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Here is an interesting application of CRT:

Lemma. Let n be any positive integer and let a, b, c, d ∈ Z satisfy ad−bc ≡ 1
mod n. Then, one may change a, b, c, d mod n such that the new a, b, c, d
satisfy ad− bc = 1.
Proof.
We use the Chines remainder theorem. Let a, b, c, d ∈ Z such that ad−bc ≡ 1
mod n. Write ad − bc = 1 + qn. Note that (c, d, n) = 1. We would like to
change a, b, c, d mod n so that ad− bc becomes 1.
First, let us suppose that (c, d) = 1. Consider a′ = a + un and b′ = b + vn
where u, v are to be chosen such that a′d− b′c = 1.
Now a′d− b′c = ad− bc+ (ud− vc)n = 1 + (q + ud− vc)n.
Since (c, d) = 1, we may choose u, v with q = vc−ud; this gives a′d−b′c = 1
and we have done.
So, we only have to prove that the above supposition (c, d) = 1 can be
assumed by changing c, d modulo n. Let p1, · · · , pr be the set of all primes
which divide d. If each pi|n, then clearly, none of the pi’s divide c since
(c, d, n) = 1. In such a case, evidently, (c, d) = 1.
So, let us suppose that some of the pi’s do not divide n; let p1, · · · , pk be
the subset of these primes. We note that (n, p1, · · · pk) = 1. By the Chinese
remainder theorem, choose an integer x ≡ c mod n and x ≡ 1 mod p1 · · · pk.
Then, clearly p1, · · · , pk ̸ |x.
Also, writing x = c+ ln, we have that the other pi’s which divide n cannot
divide c+ ln as (c, d, n) = 1. Hence (c+ ln, d) = 1 and we are done.

Q 14, P. 127, Tom Apostol’s book. Given positive integers a, b, x0 and
the sequence defined recursively by xn+1 = axn + b, we need to show that
not all xi’s can be prime.
First, suppose a = 1. Then, clearly xx1+1 = x1 + x1b cannot be prime as
x1 > 1 being a prime.
Now, if a ̸= 1, there exists some i so that a − 1 ̸≡ 0 mod xi. Fix such an
i. Let the order of a mod xi be n; then an ≡ 1 but a ̸≡ 1 mod xi. By
induction, we see that

xn+i = anxi + (an−1 + an−2 + · · ·+ a+ 1)b.

But, xi is prime and divides an − 1 = (a − 1)(an−1 + · · · + a + 1) while it
does not divide a− 1. Therefore, the above RHS is a proper multiple of xi
and thus xn+i cannot be prime.

Q 41, P.74, NZM. If f(n) is the sum of positive integers less than and
prime to n, we need to show f is 1-1.
We can see f(n) = nϕ(n)/2 for n > 1 (this is problem 40 and is easy to see
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because r is co-prime to n if and only if n− r is).
To prove 1-1-ness, suppose nϕ(n) = mϕ(m). Let p be the largest prime
dividing either side, say pk||n. Note that the precise power vp of p dividing
nϕ(n) is 2k−1 as p is the largest prime dividing n. Clearly, by this argument,
the power of p dividing mϕ(m) must also be 2k − 1. Then, writing n =
pkN,m = pkM , we have nϕ(n) = p2k−1Nϕ(N) = p2k−1Mϕ(M). Therefore,
Nϕ(N) = Mϕ(M). We may proceed inductively to deduce m = n.

Q 42. We need to find all n for which n/ϕ(n) is an integer. Clearly, n = 2r

are solutions (for r ≥ 0). Now, let n > 1 be any solution with at least one
odd prime divisor. Write n =

∏
p p

vp as a product of prime powers. Then,

ϕ(n) = n
∏

p(1− 1/p). So, writing n =
∏r

i=1 p
vi
i , we have

r∏
i=1

pi
pi − 1

∈ N.

We write p1 < p2 < · · · < pr for convenience. Then, p1 − 1 is coprime to
the numerator

∏
i pi which means p1 = 2. Also, the power of 2 dividing the

denominator
∏r

i=1(pi − 1) is at least by r − 1 and this must divide p1 = 2

which means r = 2. Thus, n
ϕ(n) =

2p2
p2−1 which can be an integer if and only if

p2 − 1 divides 2p2 and hence divides 2 so that we must have p2 = 3. Hence.
n = 2u3v are all the solutions.

