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1 Gauss’s Theorema Aureum
Quadratic Reciprocity Law

This was regarded as a gem of number theory by Gauss and he gave six
proofs as he considered it to be of prime importance. There have been
many proofs (essentially varying only in details but not in the ideas) by
many many mathematicians - one paper in the American Mathematical
Monthly purports to give the “152nd proof”. We will give 5 or 6 proofs
before giving various applications. Using algebraic number theory, more
natural proofs can be given.

First, we roughly describe what QRL is about. The question of whether a
is a square mod b for coprime integers a, b reduces to that of primes. Then,
for odd primes p ̸= q, it turns out that the question of whether p is a square
mod q is intimately connected to that of whether q is a square mod p. This
is the reason for the name ‘reciprocity’. For an odd prime p and a coprime

to p, the Legendre symbol

(
a
p

)
is defined to be 1 or −1 according as to

whether a is a square or not mod p. For convenience, one sometimes defines
the symbol also when p|a in which case it is defined to be 0.

Recall a general result proved earlier about whether a congruence of the
form xn ≡ a mod m can be solved (where primitive roots mod m exist) is
easily determined. In particular, when p is a prime, we have:

(Euler.) For (a, p) = 1,

(
a
p

)
≡ a(p−1)/2 mod p. In particular, a is a square

or not mod p according as to whether a(p−1)/2 ≡ 1 or −1 mod p.

1.1 The Gauss Lemma

Let p be an odd prime and let S = {1, 2, · · · , (p−1)/2}. Note that S⊔ (−S)
is a reduced residue system mod p. Fix a coprime to p. For each s ∈ S, note
that we may write as ≡ essa mod p where sa ∈ S is unique and es = ±1.
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That is, es(a) = 1 if as mod p is in S and −1 if as mod p is in −S. Then,
we have:

Gauss’s lemma.

(
a
p

)
=

∏
s∈S es(a) = (−1)µ, where

µ = |{s ∈ S : es(a) = −1}|.

Proof. Note that as ≡ es(a)sa and the map s 7→ sa is a bijection because
sa = ta implies t ≡ ±smod p, which is impossible as both s, t are ≤ (p−1)/2.
Therefore, multiplying the congruences as ≡ es(a)sa mod p over all s ∈ S,
we get

a(p−1)/2
∏
s∈S

s ≡
∏
s∈S

(as) =
∏
s∈S

(essa) ≡ (−1)µ
∏
s∈S

s.

Cancelling off
∏

s∈S s, we obtain the lemma.

Remark. (Once we have defined the notion of the sign of a permutation,

we can check that)

(
a
p

)
is the sign of the permutation t 7→ at on Z∗

p.

1.1.1 Quadratic residue of 2

Applying Gauss lemma to a = 2 and an odd prime p, we obtain

(
2
p

)
=

(−1)µ where
µ = |{s ≤ (p− 1)/2 : 2s > (p− 1)/2}|.

We can easily count the cardinality µ and obtain 1 if p ≡ ±1 mod 8 and −1
if p ≡ ±3 mod 8.

1.1.2 QRL - Trigonometric Proof

Quadratic Reciprocity Law. Let p ̸= q be odd primes. Then,(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Further, (
2

p

)
= (−1)(p

2−1)/8.

We already proved the second assertion directly from Gauss’s lemma. Now,
we proceed to give a beautiful proof of the first assertion due to Eisenstein.
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(Eisenstein was a student of Gauss and was rated by Gauss to be among
the 3 topmost mathematicians of all time - the other two being Newton and
Archimedes).

Trigonometric Proof. In the identity

x2r+1 − 1/x2r+1

x− 1/x
= (x− 1/x)2r +

r−1∑
d=0

ad,r(x− 1/x)2d

proved by induction on r where ai,j are integers, we put x = eiy to obtain

sin(2r + 1)y

sin y
= (2i)2r sin2r y +

r−1∑
d=1

ad,r(2i)
2d sin2d y.

