Elementary Number Theory
27th October 2021

Here is an interesting application of CRT:

Lemma. Letn be any positive integer and let a, b, c,d € 7 satisfy ad—bc = 1
mod n. Then, one may change a,b,c,d mod n such that the new a,b,c,d
satisfy ad — bc = 1.

Proof.

We use the Chines remainder theorem. Let a, b, ¢, d € Z such that ad—bc = 1
mod n. Write ad — bc = 1 + gn. Note that (c¢,d,n) = 1. We would like to
change a, b, c,d mod n so that ad — bc becomes 1.

First, let us suppose that (¢,d) = 1. Consider ¢’ = a + un and ¥’ = b+ vn
where u, v are to be chosen such that a’d — b'c = 1.

Now da’'d — /e = ad — be 4+ (ud — ve)n = 1+ (¢ + ud — ve)n.

Since (¢, d) = 1, we may choose u, v with ¢ = ve— ud; this gives a’'d—b'c =1
and we have done.

So, we only have to prove that the above supposition (¢,d) = 1 can be
assumed by changing ¢, d modulo n. Let pq,--- ,p, be the set of all primes
which divide d. If each p;|n, then clearly, none of the p;’s divide ¢ since
(¢,d,n) = 1. In such a case, evidently, (c,d) = 1.

So, let us suppose that some of the p;’s do not divide n; let p1,--- ,pg be
the subset of these primes. We note that (n,pi,---pg) = 1. By the Chinese
remainder theorem, choose an integer + = ¢ mod n and z = 1 mod p; - - - pg.
Then, clearly pi,--- ,px fz.

Also, writing z = ¢+ In, we have that the other p;’s which divide n cannot
divide ¢+ In as (¢,d,n) = 1. Hence (¢ + In,d) = 1 and we are done.

Q 14, P. 127, Tom Apostol’s book. Given positive integers a, b, zo and
the sequence defined recursively by z,11 = ax, + b, we need to show that
not all z;’s can be prime.

First, suppose a = 1. Then, clearly x;,4+1 = 1 + 21b cannot be prime as
x1 > 1 being a prime.

Now, if a # 1, there exists some i so that a — 1 £ 0 mod z;. Fix such an
1. Let the order of a mod x; be n; then a” = 1 but ¢ Z 1 mod xz;. By
induction, we see that

Tpyi = a"; + (@ +a" 24+ a+ )b

But, z; is prime and divides a” — 1 = (a — 1)(a® ! + --- +a + 1) while it
does not divide a — 1. Therefore, the above RHS is a proper multiple of z;
and thus x,; cannot be prime.

Q 41, P.74, NZM. If f(n) is the sum of positive integers less than and
prime to n, we need to show f is 1-1.

We can see f(n) =n¢(n)/2 for n > 1 (this is problem 40 and is easy to see
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because r is co-prime to n if and only if n — r is).

To prove 1-1-ness, suppose ng(n) = m¢(m). Let p be the largest prime
dividing either side, say p”*||n. Note that the precise power vp of p dividing
ng(n) is 2k—1 as p is the largest prime dividing n. Clearly, by this argument,
the power of p dividing m¢(m) must also be 2k — 1. Then, writing n =
p*N,m = p* M, we have ng(n) = p?* IN¢(N) = p?* 1M @p(M). Therefore,
N¢(N) = M¢p(M). We may proceed inductively to deduce m = n.

Q 42. We need to find all n for which n/¢(n) is an integer. Clearly, n = 2"
are solutions (for » > 0). Now, let n > 1 be any solution with at least one
odd prime divisor. Write n = Hp p’ as a product of prime powers. Then,

¢(n) =n][,(1 —1/p). So, writing n = [[;_, p;", we have

r
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We write p1 < po < --+ < p, for convenience. Then, p; — 1 is coprime to
the numerator [[, p; which means p; = 2. Also, the power of 2 dividing the
denominator [];_;(p; — 1) is at least by r — 1 and this must divide p; = 2
which means r = 2. Thus, % = z% which can be an integer if and only if

p2 — 1 divides 2py and hence divides 2 so that we must have ps = 3. Hence.
n = 2“3 are all the solutions.

Q 43. We need to show n — ¢(n) < d — ¢(d) for each divisor d of n with
d < n.

Indeed, n—¢(n) is the set of all @ < n which are NOT coprime to n. Clearly,
the number d—¢(d) of integers b < d which are NOT coprime to d are among
the a’s and hence we haven — ¢(n) > d — ¢(d). Strict inequality follows by
including the number n.

e We prove that any n > 1 has a prime factor smaller than every prime
factor of 3" — 2.

Let p be the smallest prime factor of 3™ — 2™. So, (p,6) = 1. So, 2a =1
mod p. Hence (3a)" = (2a)" = 1 mod p.

Thus, the order d of 3a mod p divides d|(n,p — 1).

Of course d # 1 (otherwise, 3a = 1 = 2a mod p, a contradiction).

