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1. Congruences

It was the genius of C-F Gauss that defined the notion as well as no-
tation of congruences.

Given a natural numberm, two integers a and b are said to be congruent
modulo m, if m divides the integer a− b. One uses the notation a ≡ b
mod m.
The relation of congruence generalizes equality of numbers and satisfies
the basic properties

a ≡ b mod m,

c ≡ d mod m

implies a+ c ≡ b+ d, ac ≡ bd mod m.
Also, if ab ≡ ac mod m and (a,m) = 1, then b ≡ c mod m.
The fact that for any positive integer m and a coprime integer a, the
GCD 1 can be expressed as ax + my can be rephrased as asserting
that ax ≡ 1 mod m has a solution x. One calls x the ‘multiplicative
inverse’ of a mod m. This is meaningful as x is unique mod m by the
last property above.

Fermat’s little theorem can be re-stated as saying that if p is a prime
number then for any integer a, we have ap ≡ a mod p; further, if a is
coprime to p, then ap−1 ≡ 1 mod p.

Nice fact: If f(x) is a polynomial with integer coefficients, then f(a) ≡
f(b) mod a− b for integers a ̸= b.
The proof is easy as follows. Write

f = a0 + a1x+ · · ·+ anx
n.

Then, f(b)−f(a)
b−a

=
∑n

r=1 ar
br−ar

b−a
∈ Z.

This observation has some interesting applications. For instance, recall
problem 18 we had discussed earlier:
Suppose f is an integer polynomial such that f(a1) = f(a2) = f(a3) =
2 for distinct integers a1, a2, a3. Then, 3 cannot be an integral value of
f .

A generalization of Fermat’s little theorem is the so-called Euler’s con-
gruence. To discuss it, we introduce two notions:
Given a positive integer m > 1, call a set of m integers a1, · · · , am a
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complete residue system mod m if, modulo m, these are the m integers
0, 1, · · · ,m− 1.
A reduced residue system mod m is a set of (distinct) integers r1, r2, · · · , rk
such that every integer coprime to m is congruent modulo m to exactly
one of the ri’s.
The number k is denoted by ϕ(m) and ϕ is called the totient function.

Fact. If {r1, · · · , rk} is a reduced residue system mod m and a is an
integer coprime to m, then {ar1, · · · , ark} is also a reduced residue
system mod m.
Indeed, ard is coprime to m for each i and, if ari ≡ arj mod m, then
ri ≡ rj mod m. Hence, we have the assertion. This implies:

Euler’s congruence. If m is any positive integer, and (a,m) = 1,
then aϕ(m) ≡ 1 mod m.
Proof. The sets {ri mod m : 1 ≤ i ≤ ϕ(m)} and {ari mod m : 1 ≤
i ≤ ϕ(m)} are equal. Therefore,

aϕ(m)

( ϕ(m)∏
i=1

ri

)
≡

ϕ(m)∏
i=1

ri mod m.

As (
∏ϕ(m)

i=1 ri,m) = 1, we have the asserted congruence of Euler.

Wilson’s theorem. For any positive integer m > 1, we have (m −
1)! ≡ −1 mod m if, and only if, m is prime.
Here is a proof.
Let p be prime. Observe that every integer a between 1 and p − 1 is
coprime to p and hence admits a unique multiplicative inverse b of a
mod p that is between 1 and p− 1; so ab ≡ 1 mod p.
Start by pairing each a between 1 and p − 1 with a b as above; note
that a gets paired with itself if and only if a2 ≡ 1 mod p which means
p|(a2−1) and thus has the two solutions a = 1, p−1. Hence (p−1)! ≡
1(p− 1) ≡ −1 mod p.
If m > 1 is composite, then clearly any divisor 1 < d < m divides
(m− 1)! which is, therefore, 0 mod m.

Surprisingly, Fermat’s little theorem and Wilson’s theorem for a prime
p can be deduced from each other!
We leave “Wilson implies Fermat’s little” as an exercise and discuss
the opposite implication which has some new features.

