Elementary Number Theory
20th October 2021

1. CONGRUENCES

It was the genius of C-F Gauss that defined the notion as well as no-
tation of congruences.

Given a natural number m, two integers a and b are said to be congruent
modulo m, if m divides the integer a — b. One uses the notation a = b
mod m.

The relation of congruence generalizes equality of numbers and satisfies
the basic properties

a =bmod m,
c=dmodm

implies a 4+ ¢ = b+ d, ac = bd mod m.

Also, if ab = ac mod m and (a,m) = 1, then b = ¢ mod m.

The fact that for any positive integer m and a coprime integer a, the
GCD 1 can be expressed as axr + my can be rephrased as asserting
that ax = 1 mod m has a solution z. One calls x the ‘multiplicative
inverse’ of @ mod m. This is meaningful as x is unique mod m by the
last property above.

Fermat’s little theorem can be re-stated as saying that if p is a prime
number then for any integer a, we have a” = a mod p; further, if a is
coprime to p, then a?~! = 1 mod p.

Nice fact: If f(x) is a polynomial with integer coefficients, then f(a) =
f(b) mod a — b for integers a # b.

The proof is easy as follows. Write
f=a+ar+ -+ ax".
Then, {&=1@ — e b= e Z.

b—a T b—a

This observation has some interesting applications. For instance, recall
problem 18 we had discussed earlier:

Suppose f is an integer polynomial such that f(a;) = f(a2) = f(a3) =
2 for distinct integers aq, as, az. Then, 3 cannot be an integral value of

f

A generalization of Fermat’s little theorem is the so-called Euler’s con-
gruence. To discuss it, we introduce two notions:

Given a positive integer m > 1, call a set of m integers ai,--- ,a,, a
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complete residue system mod m if, modulo m, these are the m integers
0,1,--- ,m—1.

A reduced residue system mod m is a set of (distinct) integers 11,79, -+ , 7
such that every integer coprime to m is congruent modulo m to exactly
one of the r;’s.

The number k is denoted by ¢(m) and ¢ is called the totient function.

Fact. If {ry,--- 7} is a reduced residue system mod m and a is an
integer coprime to m, then {ary,--- ,ary} is also a reduced residue
system mod m.

Indeed, ary is coprime to m for each ¢ and, if ar; = ar; mod m, then
r; = r; mod m. Hence, we have the assertion. This implies:

Euler’s congruence. If m is any positive integer, and (a,m) = 1,
then a®™ =1 mod m.

Proof. The sets {r; mod m : 1 < i < ¢(m)} and {ar; mod m : 1 <
i < ¢(m)} are equal. Therefore,

#(m) #(m)
a“b(m)( H ri) = H r; mod m.
i=1

i=1
As (Hf;(T) ri,m) = 1, we have the asserted congruence of Euler.

Wilson’s theorem. For any positive integer m > 1, we have (m —
1)!'= —1 mod m if, and only if, m is prime.

Here is a proof.

Let p be prime. Observe that every integer a between 1 and p — 1 is
coprime to p and hence admits a unique multiplicative inverse b of a
mod p that is between 1 and p — 1; so ab = 1 mod p.

Start by pairing each a between 1 and p — 1 with a b as above; note
that a gets paired with itself if and only if a®> = 1 mod p which means
p|(a® —1) and thus has the two solutions a = 1,p—1. Hence (p—1)! =
1(p—1) = —1 mod p.

If m > 1 is composite, then clearly any divisor 1 < d < m divides
(m — 1)! which is, therefore, 0 mod m.

Surprisingly, Fermat’s little theorem and Wilson’s theorem for a prime
p can be deduced from each other!

We leave “Wilson implies Fermat’s little” as an exercise and discuss
the opposite implication which has some new features.

We show that Fermat’s little theorem implies Wilson’s theorem using
the so-called forward difference operator.
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For a function f, one has its ‘forward difference’ function Af defined
as (Af)(z) = f(z +1) - f(x).

If A" f denotes A iterated r times, it follows (again by induction on n!)
that

n

@)= 1 (1) sl )

r=0

Let f be a polynomial of degree d > 1. Then, observe Af is a polyno-
mial of degree d — 1. Also, if f is a constant, Af is the zero function.
Therefore, if n > d, we have (A"f)(z) =0V z.