So, the smallest prime divisor of n is < any prime divisor of d and, therefore,
of p—1; so, it is < p.

Exercise. Prove that n does not divide 2" — 1 for any n > 1.
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Problem 12, P.97. For any prime p > 5, we need to prove (

mod p? for any m > 1.
Then, modulo p3, we have

(mp—1> o mp=1)(mp=2)---(mp—p+1)—(p-1)(p—-2)---1
p—1 (p—1)!




-1
1 —1 1
o 1),((—mp+]?)(z =D+ m? =1 Y S -1!=0
P ' i=1 i<j<p—1 J
because = 0 mod p* by Wolstelholme and 2",
saw earlier

Z<“] = 0 mod p as we

Problem 13.
Note that (2’) = 7 mod p? by the above problem for p > 5. So

B () )i

m+3

This proves (mp)! = (m!)(p!)™ mod p

Generalization of Problem 14.
For any integer n > 1 and odd prime p, we have the following congruences
mod p :

—1
P —n ST
=-3 S atIIit (A)
p r=1
Forn > 2,
nP—n RS (—1)T(T 42 4+ (n— 1)) ,
=_ e NITIE (A")

r=1

In particular, we have the congruences

2?—25_22 ......... (B)

Let us see how. Writing

ap—a_(a+1—1p—a L\ (a+ 1) (=P (a+1)P —(a+1)
p -2()

r=1

-1
we get, on using the congruence mod p, that

p—1

a’ —a _ (a+1)" a+1)p—(a+1)

p
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Putting a = 0 gives the well-known congruence Zf;i
Putting a = 1 gives congruence (B).
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Putting a = —2 gives the congruence (C).
Inductively, from (#), one gets then that

fn/pfn_ p_127"+‘..+n7“
p r=1 "

When p is an odd prime, Zf;% % = 0 mod p (indeed, it is even zero modulo

p? when p > 3 by Wolstenholme’s theorem !). Thus, we have the more
symmetric form asserted as (A). Finally, (A’) is gotten similarly to (A)
inductively from (#) by putting a = —2, —3, —4 etc.

Counting proof for a congruence.

We had observed using Lucas’s theorem that for a prime p, (I;Z) = (") mod

p. We now show by counting that this congruence holds modulo p* when
p > 3.

Consider a n x p grid of squares from which we select pr squares. We may
choose r entire rows; otherwise, there are at least two rows from which
between 1 and p — 1 squares are chosen. Cyclically shifting the squares
in each row divides the choices into equivalence classes out of which (:)
classes are singletons. The other classes are all of cardinalities multiples of
p?. Thus, we have, first of all,

()-(0) o

We refine this argument now. If a choice of pr squares has less than r — 2
entire rows, the corresponding equivalence class has cardinality a multiple
of p3. Therefore, the asserted congruence mod p?® reduces to showing the
special case (2;’) = 2 mod p? when p > 5.

To see this, note

-1
2p\ p 2_ 2p -2 3
<p>_z(k> =2+0p Zk‘ mod p

k=1

The latter sum is clearly = Zi;i k? = 0 mod p when p > 3.



Primes congruent to 1 mod n

If d is a positive integer, then for the arithmetic progression {nd+1;n > 1},
one can use cyclotomic polynomials to prove this. In fact, when d = 2, this
reduces to FEuclid’s argument!

Before proceeding further, we just point out that there are arbitrarily large
gaps in the sequence of primes; for any n > 2, just observe that the n
consecutive numbers n! + 2,n! 4+ 3,--- ,n! + n are all composite.

The cyclotomic polynomials are defined as follows.

For any n, the polynomial 2™ —1 = ["_, (z — e%™/™) has the complex n-th
roots of unity as its roots. Note that the roots are the powers of ¢ = e27/™.
The root ¢ has ‘order’ n; that is, it is the smallest power raised to which
gives the value 1 (unity). A root (" has order n/(n,r) clearly. Thus, " has
order n if, and only if, (r,n) = 1. One defines the cyclotomic polyonomial

P, as
@)= ] @)
(ryn)=1
where the product is over the integers < n which are coprime to n. The first
interesting property of ®,,(z) is that it has integer coefficients. To see this,

first note that
" —1= H Dy(x)
dln
as n-th roots of unity can be partitioned into disjoint sets Sy for d|n consist-
ing of those roots whose orders equal d. Let us prove that ®,(x) has integer
coefficients, by induction on n. If n = 1, then ®1(z) = x — 1; so, it is ok.
Assume n > 1 and that ®4(x) has integer coefficients for any d < n. Then,
the equality
" —1=,(x) H D4(x)
dln,d<n

shows that 2™ — 1 = ®,,(z) f(x) where f is a monic polynomial with integer
coefficients by induction hypothesis. Then, it is an easy exercise to see in-
ductively that the coefficients of ®,,(x) are integers (from the top coefficients
downwards).
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Suppose pj,po, -+ ,p, are prime numbers in the arithmetic progression 1
mod d. We will use cyclotomic polynomials to produce another prime p
in this progression different from the above p;’s. This would imply that
there are infinitely many primes in such a progression. We will use the
simple observation that a polynomial p(X) with integer coefficients has the
property that p(m) — p(n) is an integer multiple of m — n.