We show that Fermat’s little theorem implies Wilson’s theorem using
the so-called forward difference operator.
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For a function f , one has its ‘forward difference’ function ∆f defined
as (∆f)(x) = f(x+ 1)− f(x).
If ∆rf denotes ∆ iterated r times, it follows (again by induction on n!)
that

(∆nf)(x) =
n∑

r=0

(−1)r
(
n

r

)
f(x+ n− r).

Let f be a polynomial of degree d ≥ 1. Then, observe ∆f is a polyno-
mial of degree d− 1. Also, if f is a constant, ∆f is the zero function.
Therefore, if n > d, we have (∆nf)(x) = 0 ∀ x.
Further, ∆df is not any constant but the constant d!ad where ad is the
leading coefficient of f - this is seen once again by induction - this time
on d.
Writing this out for the polynomial f(x) = xd gives us

d! =
d∑

r=0

(−1)r
(
d

r

)
(x+ d− r)d ∀ x.

In particular,

d! =
d−1∑
r=0

(−1)r
(
d

r

)
(d− r)d.

Reading the last equality

(p− 1)! =

p−2∑
r=0

(−1)r
(
p− 1

r

)
(p− 1− r)p−1

modulo p, by Fermat’s little theorem, we obtain

(p− 1)! ≡
p−2∑
r=0

(−1)r
(
p− 1

r

)
mod p.

However,
∑p−2

r=0(−1)r
(
p−1
r

)
= −1 since

(−1)p−1 +

p−2∑
r=0

(−1)r
(
p− 1

r

)
=

p−1∑
r=0

(−1)r
(
p− 1

r

)
= (1− 1)p−1 = 0.

Thus, we obtain Wilson’s congruence (p− 1)! ≡ −1 mod p.
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We mention an important congruence:

Wolstenholme’s theorem. For a prime p > 3, we have 1 + 1
2
+ 1

3
+

· · ·+ 1
p−1

= p2a
b

with (pa, b) = 1.

Before proving this, let us introduce the notion of congruence between
rational numbers.
Once that notion is introduced, Wolstenholme’s theorem can be rewrit-
ten as

∑p−1
r=1

1
r
≡ 0 mod p2 when p is a prime > 3.

Given a prime p, one can talk about a rational number a/b modulo p
when p does not divide b; define :
a
b
+ c

d
≡ ab′ + cd′ mod p

where bb′ ≡ 1 ≡ dd′ mod p for unique positive integers b′, d′ < p as
above.
Why does the above make sense?
First, note that when b, d are not divisible by p, we have (bd)′ ≡ b′d′

mod p because

bd((bd)′ − b′d′) = (bd)(bd)′ − bb′dd′ ≡ 1− 1 = 0 mod p

which means p divides (bd)′ − b′d′ as p does not divide bd. Hence,

a

b
+

c

d
=

ad+ bc

bd
≡ (ad+ bc)(bd)′

≡ (ad+ bc)b′d′ ≡ ab′dd′ + cd′bb′ ≡ ab′ + cd′ mod p.

Thus, congruence modulo p, respects addition and multiplication of
rational numbers mod p provided we are looking at rational numbers
whose denominators are not divisible by p.

Now, we proceed to prove Wolstenholme’s theorem.

1 +
1

2
+ · · ·+ 1

p− 1

= (1 +
1

p− 1
) + (

1

2
+

1

p− 2
) + · · ·+ (

1

(p− 1)/2
+

1

(p+ 1)/2
)

= p(
1

1(p− 1)
+

1

2(p− 2)
+ · · ·+ 1

(p− 1)(p+ 1)/4
).

Now, since p− r ≡ −r mod p, we get
1

1(p−1)
+ 1

2(p−2)
+ · · ·+ 1

(p−1)(p+1)/4
≡ −1

12
+ −1

22
+ · · ·+ −1

((p−1)/2)2
mod p.

We need to show that when p > 3, the right hand side is a rational
number of the form pa/b.
Note that for each r between 1 and r − 1, −r2 is congruent to exactly
one term above. Thus,
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12 + 22 + · · ·+ (p− 1)2 ≡ 2( 1
12

+ 1
22

+ · · ·+ 1
((p−1)/2)2

) mod p.