Q 43. We need to show n − ϕ(n) < d − ϕ(d) for each divisor d of n with
d < n.
Indeed, n−ϕ(n) is the set of all a ≤ n which are NOT coprime to n. Clearly,
the number d−ϕ(d) of integers b ≤ d which are NOT coprime to d are among
the a’s and hence we haven− ϕ(n) ≥ d− ϕ(d). Strict inequality follows by
including the number n.
• We prove that any n > 1 has a prime factor smaller than every prime
factor of 3n − 2n.
Let p be the smallest prime factor of 3n − 2n. So, (p, 6) = 1. So, 2a ≡ 1
mod p. Hence (3a)n ≡ (2a)n ≡ 1 mod p.
Thus, the order d of 3a mod p divides d|(n, p− 1).
Of course d ̸= 1 (otherwise, 3a ≡ 1 ≡ 2a mod p, a contradiction).
So, the smallest prime divisor of n is ≤ any prime divisor of d and, therefore,
of p− 1; so, it is < p.

Exercise. Prove that n does not divide 2n − 1 for any n > 1.

Problem 12, P.97. For any prime p ≥ 5, we need to prove
(
mp−1
p−1

)
≡ 1

mod p3 for any m ≥ 1.
Then, modulo p3, we have(

mp− 1

p− 1

)
− 1 =

(mp− 1)(mp− 2) · · · (mp− p+ 1)− (p− 1)(p− 2) · · · 1
(p− 1)!
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≡ 1

(p− 1)!
((−mp+ p)(

p−1∑
i=1

1

i
)(p− 1)! + (m2 − 1)p2(

∑
i<j≤p−1

1

ij
)(p− 1)! ≡ 0

because
∑

i
1
i ≡ 0 mod p2 by Wolstelholme and 2

∑
i<j

1
ij ≡ 0 mod p as we

saw earlier.

Problem 13.
Note that

(
rp
p

)
≡ r mod p3 by the above problem for p ≥ 5. So

(mp)!

(p!)m
=

(
mp

p

)(
(m− 1)p

p

)
· · ·

(
2p

p

)
≡ m! mod p3.

This proves (mp)! ≡ (m!)(p!)m mod pm+3.

Generalization of Problem 14.
For any integer n ≥ 1 and odd prime p, we have the following congruences
mod p :

np − n

p
≡ −

p−1∑
r=1

1r + 2r + · · ·+ nr

r
· · · · · · (A)

For n ≥ 2,

np − n

p
≡ −

p−1∑
r=1

(−1)r(1r + 2r + · · ·+ (n− 1)r)

r
· · · · · · (A′)

In particular, we have the congruences

2p − 2

p
≡ −

p−1∑
j=1

2j

j
· · · · · · · · · (B)

2p − 2

p
≡ −

p−1∑
j=1

(−1)j

j
· · · · · · · · · (C)

.
Let us see how. Writing

ap − a

p
=

(a+ 1− 1)p − a

p
=

p−1∑
r=1

(
p

r

)
(a+ 1)r(−1)p−r

p
+

(a+ 1)p − (a+ 1)

p

we get, on using the congruence
(pr)
p ≡ (−1)r−1

r mod p, that

ap − a

p
=

p−1∑
r=1

(a+ 1)r

r
+

(a+ 1)p − (a+ 1)

p
· · · · · · (♠)

Putting a = 0 gives the well-known congruence
∑p−1

r=1
1
r ≡ 0.

Putting a = 1 gives congruence (B).
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Putting a = −2 gives the congruence (C).
Inductively, from (♠), one gets then that

np − n

p
≡ −

p−1∑
r=1

2r + · · ·+ nr

r
.

When p is an odd prime,
∑p−1

r=1
1
r ≡ 0 mod p (indeed, it is even zero modulo

p2 when p > 3 by Wolstenholme’s theorem !). Thus, we have the more
symmetric form asserted as (A). Finally, (A’) is gotten similarly to (A)
inductively from (♠) by putting a = −2,−3,−4 etc.