Consider the number N = dp;ps---p.. Then, for any integer n, the two
values ®4(nN) and ®4(0) differ by a multiple of N. But, ®4(0) is an integer
which is also a root of unity and must, therefore, be +1. Moreover, as
n — oo, the values ®4(nN) — oo as well since ®4 is a nonconstant monic
polynomial. In other words, for large n, the integer ®4(nN) has a prime
factor p. As ®4(nN) is £1 modulo any of the p1,po,--- ,p, and modulo d,
the prime p is different from any of the p;’s and does not divide d.

Which primes divide some value ®4(a) of a cyclotomic polynomial?

The answer is that they are precisely the primes = 1 mod d.

To show this, it is enough to prove that if p is a prime not dividing d but
divides ®4(a) for some integer a, then a has order d in the group ZLaSt (hence,
d divides the order p — 1).

Let us prove this now. Since X4 — 1 = [1yjq ®:(X), it follows that p which

divides ®4(a) has to divide a® — 1 also. If d were not the order of a, let
k divide d with k& < d and p divides a®* — 1. Once again, the relation
ab —1 = [Ty ®1(a) shows that p divides ®;(a) for some positive integer I
dividing k. Therefore, p divides both ®4(a + p) and ®;(a + p). Now,

(a+p)?—1= H D, (a+ p) = ®g(a+ p)Pi(a+ p) (other terms).

mld

The expression on the right hand side is divisible by p%. On the other hand,
the left side is equal, modulo p?, to a4 dpa®! — 1. Since p? divides a% —1,
it must divide dpa®~! as well. This is clearly impossible since neither a nor
d is divisible by p. This proves that any prime factor p of ®4(nN) occurs in
the arithmetic progression {1+nd;n > 0} and thereby, proves the infinitude
of the primes in this progression. Interestingly, Euclid’s classical proof of
the infinitude of prime numbers is the special case of the above proof where
we can use d = 2.



RSA cryptosystem

This is the most popular of public key cryptosystems in use today. It was
a system described by Rivest, Shamir and Adleman in 1977. It is based on
the following elementary fact from number theory. If p # ¢ are primes and
n = pq, then the number ¢(n) = (p — 1)(¢ — 1) satisfies Euler’s congruence
a®™ =1 mod n for any (a,n) = 1. Let us describe the RSA system now.

I. Each user A selects two large primes p4 # qa. Write ng = paqa.

II. Each user A selects a large random d4 such that (da, ¢(na)) = 1.

II1. Each user A determines the unique e4 < ¢(n4) such that eqdys = 1
mod ¢(n4). Note also that (ea, p(na)) = 1.

IV. Each user A keeps pa,qa,d4 private.

V. The numbers n 4, e4 are made public.

V1. Plaintexts are represented by a sequence of integers between 0 and
ng — 1.

VII. Public can use the enciphering transformation

fa:Z/nAZ — Z/naZ ; P— P mod ny

to send messages to A. The inverse of f4 is C' — C% mod ny4 is known only
to A.

Why it works :

First, mathematically, A can read the message because of the following
reason. If (P,n4) =1, that is clear from Euler’s congruence. If p4|P, then
qa [P as P < paqa; so

Evidently
Peada = (0= P mod py.

Now, knowing p4.g4 (which A does), it is easy to compute their product n 4
as well as ¢(n4) = (pa —1)(ga — 1). Also, raising to a power is not consid-
ered time-consuming as it can be done by a method of repeated squaring.
However, only knowing n 4, it is very difficult, in practical terms, to factorise
and obtain p4 and g4. Knowing ¢(n4) is also equivalent to knowing p4 and
ga because ¢(ng) =ns —pa — qa + 1 would give us ps + qa.

It is unknown as yet as to how to break RSA without factoring n4.

Signature through RSA

To send her signature S to Beena, Alka proceeds as follows. Note that the
numbers n4,np for Alka and Beena (although public) are usually different.
To deal with this, Alka sends fpf;'(S) if na < np and sends f;'fp(S) if
na > np. These are, respectively, (S% mod n4)®? mod np and (S mod
np)% mod ny.



8

Example.

As mentioned earlier, small primes p, ¢ should be avoided in order that fac-
torisation is computaionally infeasible. However, for the sake of demon-
stration, let us take small primes. Let A have the public key (n,e) =
(6012707,3674911). Actually, she has chosen the primes p = 2357 and
g = 2551 and has computed n = pg = 6012707 and ¢(n) = 6007800. Her
enciphering key, she takes to be e = 3674911 and, therefore, her deciphering
key is d = 422191. To encipher the message m = 5234673 to be sent to A,
a sender B (computes and) sends ¢ = m® mod n; this equals 3650502. On
receiving this, A deciphers m by computing ¢? mod n.