But, the left hand side equals (p−1)p(2p−1)
6

which is clearly a multiple of
p when p ̸= 2, 3 and we have the result.

Square-root of −1 mod p.
For which primes p is it true that there exists an integer a such that
a2 ≡ −1 mod p?
We prove that this happens if, and only if, either p = 2 or p ≡ 1 mod
4.
If p = 1, the result is clear with a = 1.
Let p be an odd prime. If a2 ≡ −1 mod p, then raising both sides to
the (p−1)/2-th power, we have ap−1 ≡ (−1)(p−1)/2 mod p. By Fermat’s
little theorem, the LHS is 1 mod p. Hence, (p− 1)/2 must be even; i.e.
p must be 1 mod 4 for a solution to exist.
Finally, we show the main nontrivial assertion that if p ≡ 1 mod 4 is
a prime, then indeed a2 ≡ −1 mod p does have a solution. Indeed,
Wilson’t congruence (p − 1)! ≡ −1 mod p can be rewritten (using
p − i ≡ −i mod p for i ≤ (p − 1)/2) as ((p − 1)/2)!2(−1)(p−1)/2 ≡ −1
mod p. As (p− 1)/2 is even, we have the solution a = ((p− 1)/2)! is a
solution of a2 ≡ −1 mod p.

Primes expressible as sums of two squares

We prove the beautiful result due to Fermat:

A prime p is expressible as a2+b2 for integers a, b if, and only if, p = 2
or p ≡ 1 mod 4. Further, if p ≡ 3 mod 4 is a prime dividing a number
of the form a2 + b2, then p|a, p|b.
Proof.
If p = 2, clearly we have a solution a = b = 1. Let p ≡ 1 mod 4.
Start with t such that t2 ≡ −1 mod p. Consider the numbers u + tv
as u, v vary over 0, 1, · · · , [√p]. These are (

√
p] + 1)2 > p numbers,

which implies by the pigeon-hole principle that there exist two different
pairs (u1, v1) and (u2, v2) such that u1 + tv1 ≡ u2 + tv2 mod p. Then
a = u1 − u2 and b = v1 − v2 satisfy a2 ≡ −b2 mod p. Thus, p|(a2 + b2).
But, clearly |a|, |b| <

√
p which implies 0 < a2 + b2 < 2p. Hence

p = a2 + b2.
Now, we prove the second assertion from which it will follow that primes
≡ 3 mod 4 are not expressible as sums of two squares.
Suppose p ≡ 3 mod 4 and assume p|(a2 + b2). If (p, a) = 1, then get
ac ≡ 1 mod p which implies 1 ≡ a2c2 ≡ −(tc)2 mod p, a contradiction
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of the fact that −1 cannot be a square mod such primes. Hence, p|a
and similarly p|b.

Finally, we can deduce from the above results that:

Theorem. A positive integer n is expressible as a sum of two squares
of integers if, and only if, each prime divisor of n which is ≡ 3 mod 4
appears with an even power.
The necessity follows from above. For the sufficiency, one just needs to
observe Brahmagupta’s identity

(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac+ bd)2.

Now, we observe a result on solvability of linear congruences.

Proposition. Let m > 0, and a, b be integers. Then, the congruence
ax ≡ b mod m has an integer solution for x if, and only if, (a,m)
divides b. Further, if this condition is satisfied, the set of solutions is
the arithmetic progression with common difference m/(a,m).
Proof.
Clearly, if x is an integer solution of the congruence ax ≡ b mod m,
then there is an integer y so that ax+my = b. Clearly, (a,m) divides
b. Conversely, if (a,m) divides b, say b = (a,m)B, then expressing
(a,m) = au+mv for some integers u, v, we have b = a(uB) +m(vB).
So, ax ≡ b mod m has a solution in integers x. Finally, if x1, x2 are
two integer solutions of ax ≡ b mod m, then ax1 ≡ b ≡ ax2 mod m
and so m|a(x1 − x2). Dividing m and a by their GCD, we have that

m
(a,m)

