
If N < e− 2, as we saw u = v+multiple of 2e−2−N . As u can go up to 2e−2

(as y = ±5u). Thus, there are 2N choices for u and hence 2N+1 choices for
y.
Note that 2(n, 2e−2) = 2N+1 if N < e − 2 and 2e−1 (order of the whole
group) when N ≥ e− 2. This completes the proof.

Example. Here is a nice fact on primitive roots. Let p = 2n + 1 > 3 be a
prime. We will show that 3 is a primitive root mod p.
As p − 1 is a power of 2, the order of 3 will be a power of 2 which means
that 3 is a primitive root if, and only if, it is not a square. We will show
that −3 is not a square which suffices since −1 is a square (as p ≡ 1 mod
4).
Suppose, if possible, −3 ≡ b2 mod p. We may assume that b is odd as we
may add multiples of p. Write b = 2a+ 1 to get

−3 ≡ (2a+ 1)2.

So, 4a2 +4a+4 ≡ 0 mod p. As p is odd, we get a2 + a+1 ≡ 0 mod p. This
implies,

0 = a3 − 1 = (a− 1)(a2 + a+ 1) ≡ 0

but a ̸≡ 1 mod p (else 3 ≡ 9). Therefore, a has order 3 mod p which gives
p ≡ 1 mod 3. This is a contradiction as a Fermat prime 2n+1 > 3 is 2 mod
3.
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