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1 Primitive Roots in terms of group theory

We have already discussed these results in the last week’s notes in an ele-
mentary manner. In this section, these results are described in the modern
group theoretic language. These proofs have been put here for the sake of
completion, and may be skipped on the first reading.

Notation. We write Z/nZ or Z/n or Z, for the additive group of integers
mod n under the operation of addition mod n. Similarly, we also write
(Z/nZ)* and (Z/n)* for Z7, the group of integers coprime to n under the
operation of multiplication mod n.

e Proposition. (Z/nZ)* is cyclic if, and only if, n = 2,4, p" or 2p" for some
odd prime p. In these cases, a generator is called a primitive root modulo
n.

Proof.

If n = pi*---pfr, then consider the homomorphism

Zjn — /P x - L/pl

given by 1+ (1,---,1).

Here, of course, we have used 1 to denote elements in different groups.
Clearly, 6 is 1-1 and, therefore, onto as well as the sets are finite. This is
nothing but the usual Chinese remainder theorem.

Now, let us consider the restriction of 6 above to the subset (Z/n)* con-
sisting of all 7 with » < n and (r,n) = 1. This subset is a subgroup under
multiplication modulo n. Its image under the above # maps into the subset
(Z/py*)" > - (Z/pir)* of Z/p{* x -+ Z]pr.

Note that 6 restricted to this subset is actually, a group homomorphism
under multiplication modulo n.

Once again, this is 1-1 as it has trivial kernel because a =1 mod n if a =1
mod p{* for all ¢ < r. Hence, being finite a map of finite sets, it is onto as
well and thus

(Z/n)* = (Z/p1")" x - (Z/py7)".
Let us note that a direct product of r > 1 cyclic groups is cyclic if, and only
if, their orders are pairwise co-prime.



Therefore, it suffices to check that (Z/p®)* for a prime p is cyclic if, and only
if, pisoddorp=2and a =1, 2.

Of course, (Z/p®)* has order p®~1(p — 1). Let p be odd first. It suffices to
produce elements g and h of the coprime orders p®~! and p — 1 respectively
since gh would then have order p®~!(p — 1).

By the binomial theorem, if a > 2 and p > 2,

(1+ p)pa_2 =14p*! modulo p%,

(1 —i—p)pa_1 =1 modulo p*.

In other words, the element 1+ p € (Z/p®)* has order p®~! if p is odd and
a> 1.

We shall now show the existence of an element of order p — 1 in (Z/p*)* for
p odd and a > 1.

First, in the field Z/p of p elements, every non-zero polynomial has at the
most its degree number of roots by the remainder theorem. Thus, for each
d, there are at most d elements z of (Z/p)* satisfying 2% = 1. By what we
have proved earlier, the group (Z/p)* must be cyclic. If 7 is a generator,
then the corresponding element rP=1in (Z/p*)* has order some power p¥ of
p. Therefore, in (Z/p®)*, the element rP* has order p—1. Thus, the problem
is solved when p is odd.

For p =2, a > 2, we see by the binomial theorem that

14+4)* 7 =1+42°2 modulo 2°

(1+4)* " =1 modulo 2°.

Hence, if a > 2, the group (Z/2%)* of order 2%~ is generated by the element
—1 of order 2 and the element 5 of order 2¢~2. Now, if —1 were to be a
power of 5, the orders would force —1 = 52"~ in (Z/2%)*.

Then, we would get

—1=1+2"1 modulo 2°

which is impossible when a > 2.

Therefore, if a > 2, then (Z/2%)* is isomorphic to the direct product of the
group of order 2 and the cyclic group of order 2%~2; so it is not cyclic.

Of course, (Z/2)* is trivial and (Z/4)* is the cyclic group of order 2.

Let us note from the above proof that, for n > 3,

(Z)2M) {£5% 1 <k <2V %} = 7/2" % x 7)2.



Recall that we already proved the following proposition in an elementary
manner. We give a proof using group theory now.

Proposition. Let m be a positive integer such that a primitive root mod m
exists (that is, Z, is a cyclic group). Then, for a positive integer n and an

integer a co-prime to m, the congruence x" = a mod m has a solution if,
and only if, a®™/(e(m) =1 mod m. In this case, the number of solutions
is (n, p(m)).

Proof using group theory.

The proof is clear because an element of the cyclic group Z;, is an n-th power
if, and only if, it is an (n, ¢(m))-th power. An element of a cyclic group of
order N is a d-th power for a divisor of N if, and only if, its (IN/d)-th power
is 1. Further, the kernel of the (N/d)-th power map is precisely the unique
subgroup of order N/d. Hence, for our case N = ¢(m), d = n/(n, ¢p(m)); so
"™ = a mod m has exactly (n, ¢(m)) solutions.