∣∣∣∣ a
(a,m)

(x1−x2). As

(
m

(a,m)
, a
(a,m)

)
= 1, it follows that m

(a,m)

∣∣∣∣(x1−x2);

so, any two solutions differ by a multiple of m
(a,m)

. Conversely, for any

integer x satisfying ax ≡ b mod m, each of the integers xk := x+ km
(a,m)

(as k varies over integers) satisfies axk = ax+ kam
(a,m)

≡ b mod m.
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Some Problems on Congruences from section 2.1

Q 12, P. 57. If 19|(4n2+4), then n2 ≡ −1 mod 19 which is impossible
as 19 ≡ 3 mod 4.

Q 26, P. 57. Note 504 = (7)(8)(9). Now,

(n3 − 1)n3(n3 + 1) = n7 − n ≡ 0 mod 7.

Also, if n is even, then 8|n3. If n is odd, then n3 ± 1 are even and one
of them is a multiple of 4.
Also, if 3|n, then 9|n3. If (9, n) = 1, then Euler’s congruence shows
n6 ≡ 1 mod 9 as ϕ(9) = 6.

Q 28,29,30, P. 57.
Each of these follows by noting that powers of a fixed integer modulo
a fixed modulus is periodic by pigeon-hole principle. Hence, we have:
2n mod 10 going as 2, 4, 8, 6, 2, · · · ;
3n mod 10 going as 3, 9, 7, 1, 3, · · · and;
3n modulo 100 going as 3, 9, 27, 81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 07,
21, 63, 89, 67, 01, 03, · · ·
Of course, we can also use Euler’s congruence for 3n mod 10 and mod
100.

Q 36, P. 58. If p = 2, 3 or 5, we can easily verify (p − 1)! + 1 is a
power of p. Let p > 5 be a prime. Then, each of the three numbers
2, (p− 1)/2, p− 1 occurs separately in the product (p− 1)!; therefore,
(p− 1)2 divides (p− 1)!.
Now, if (p − 1)! = pk − 1 for some k, then (p − 1)2|(pk − 1). As we
have seen, pk − 1 ≡ k(p− 1) mod (p− 1)2 (expanding pk as (p− 11)

k).
Hence, we must have (p−1)|k if (p−1)! = pk−1. But then pp−1−1 ≤
pk − 1 = (p− 1)! which is impossible as p ≥ 7 (by induction on n ≥ 7,
we have nn−1 − 1 > (n− 1)!).

Q 37, P. 58. By exercise 36, for any prime p > 5, we have that
(p − 1)! + 1 is not a power of p. But, it is a multiple of p by Wilson;
hence, it is divisible by at least another prime different from p.

Q 44.(
p− 1

k

)
=

(p− 1)(p− 2) · · · (p− k)

k!
≡ (−1)kk!

k!
= (−1)k.

Q 51. We need to prove that (p−1)! ≡ p−1 mod (1+2+ · · ·+(p−1))
if p is a prime.
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As (p− 2)! ≡ 1 mod p for p > 2 prime, we have

(p− 1)!− (p− 1)

p(p− 1)/2
=

2((p− 2)!− 1)

p
∈ Z.

Q 52. We have to show (p− 2)! ≡ 1 mod p but that (p− 2)!− 1 is not
a power of p if p ≥ 5.
The first assertion is clear from Wilson. For the second one, note that
for odd p, considering modulo p− 1, we have

(p− 2)! ≡ (−1)(−2) · · · (−(p− 2)) = (−1)p−2(p− 2)!

which gives 2(p− 2)! ≡ 0 mod p− 1.
Therefore, if (p − 2)! = 1 + pk for some k, then the RHS is ≡ 2 mod
p− 1). Multiplying by 2, we have

0 ≡ 4 mod(p− 1).

This gives p = 2, 3 or 5.

Q 15, P.63, NZM.(
pα − 1

k

)
=

(
pα

k

)
−
(
pα − 1

k − 1

)
=

(
pα

k

)
−
(

pα

k − 1

)
+

(
pα

k − 2

)
etc. Using

(
pα

k

)
≡ 0 mod p if 0 < k < pα, this gives for k ≤ pα − 1 that(

pα − 1

k

)
≡ (−1)k mod p.