If P (t) = (2i)2rtr +
∑r−1

d=1 ad,r(2i)
2dtd, the above equality is

sin(2r + 1)y

sin y
= P (sin2 y).

As the LHS vanishes at 2πd/(2r + 1) for 1 ≤ d ≤ r, we obtain

P (t) = (2i)2r
r∏

d=1

(t− sin2(2πd/(2r + 1))).

Evaluating this at t = sin2 y, we obtain the trigonometric identity

sin(2r + 1)y

sin y
= (2i)2r

r∏
d=1

(sin2 y − sin2(2πd/(2r + 1))).

Let p ̸= q be odd primes; we prove QRL now.
By the notation in the Gauss lemma, qs = essq for each s ∈ S.
As the sine function has period 2π, we get

sin(2πqs/p) = es sin(2πsq/p).

Multiplying these over s ∈ S, we obtain(
q

p

)
=

∏
s∈S

sin(2πqs/p)

sin(2πs/p)
.
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By the above trigonometric identity for q = 2r + 1, the RHS equals

(−4)(p−1)(q−1)/4
∏
s,t

(sin2(2πs/p)− sin2(2πt/q))

where s varies in S = {1, · · · , (p− 1)/2} and t varies in {1, 2 · · · , (q− 1)/2}.
So, (

q

p

)
=

∏
s∈S

(−4)(q−1)/2
∏
t

(sin2(2πs/p)− sin2(2πt/q))

= (−4)(p−1)(q−1)/4
∏
s,t

(sin2(2πs/p)− sin2(2πt/q)).

Interchanging the roles of p and q, we obtain the QRL.

Later, we will prove how to explain this in a more conceptual manner.

1.2 Eisenstein’s lattice point proof

Let p ̸= q be odd primes. Consider the line y/x = q/p. It has ev-
idently no lattice points on it. We count the lattice points (x, y) with
1 ≤ x ≤ (p − 1)/2, 1 ≤ y ≤ (q − 1)/2. Let M be the number of such
lattice points below the line mentioned. We claim:(

q
p

)
= (−1)M .

To see how, a lattice point (x, y) lies below the line if and only if y < qx/p.
Write, for each x ≤ (p− 1)/2,

qx = qxp+ rx (0 ≤ rx < p).

So, y < qx/p means y ≤ qx. In other words,

M =

(p−1)/2∑
x=1

qx =
∑
x

⌊qx/p⌋.

Let α1, · · · , αµ be the rx’s that are > (p − 1)/2. Note that this µ = |{s ≤

(p−1)/2 : qs > (p−1)/2}| is as in Gauss lemma for q (that is,

(
q
p

)
= (−1)µ).

We show that M ≡ µ mod 2.
This would prove the claim.
Recall we wrote for x ≤ (p− 1)/2 that

qx = qxp+ rx
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and wrote α1, · · · , αµ for the rx’s that are > (p − 1)/2. Let β1, · · · , βv be
the rest of the rx’s; hence µ+ v = (p− 1)/2 and

{p− α1, · · · , p− αµ, β1, · · · , βv} = {1, 2, · · · , (p− 1)/2}.

Hence, summing both sides we get

pµ+
∑
j

βj −
∑
i

αi = (p2 − 1)/8.

Also, summing both sides of qx = qxp+ rx, we get

q(p2 − 1)/8 = p
∑
x

qx +
∑
i

αi +
∑
j

βj = pM +
∑
i

αi +
∑
j

βj .

Thus, (q−1)(p2−1)
8 = p(M − µ) + 2

∑
i αi ≡ M − µ mod 2.

This shows M ≡ µ mod 2 as LHS is even. Hence the claim follows.

We have proved

(
q
p

)
= (−1)M . Similarly

(
p
q

)
= (−1)N where N is the

number of lattice points (x, y) above the line satisfying 1 ≤ x ≤ (p−1)/2, 1 ≤
y ≤ (q − 1)/2. Therefore,(

q

p

)(
p

q

)
= (−1)M+N = (−1)(p−1)(q−1)/4

since M +N =

(
p−1
2

)(
q−1
2

)
.
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