2 Power residues mod prime powers

Let us look at the question of solvability of congruences of the form
2" =a mod p"

for odd as well as even primes p.
Recall that the proposition below was proved by us in class using elementary
arguments and the last section gave a group theoretic proof.

Proposition. Let m be a positive integer such that a primitive root mod m
exists. Then, for a positive integer n and an integer a co-prime to m, the
congruence £ = a mod m has a solution if, and only if, a®™/(né(m)) = 1
mod m. In this case, the number of solutions is (n,p(m)).

We also have:

Proposition. Let p be an odd prime, and let n > 0,a be integers coprime
top. If ™ = a mod p has a solution, then the congruences x" = a mod p”
have solutions for all r > 1. The number of solutions of each of them is the
same.

The proof is simple. If x}} = a mod PP (for some k > 1), consider zj11 =
xp, + up® for any u (to be determined suitably). Write rp=a+ bpt.

af =2 +nup® = a+ b+ nu)p® mod pFTL
We may choose u so that b+ nu = 0 mod p since (p,n) = 1. Hence,
ai =a mod p"tl.

Moreover, the number of solutions is the same because (n, ¢(p*)) = (n,p—1)
for all kK > 1.



The analogues of the above two results for powers of 2 are more difficult.
We have:

Proposition. Let e > 3. Consider ™ = a mod 2¢ with a odd.

(a) If n is odd, there is a unique solution for x mod 2¢.

(b) If n is even, then the congruence has a solution if, and only if, a = 1
mod 4, a2 227 = 1 mod 2¢. In this case, the number of solutions is
2(n,2¢72).

Proof.

Note that Z3. has order 2!, Hence the power map by any odd number is
an automorphism. Hence (a) follows immediately. For (b), once again, it
suffices to consider only those n > 1’s which are powers of 2. We put n = 2V
with N > 1. Now, first assume that 2" = a has a solution Z3.. Then, since
the order of the group is 27!, we have

n (n,2¢71)

=y =a.

So, firstly @ = 1 mod 4 since N > 0. Also, recalling that the group Z5. = 45"
where 5 has order 272, we have y = +5F for some k. Now,

a]2€72/(n72672) __ 1

writing a as a power of y and y as £5 because we will then have a power
of 5 which has 272 times an integer in the exponent.

Let us now show the converse that if @ = 1 mod 4 satisfies a
in our group, then there exists « with 2" = a. Now, writing a = 5* (minus
sign is not there as a is assumed to be 1 mod 4) and n = 2, we get in terms
of powers of 5 that a2 /(™2°™*) = 5t = 1 where

2672/(,”/72672) _ 1

;= 2ef2k/2min(N,ef2).

As the order of 5 is 2672, we have k to be a multiple of 27"(V:e=2)  Write
k = 2min(N.e=2)y, for some v. This is given to us. To solve for z or y such
that 2" = y(m2°7") = gt g put y = £5%.

Then, a = 58 = 5¥ with v = 2™ (Ve=1y, Thus, the order 2672 of 5 divides
Qmin(N,e—l)u — k.

That is, given N and k (which is a multiple of 2m(N.e=2))
choose u so that 2672 divides 2mn(N.e=1)y, — gmin(N.e=2),,
Dividing by 2m™(V:¢=2) this divisibility is equivalent to 26~ 2-7n(N.e=2) dj.
Viding 2min(N,efl)fmin(N,672)u — .

If N > e — 2, this is no condition.

, we want to



Assume N < e — 2. The condition 2672~ divides u — v.

Therefore, we can clearly choose © = v+ multiple of 26727V,

Finally, let us count the number of solutions given that there is a solution.
We have already shown that if N > e — 2, every z is a solution.

If N < e—2, as we saw u = v+multiple of 2672V As u can go up to 2672
(as y = £5%). Thus, there are 2V choices for u and hence 2V *1 choices for
Y.

Note that 2(n,2¢72) = 2VN*1if N < e — 2 and 27! (order of the whole
group) when N > e — 2. This completes the proof.

Example. Here is a nice fact on primitive roots. Let p = 2" +1 > 3 be a
prime. We will show that 3 is a primitive root mod p.

As p — 1 is a power of 2, the order of 3 will be a power of 2 which means
that 3 is a primitive root if, and only if, it is not a square. We will show
that —3 is not a square which suffices since —1 is a square (as p = 1 mod
4).

Suppose, if possible, —3 = b? mod p. We may assume that b is odd as we
may add multiples of p. Write b = 2a + 1 to get

—3=(2a+1)>2%

So, 4a® +4a+4 =0 mod p. As p is odd, we get a®> +a+ 1 = 0 mod p. This
implies,
0=d*-1=(a—1)(a®*+a+1)=0

but a # 1 mod p (else 3 = 9). Therefore, a has order 3 mod p which gives
p =1 mod 3. This is a contradiction as a Fermat prime 2" 4+1 > 3 is 2 mod
3.