Q 16. We will prove something more general than what is asked for;
this is the so-called Lucas’s theorem.
Indeed, let p be a prime and write the base p expansions

n = n0 + n1p+ · · ·+ nrp
r

k = k0 + k1p+ · · ·+ krp
r

where 0 ≤ ni, ki < p. Consider the polynomial (1 + x)n ∈ (Z/pZ)[X].
Clearly

(1 +X)n = (1 +X)n0(1 +Xp)n1 · · · (1 +Xpr)nr

because (1 + X)p
d
= 1 + Xpd in (Z/pZ)[X]. The coefficient of Xk is(

n
k

)
looking at the LHS. Looking at the RHS, the coefficient is clearly(

n0

k0

)(
n1

k1

)
· · ·

(
nr

kr

)
.
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Hence, we obtain Lucas’s theorem: for any prime p, we have modulo
p, (

n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nr

kr

)
.

Q 17. If the numbers ci are defined by the power series identity:

(1 + x+ · · ·+ xp−1)/(1− x)p−1 = 1 + c1x+ c2x
2 + · · ·

we need to prove that p|ci for each i.
We simply multiply the numerator and denominator of the LHS by
1− x to obtain

(1− xp)/(1− x)p = 1 + c1x+ · · ·
Reading this power series mod p, we get

1 ≡ 1 + c̄1x+ c̄2x
2 + · · ·

which clearly proves p|ci for all i.
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2. (Sun-Tzu/Arybhata) Chinese remainder theorem

The strange title above alludes to the fact that the result was stated in
the 3rd century by Sun-Tzu but no proof or complete method of proof
was given and later Aryabhata in the 6th century gave an algorithm.
The theorem generalizes the last result proved in the previous section
and is the following:

CRT. Let n1, · · · , nr be r ≥ 2 positive integers which are pairwise co-
prime (that is, (ni, nj) = 1 for all i ̸= j). Let a1, · · · , ar be arbitrary
integers. Then, there exists an integer x which simultaneously satisfies
the congruences x ≡ ai mod ni for each i = 1, · · · , r. Further the solu-
tion x is unique mod n1n2 · · ·nr.
Proof.
Firstly, notice that the last assertion is easy to see because the differ-
ence of any two solutions is a multiple of each ni and hence, of the
product n1n2 · · ·nr which is their LCM.
For the existence, we give two proofs - one existential and the other
constructive.

First Proof. For any positive integer n, let us use the symbol Zn to
denote the set {1, 2, · · · , n}. Then, for n = n1n2 · · ·nr, we have a
“function”

T : Zn → Zn1 × Zn2 × · · ·Znr

given by
b 7→ (b1, b2, · · · , br)

where bi is the unique element of Zni
such that b ≡ bi mod ni. We see

that T is a 1-1 function because if T (b) = T (c), then b− c ≡ 0 mod ni

for each i ≤ r; so, b− c ≡ 0 mod n1n2 · · ·nr as the LCM of the ni’s is
their product. Now, both sides have the same number n of elements;
so, any 1-1 map must be onto. Finally, each ai ≡ bi ∈ Zni

for a unique
bi. Hence, if T (a) = (b1, · · · , br), then a ≡ ai mod ni for each i ≤ r.

Second Proof. Let mi = n/ni =
∏

j ̸=i nj. Then, for each i ≤ r, we have

(mi, ni) = 1 by the assumption of pairwise coprimality of the mj’s.
Then, we know that there exists m′

i such that mim
′
i ≡ 1 mod ni for

each i ≤ r. Also, clearly nj|mi for each j ̸= i. Consider the integer

a = a1m1m
′
1 + a2m2m

′
2 + · · ·+ armrm

′
r.