Further, A%f is not any constant but the constant d!a; where a4 is the
leading coefficient of f - this is seen once again by induction - this time
on d.

Writing this out for the polynomial f(z) = 2¢ gives us

dl = zd:(—nr (f) (x+d—7)Va.

r=0
In particular,
d—1 d
dl=> (-1) d—r)
> (F)an

Reading the last equality

o=0= 5w (7 1o

r
r=0
modulo p, by Fermat’s little theorem, we obtain

(p—1) = %(—1)7(% 1) mod p.

However, >0 (—1)" (") : :—01 since
(1 2(—1)(29; - 2(—1)7‘(]’; D=y

Thus, we obtain Wilson’s congruence (p — 1)! = —1 mod p.
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We mention an important congruence:

Wolstenholme’s theorem. For a prime p > 3, we have 1 + % + % +
24 .
b b = B with (pa,b) = 1.

Before proving this, let us introduce the notion of congruence between
rational numbers.

Once that notion is introduced, Wolstenholme’s theorem can be rewrit-
ten as Zf;} % = 0 mod p? when p is a prime > 3.

Given a prime p, one can talk about a rational number a/b modulo p
when p does not divide b; define :

g+ 5=ab +cd mod p

where b’ = 1 = dd’ mod p for unique positive integers b/, d’ < p as
above.

Why does the above make sense?

First, note that when b,d are not divisible by p, we have (bd) = b'd
mod p because

bd((bd)" — b'd’) = (bd)(bd)" — bb'dd' =1 —1 = 0 mod p

which means p divides (bd) — b'd" as p does not divide bd. Hence,

a ¢ ad+bc ,

54—3 =" - (ad + be)(bd)

= (ad + be)b'd = ab/dd' + cd'bb = ab’ + cd’ mod p.

Thus, congruence modulo p, respects addition and multiplication of
rational numbers mod p provided we are looking at rational numbers
whose denominators are not divisible by p.

Now, we proceed to prove Wolstenholme’s theorem.

1+1+ + !
2 p—1
1 1 1 1 1
=1l+—)+(z+—=)+ -+ +
T R R T AR PR VYEY
( 1 N 1 P 1 )
:p PR .
lp—1) 2(p—2) (p—1)(p+1)/4
Now, since p — r = —r mod p, we get

i Ty T T e = # o t o e wod b
We need to show that when p > 3, the right hand side is a rational
number of the form pa/b.

Note that for each r» between 1 and r — 1, —r
one term above. Thus,

2 is congruent to exactly



P42 4 (p—1)?=2(F + 5+ + Goyyae) mod p.
But, the left hand side equals (p_l)ﬁ# which is clearly a multiple of
p when p # 2,3 and we have the result.

Square-root of —1 mod p.

For which primes p is it true that there exists an integer a such that
a?> = —1 mod p?

We prove that this happens if, and only if, either p = 2 or p = 1 mod
4.

If p =1, the result is clear with a = 1.

Let p be an odd prime. If a> = —1 mod p, then raising both sides to
the (p—1)/2-th power, we have a?~' = (=1)?=1/2 mod p. By Fermat’s
little theorem, the LHS is 1 mod p. Hence, (p — 1)/2 must be even; i.e.
p must be 1 mod 4 for a solution to exist.

Finally, we show the main nontrivial assertion that if p = 1 mod 4 is
a prime, then indeed a?> = —1 mod p does have a solution. Indeed,
Wilson’t congruence (p — 1)! = —1 mod p can be rewritten (using
p—i=—imodpfori<(p—1)/2)as ((p—1)/2)(-1)P V2= -1
mod p. As (p—1)/2 is even, we have the solution a = ((p —1)/2)! is a
solution of a?> = —1 mod p.

Primes expressible as sums of two squares

We prove the beautiful result due to Fermat:

A prime p is expressible as a®>+b* for integers a, b if, and only if, p = 2
or p =1 mod 4. Further, if p =3 mod 4 is a prime dividing a number
of the form a® + b2, then pla, p|b.

Proof.