Counting proof for a congruence.
We had observed using Lucas’s theorem that for a prime p,

(
pn
pr

)
≡

(
n
r

)
mod

p. We now show by counting that this congruence holds modulo p3 when
p > 3.
Consider a n× p grid of squares from which we select pr squares. We may
choose r entire rows; otherwise, there are at least two rows from which
between 1 and p − 1 squares are chosen. Cyclically shifting the squares
in each row divides the choices into equivalence classes out of which

(
n
r

)
classes are singletons. The other classes are all of cardinalities multiples of
p2. Thus, we have, first of all,(

pn

pr

)
≡

(
n

r

)
mod p2

We refine this argument now. If a choice of pr squares has less than r − 2
entire rows, the corresponding equivalence class has cardinality a multiple
of p3. Therefore, the asserted congruence mod p3 reduces to showing the
special case

(
2p
p

)
≡ 2 mod p3 when p ≥ 5.

To see this, note(
2p

p

)
=

∑(
p

k

)2

≡ 2 + p2
p−1∑
k=1

k−2 mod p3

The latter sum is clearly ≡
∑p−1

k=1 k
2 ≡ 0 mod p when p > 3.
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Primes congruent to 1 mod n

If d is a positive integer, then for the arithmetic progression {nd+1;n ≥ 1},
one can use cyclotomic polynomials to prove this. In fact, when d = 2, this
reduces to Euclid’s argument!
Before proceeding further, we just point out that there are arbitrarily large
gaps in the sequence of primes; for any n ≥ 2, just observe that the n
consecutive numbers n! + 2, n! + 3, · · · , n! + n are all composite.

The cyclotomic polynomials are defined as follows.
For any n, the polynomial xn− 1 =

∏n
r=1(x− e2irπ/n) has the complex n-th

roots of unity as its roots. Note that the roots are the powers of ζ = e2iπ/n.
The root ζ has ‘order’ n; that is, it is the smallest power raised to which
gives the value 1 (unity). A root ζr has order n/(n, r) clearly. Thus, ζr has
order n if, and only if, (r, n) = 1. One defines the cyclotomic polyonomial
Φn as

Φn(x) =
∏

(r,n)=1

(x− ζr)

where the product is over the integers ≤ n which are coprime to n. The first
interesting property of Φn(x) is that it has integer coefficients. To see this,
first note that

xn − 1 =
∏
d|n

Φd(x)

as n-th roots of unity can be partitioned into disjoint sets Sd for d|n consist-
ing of those roots whose orders equal d. Let us prove that Φn(x) has integer
coefficients, by induction on n. If n = 1, then Φ1(x) = x − 1; so, it is ok.
Assume n > 1 and that Φd(x) has integer coefficients for any d < n. Then,
the equality

xn − 1 = Φn(x)
∏

d|n,d<n

Φd(x)

shows that xn − 1 = Φn(x)f(x) where f is a monic polynomial with integer
coefficients by induction hypothesis. Then, it is an easy exercise to see in-
ductively that the coefficients of Φn(x) are integers (from the top coefficients
downwards).
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Suppose pl, p2, · · · , pr are prime numbers in the arithmetic progression 1
mod d. We will use cyclotomic polynomials to produce another prime p
in this progression different from the above pi’s. This would imply that
there are infinitely many primes in such a progression. We will use the
simple observation that a polynomial p(X) with integer coefficients has the
property that p(m)− p(n) is an integer multiple of m− n.

Consider the number N = dplp2 · · · pr. Then, for any integer n, the two
values Φd(nN) and Φd(0) differ by a multiple of N . But, Φd(0) is an integer
which is also a root of unity and must, therefore, be ±1. Moreover, as
n → ∞, the values Φd(nN) → ∞ as well since Φd is a nonconstant monic
polynomial. In other words, for large n, the integer Φd(nN) has a prime
factor p. As Φd(nN) is ±1 modulo any of the p1, p2, · · · , pr and modulo d,
the prime p is different from any of the pi’s and does not divide d.
Which primes divide some value Φd(a) of a cyclotomic polynomial?
The answer is that they are precisely the primes ≡ 1 mod d.
To show this, it is enough to prove that if p is a prime not dividing d but

divides Φd(a) for some integer a, then a has order d in the group Z|ast
p (hence,

d divides the order p− 1).
Let us prove this now. Since Xd − 1 =

∏
l|dΦl(X), it follows that p which

divides Φd(a) has to divide ad − 1 also. If d were not the order of a, let
k divide d with k < d and p divides ak − 1. Once again, the relation
ak − 1 =

∏
l|k Φl(a) shows that p divides Φl(a) for some positive integer l

dividing k. Therefore, p divides both Φd(a+ p) and Φl(a+ p). Now,

(a+ p)d − 1 =
∏
m|d

Φm(a+ p) = Φd(a+ p)Φl(a+ p) (other terms).