Clearly, a ≡ ai mod ni for each i ≤ r. This finishes the proof.
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Proposition. Let k, n be arbitrary positive integers and suppose aij
are integers (for 1 ≤ i ≤ k, 1 ≤ j ≤ n). Suppose m1, · · · ,mk are
pairwise coprime integers and b1, · · · , br be arbitrary integers. Then,
the k simultaneous congruences

a11x1 + a12x2 + · · ·+ a1nxn ≡ b1 (mod m1),

a21x1 + a22x2 + · · ·+ a2nxn ≡ b2 (mod m2),

· · · · · · · · · · · · · · ·
ak1x1 + ak2x2 + · · ·+ aknxn ≡ bk (mod mk)

have a solution in integers x1, · · · , xn if and only if, for each i ≤ k, the
GCD of ai1, ai2, · · · , ain,mi divides bi.
Proof.
We apply induction on k to prove the theorem. The proof is construc-
tive modulo the Euclidean division algorithm (which is also construc-
tive).
Consider first the case k = 1.
If the integers x1, · · · , xn satisfy the congruence

a11x1 + a12x2 + · · ·+ a1nxn ≡ b1 (mod m1),

we have
∑n

j=1 a1jxj − b1 = m1t for some integer t. Thus, the greatest
common divisor of a11, a12, · · · , a1n and m1 divides b1. This condition
is also sufficient by the Euclidean division algorithm. For, if b1 = sd
where d = GCD(a11, · · · , a1n,m1), then writing

d =
n∑

j=1

a1jyj +m1t,

we have a solution x1 = sy1, · · · , xn = syn of the congruence

a11x1 + a12x2 + · · ·+ a1nxn ≡ b1 (mod m1).

Therefore, for a general k, a necessary condition for a common solution
is that, for each i ≤ k, the GCD of ai1, ai2, · · · , ain,mi divides bi.
This condition also ensures that each individual congruence has a so-
lution.
Now, we suppose that the GCD condition suppose we have already got-
ten a common solution x1, · · · , xn in integers for the first r congruences
(1 ≤ r < k):

ai1x1 + ai2x2 + · · ·+ ainxn ≡ bi (mod mi) ∀ 1 ≤ i ≤ r.

Now, we first choose a solution y1, · · · , yn of the (r+ 1)-th congruence

ar+1,1x1 + ar+1,2x2 + · · ·+ ar+1,nxn ≡ br+1 (mod mr+1).
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For each j ≤ n, choose Xj such that

m1m2 · · ·mrXj ≡ yj − xj (mod mr+1).

These choices are possible because m1m2 · · ·mr and mr+1 relatively
prime. We observe that for the new choices

x′
j = xj +m1m2 · · ·mrXj (1 ≤ j ≤ n),

the first r congruences continue to hold. Moreover,
n∑

j=1

ar+1,jx
′
j ≡

n∑
j=1

ar+1,j(xj +m1m2 · · ·mrXj)

≡
n∑

j=1

ar+1,jyj ≡ br+1 (mod mr+1).

Therefore, the theorem is proved by induction.

Remarks.

(I) The classical Chinese remainder theorem can be thought of as the
special case when the matrix {aij} has only a single column which is
non-zero.
(II) If the matrix {aij} has a left inverse (that is an n×k integer matrix
{bij} such that BA = In, then clearly the necessary condition of the
theorem holds for any choice of b1, · · · , bk.
In particular, if k = n and {aij} is an n× n integral matrix whose in-
verse is also integral, each system of n linear congruences in n variables
with pairwise co-prime moduli has a solution.
(III) A special case of the above theorem which is of interest as it pro-
duces a solution for arbitrary bi’s, is the following one. In the theorem
above, if, for each i ≤ k, there is some j for which aij is coprime to mi,
then the necessary condition obviously holds.
(IV) In the classical case of one variable, there is a unique solution
modulo m1m2 · · ·mk. In the multivariable case, there is no natural
uniqueness assertion possible. The point is that homogeneous congru-
ences in more than one variable have many solutions. So, uniqueness
can be asked for only after specifying a box (more precisely, an n-
dimensional parallelotope) in which we seek solutions.
For example, both (1, 4) and (0,−1) are simultaneous solutions of the
congruences

x− y ≡ 1 (mod 2),

x+ y ≡ 2 (mod 3).