If p = 2, clearly we have a solution a = b = 1. Let p = 1 mod 4.
Start with t such that t> = —1 mod p. Consider the numbers u + tv
as u,v vary over 0,1,---,[\/p]. These are (\/p] + 1)* > p numbers,
which implies by the pigeon-hole principle that there exist two different
pairs (u1,v1) and (us,v9) such that u; + tv; = us + tvy mod p. Then
a = u; — up and b = vy — vy satisfy a? = —b* mod p. Thus, p|(a® + b?).
But, clearly |a|, [b] < /p which implies 0 < a® 4+ b* < 2p. Hence
p = a? + b

Now, we prove the second assertion from which it will follow that primes
= 3 mod 4 are not expressible as sums of two squares.

Suppose p = 3 mod 4 and assume p|(a® + b?). If (p,a) = 1, then get
ac = 1 mod p which implies 1 = a*c* = —(tc)? mod p, a contradiction
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of the fact that —1 cannot be a square mod such primes. Hence, p|a
and similarly plb.

Finally, we can deduce from the above results that:

Theorem. A positive integer n is expressible as a sum of two squares
of integers if, and only if, each prime divisor of n which is = 3 mod 4
appears with an even power.

The necessity follows from above. For the sufficiency, one just needs to
observe Brahmagupta’s identity

(a® +b%)(* + d*) = (ad — be)? + (ac + bd)?.

Now, we observe a result on solvability of linear congruences.

Proposition. Let m > 0, and a,b be integers. Then, the congruence
ax = b mod m has an integer solution for x if, and only if, (a,m)
divides b. Further, if this condition is satisfied, the set of solutions is
the arithmetic progression with common difference m/(a,m).

Proof.

Clearly, if x is an integer solution of the congruence ax = b mod m,
then there is an integer y so that ax + my = b. Clearly, (a, m) divides
b. Conversely, if (a,m) divides b, say b = (a,m)B, then expressing
(a,m) = au + mv for some integers u, v, we have b = a(uB) + m(vB).
So, ar = b mod m has a solution in integers x. Finally, if xy,zo are
two integer solutions of az = b mod m, then axr; = b = axy mod m
and so m|a(z; — x3). Dividing m and a by their GCD, we have that

s s (11— 2). As | 25, %5 ) = L it follows that 25 | (21 —);

so, any two solutions differ by a multiple of 7 Conversely, for any

m
(a,m
integer x satisfying ax = b mod m, each of the integers x; := x + (C’f—’;)

kam
(am) = b mod m.

(as k varies over integers) satisfies axy = azr +



Some Problems on Congruences from section 2.1

Q 12, P. 57. If 19|(4n*+4), then n? = —1 mod 19 which is impossible
as 19 = 3 mod 4.

Q 26, P. 57. Note 504 = (7)(8)(9). Now,
(n*—=1nP*n*+1)=n"—n=0mod 7.

Also, if n is even, then 8|n3. If n is odd, then n® 4 1 are even and one
of them is a multiple of 4.
Also, if 3|n, then 9|n3. If (9,n) = 1, then Euler’s congruence shows
n® =1 mod 9 as ¢(9) = 6.

Q 28,29,30, P. 57.

Each of these follows by noting that powers of a fixed integer modulo
a fixed modulus is periodic by pigeon-hole principle. Hence, we have:
2" mod 10 going as 2,4,8,6,2,---;

3" mod 10 going as 3,9,7,1,3,--- and;

3™ modulo 100 going as 3,9, 27,81, 43,29, 87,61, 83,49,47,41, 23,69, 07,
21,63,89,67,01,03, - -

Of course, we can also use Euler’s congruence for 3" mod 10 and mod
100.

Q 36, P. 58. If p = 2,3 or 5, we can easily verify (p — 1)! + 1 is a
power of p. Let p > 5 be a prime. Then, each of the three numbers
2,(p—1)/2,p — 1 occurs separately in the product (p — 1)!; therefore,
(p — 1)* divides (p — 1).

Now, if (p — 1)! = p* — 1 for some k, then (p — 1)2|(p* — 1). As we
have seen, p* — 1 = k(p — 1) mod (p — 1)? (expanding p* as (p — 11)").
Hence, we must have (p —1)|k if (p—1)! = p* — 1. But then pr~! —1
pf —1 = (p—1)! which is impossible as p > 7 (by induction on n >
we have n"~! —1 > (n —1)!).