The expression on the right hand side is divisible by p2. On the other hand,
the left side is equal, modulo p2, to ad+ dpad−1− 1. Since p2 divides ad− 1,
it must divide dpad−1 as well. This is clearly impossible since neither a nor
d is divisible by p. This proves that any prime factor p of Φd(nN) occurs in
the arithmetic progression {1+nd;n > 0} and thereby, proves the infinitude
of the primes in this progression. Interestingly, Euclid’s classical proof of
the infinitude of prime numbers is the special case of the above proof where
we can use d = 2.
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RSA cryptosystem

This is the most popular of public key cryptosystems in use today. It was
a system described by Rivest, Shamir and Adleman in 1977. It is based on
the following elementary fact from number theory. If p ̸= q are primes and
n = pq, then the number ϕ(n) = (p− 1)(q − 1) satisfies Euler’s congruence

aϕ(n) ≡ 1 mod n for any (a, n) = 1. Let us describe the RSA system now.

I. Each user A selects two large primes pA ̸= qA. Write nA = pAqA.
II. Each user A selects a large random dA such that (dA, ϕ(nA)) = 1.
III. Each user A determines the unique eA ≤ ϕ(nA) such that eAdA ≡ 1
mod ϕ(nA). Note also that (eA, ϕ(nA)) = 1.
IV. Each user A keeps pA, qA, dA private.
V. The numbers nA, eA are made public.
VI. Plaintexts are represented by a sequence of integers between 0 and
nA − 1.
VII. Public can use the enciphering transformation

fA : Z/nAZ → Z/nAZ ; P 7→ P eA mod nA

to send messages to A. The inverse of fA is C 7→ CdA mod nA is known only
to A.

Why it works :
First, mathematically, A can read the message because of the following
reason. If (P, nA) = 1, that is clear from Euler’s congruence. If pA|P , then
qA ̸ |P as P < pAqA; so

P eAdA = P 1+t(pA−1)(qA−1) ≡ P mod qA.

Evidently

P eAdA ≡ 0 ≡ P mod pA.

Now, knowing pA.qA (which A does), it is easy to compute their product nA

as well as ϕ(nA) = (pA − 1)(qA − 1). Also, raising to a power is not consid-
ered time-consuming as it can be done by a method of repeated squaring.
However, only knowing nA, it is very difficult, in practical terms, to factorise
and obtain pA and qA. Knowing ϕ(nA) is also equivalent to knowing pA and
qA because ϕ(nA) = nA − pA − qA + 1 would give us pA + qA.
It is unknown as yet as to how to break RSA without factoring nA.

Signature through RSA
To send her signature S to Beena, Alka proceeds as follows. Note that the
numbers nA, nB for Alka and Beena (although public) are usually different.
To deal with this, Alka sends fBf

−1
A (S) if nA < nB and sends f−1

A fB(S) if

nA ≥ nB. These are, respectively, (SdA mod nA)
eB mod nB and (SeB mod

nB)
dA mod nA.
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Example.
As mentioned earlier, small primes p, q should be avoided in order that fac-
torisation is computaionally infeasible. However, for the sake of demon-
stration, let us take small primes. Let A have the public key (n, e) =
(6012707, 3674911). Actually, she has chosen the primes p = 2357 and
q = 2551 and has computed n = pq = 6012707 and ϕ(n) = 6007800. Her
enciphering key, she takes to be e = 3674911 and, therefore, her deciphering
key is d = 422191. To encipher the message m = 5234673 to be sent to A,
a sender B (computes and) sends c = me mod n; this equals 3650502. On
receiving this, A deciphers m by computing cd mod n.