Q 37, P. 58. By exercise 36, for any prime p > 5, we have that
(p — 1)!'+ 1 is not a power of p. But, it is a multiple of p by Wilson;
hence, it is divisible by at least another prime different from p.

Q 44.

—1 —Dp—-2)-(p—k —1)kk! .
(pk):@ =20 =K) _ Uy

Q 51. We need to prove that (p—1)! =p—1mod (1+2+---+(p—1))
if p is a prime.
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As (p—2)! =1 mod p for p > 2 prime, we have

(P-D'=(p-1) _2Ap-2'-1

p(p—1)/2 p

Q 52. We have to show (p —2)! = 1 mod p but that (p —2)! —1 is not
a power of p if p > 5.

The first assertion is clear from Wilson. For the second one, note that
for odd p, considering modulo p — 1, we have

(p=2)!'=(=1)(=2)- - (=(p—2) = (=1)"*(p - 2)!
which gives 2(p — 2)! =0 mod p — 1.
Therefore, if (p — 2)! = 1 + p* for some k, then the RHS is = 2 mod
p — 1). Multiplying by 2, we have

0=4 mod(p—1).

This gives p = 2,3 or 5.
Q 15, P.63, NZM.
pa -1 _ pa B pa -1
k k k—1
(P [ p® p*
-(1)-(7) (%)
etc. Using (p:) =0 mod p if 0 < k < p%, this gives for £ < p® — 1 that

<pak_ 1) = (—1)* mod p.

Q 16. We will prove something more general than what is asked for;
this is the so-called Lucas’s theorem.
Indeed, let p be a prime and write the base p expansions

n=mnyg+np+---+np
k=ko+kip+---+kp"

where 0 < n;, k; < p. Consider the polynomial (1 + z)" € (Z/pZ)[X].
Clearly

(1+X)"= (14 X)™(1+ XP)™ - (1 + XP")™

because (1 + X)*" = 14 X?" in (Z/pZ)[X]. The coefficient of X* is
(Z) looking at the LHS. Looking at the RHS, the coefficient is clearly

() ()
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Hence, we obtain Lucas’s theorem: for any prime p, we have modulo

n _ No ni Ty
k)~ \ko) \ K kr)
Q 17. If the numbers ¢; are defined by the power series identity:

(I+a+--+aP /(1 -2 =1+cz+cr?+---

we need to prove that p|c; for each 1.
We simply multiply the numerator and denominator of the LHS by
1 — x to obtain

(1—-a2)/ Q-2 =14+cz+---
Reading this power series mod p, we get
=1+ + e+

which clearly proves p|c; for all i.
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2. (SuN-Tzu/ARYBHATA) CHINESE REMAINDER THEOREM

The strange title above alludes to the fact that the result was stated in
the 3rd century by Sun-Tzu but no proof or complete method of proof
was given and later Aryabhata in the 6th century gave an algorithm.
The theorem generalizes the last result proved in the previous section
and is the following:

CRT. Let ny,--- ,n, ber > 2 positive integers which are pairwise co-
prime (that is, (n;,n;) =1 for all i # j). Let ay,--- ,a, be arbitrary
integers. Then, there exists an integer x which simultaneously satisfies

the congruences x = a; mod n; for each i =1,--- ,r. Further the solu-
tion x is unique mod NNy -« - N,
Proof.

Firstly, notice that the last assertion is easy to see because the differ-
ence of any two solutions is a multiple of each n; and hence, of the
product nyns - - - n, which is their LCM.

For the existence, we give two proofs - one existential and the other
constructive.

First Proof. For any positive integer n, let us use the symbol Z, to
denote the set {1,2,---,n}. Then, for n = niny---n,, we have a
“function”

T : 7y — Ly X Lipy X -+ L,

given by
b (by,be,- -+ ,b)

where b; is the unique element of Z,,, such that b = b; mod n,;. We see
that 7" is a 1-1 function because if T'(b) = T'(c), then b — ¢ = 0 mod n;
for each 7 < r; so, b — ¢ = 0 mod niny - - -n, as the LCM of the n;’s is
their product. Now, both sides have the same number n of elements;
so, any 1-1 map must be onto. Finally, each a; = b; € Z,, for a unique
b;. Hence, if T'(a) = (b1, - ,b,), then a = a; mod n; for each i < r.

Second Proof. Let m; = n/n; = H#i n;. Then, for each i < r, we have
(mi,n;) = 1 by the assumption of pairwise coprimality of the m;’s.
Then, we know that there exists m; such that m;m, = 1 mod n; for
each ¢ < r. Also, clearly n;|m; for each j # i. Consider the integer

a = aymym} + agmomy + -+ - + a,mm..

Clearly, a = a; mod n; for each ¢ < r. This finishes the proof.
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Proposition. Let k,n be arbitrary positive integers and suppose a;;
are integers (for 1 < i < k,1 < j < n). Suppose mq,--- ,my are
pairwise coprime integers and by, --- , b, be arbitrary integers. Then,
the k simultaneous congruences

ancy + a1p%s + - - + a1, = by (mod my),

a1 + Ag0%s + - -+ + Ay, = by (Mod may),

Ap1T1 + AQpoTo + + -+ + Qpply = bk (mod mk)

have a solution in integers xq,--- ,x, if and only if, for each i < k, the
GCD of a;1, a0, , Qim, m; divides b;.
Proof.

We apply induction on k£ to prove the theorem. The proof is construc-
tive modulo the Euclidean division algorithm (which is also construc-

tive).
Consider first the case k = 1.
If the integers x4, - - , z, satisfy the congruence

a111 + a12T2 + -+ ALy = b1 (TTLOd ml),

we have 2?21 ay;x; — by = myt for some integer ¢. Thus, the greatest
common divisor of a1, as, - , a1, and my divides b;. This condition
is also sufficient by the Euclidean division algorithm. For, if by = sd
where d = GCD(ay1, - , a1, my), then writing

d= Z a1;y; + mat,

Jj=1
we have a solution x; = sy, -+ ,x, = sy, of the congruence
1121 + Q129 + *++ + A1 Ty = bl (mod ml).

Therefore, for a general k, a necessary condition for a common solution
is that, for each ¢ < k, the GCD of a;1, a2, - - , ain, m; divides b;.

This condition also ensures that each individual congruence has a so-
lution.

Now, we suppose that the GCD condition suppose we have already got-
ten a common solution zy, - - - , x,, in integers for the first r congruences
(1<r<k):

a1y + ATy + -+ apxy, = by (mod my) V1 <i<r.
Now, we first choose a solution yi, - - -, y, of the (r + 1)-th congruence

41121 + Qi1 2%2 + o+ Qrp1.0Tn = bpy1 (Mod myyq).
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For each j < n, choose X such that
mimsy - m,X; = y; — T (mod my.1).

These choices are possible because mims---m, and m,.; relatively
prime. We observe that for the new choices

e
=

the first r congruences continue to hold. Moreover,

T z;+mymg---m,X; (1 <j<n),

n

n
[ A
> " r1 2 =Yt (@ + mamy - m, X))

J=1 J=1

= Z art1,Y; = b1 (mod my4q).
j=1
Therefore, the theorem is proved by induction.

Remarks.

(I) The classical Chinese remainder theorem can be thought of as the
special case when the matrix {a;;} has only a single column which is
non-zero.
(II) If the matrix {a;;} has a left inverse (that is an n X k integer matrix
{bi;} such that BA = I,,, then clearly the necessary condition of the
theorem holds for any choice of by, -, by.
In particular, if £ = n and {a;;} is an n x n integral matrix whose in-
verse is also integral, each system of n linear congruences in n variables
with pairwise co-prime moduli has a solution.
(III) A special case of the above theorem which is of interest as it pro-
duces a solution for arbitrary b;’s, is the following one. In the theorem
above, if, for each ¢ < k, there is some j for which a;; is coprime to m,,
then the necessary condition obviously holds.
(IV) In the classical case of one variable, there is a unique solution
modulo myms---my. In the multivariable case, there is no natural
uniqueness assertion possible. The point is that homogeneous congru-
ences in more than one variable have many solutions. So, uniqueness
can be asked for only after specifying a box (more precisely, an n-
dimensional parallelotope) in which we seek solutions.
For example, both (1,4) and (0, —1) are simultaneous solutions of the
congruences

r—y=1 (mod 2),

x4y =2 (mod 3).



