
Notes of 29th November and 1st December

0.1 Proof via Gauss Sums

We give a proof of QRL using the so-called Gauss sums. This will need one
fact that we will assume without proof for the present. It will be mentioned
below.
For a prime p, and a primitive p-th root ζ of unity, we define the Gauss sum

G :=

p−1∑
a=1

(
a

p

)
ζa.

Now

G2 =
∑
a,b

(
ab

p

)
ζa+b =

∑
a,c

(
c

p

)
ζa(1+c)

where we have put b = ac and used the fact that

(
a2c
p

)
=

(
c
p

)
.

Splitting the term corresponding to c = p− 1 separately, we obtain

G2 =

p−1∑
a=1

(
−1

p

)
1 +

∑
c ̸=−1

(
c

p

)∑
a

ζa(1+c).

When c ̸= −1, the sum
∑

a ζ
a(1+c) =

∑p−1
d=1 ζ

d = −1.
Hence

G2 =

(
−1

p

)
(p− 1) +

∑
c ̸=−1

(
c

p

)
.

As
∑p−1

c=1(

(
c
p

)
= 0, we obtain

G2 =

(
−1

p

)
p.

Note, in particular, that

(
−1
p

)
p ∈ Q(ζ).

As i = ζ4 and
√
2 = ζ8+ζ−1

8 , this shows that the square-roots of any integer
are expressible as integer linear combinations of powers of some roots of
unity.
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To use this for quadratic reciprocity, we consider an odd prime q ̸= p. From

G2 =

(
−1

p

)
p = (−1)(p−1)/2p,

we get
Gq−1 = (G2)(q−1)/2 = (−1)(p−1)(q−1)/4p(q−1)/2.

So Gq = (−1)(p−1)(q−1)/4p(q−1)/2G. We shall compute Gq in another way.
Indeed, by binomial expansion

Gq =

p−1∑
a=1

(
a

p

)
ζaq + qS

where S ∈ Z[ζ], the set of numbers which are expressible as integer polyno-
mial expressions of ζ. We have used the fact that the binomial coefficients(
q
r

)
are multiples of q when 0 < r < q. Now

p−1∑
a=1

(
a

p

)
ζaq =

p−1∑
b=1

(
bq−1

p

)
ζb =

(
q−1

p

)
G

putting aq = b. Hence,

Gq =

(
q−1

p

)
G+ qS

which gives (
(−1)(p−1)(q−1)/4p(q−1)/2 −

(
q−1

p

))
G = qS.

Calling the integer u = (−1)(p−1)(q−1)/4p(q−1)/2 −
(

q−1

p

)
, we have uG = qS

which implies

u

(
−1

p

)
p = uG2 = qSG.

Thus, the rational number 1
qu

(
−1
p

)
p = SG ∈ Z[ζ].

We assume the following fact:
Fact. Z[ζ] ∩Q = Z.

We assume this without proof for now. It implies in our case that u

(
−1
p

)
p ≡

0 mod q, and hence u ≡ 0 mod q.
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Recalling that u = (−1)(p−1)(q−1)/4p(q−1)/2−
(

q−1

p

)
, and noting that p(q−1)/2 ≡(

p
q

)
mod q, and that

(
q−1

p

)
=

(
q
p

)
, we obtain QRL.

As an immediate application, we see that 3 is a quadratic residue modulo a
prime p > 3 if, and only if, p ≡ ±1 mod 12.

0.2 Some applications of QRL

Exercise∗ Let p, q be odd prime number such that (pq ) = ( qp) = 1 and

p ≡ 1 mod 8. Then, the polynomial P (X) = (X2 − p − q)2 − 4pq is ir-
reducible whereas it is reducible modulo any integer.

Solution. Look at the proof only after trying the exercise.
The proof uses only QRL. Before proceeding, we just remark that in the lan-
guage of Galois theory, this means that the Galois group of this polynomial
over Q has order 4 but is not cyclic.
Now

P (X) = X4 − 2(p+ q)X2 + (p− q)2

= (X −√
p−√

q)(X +
√
p+

√
q)(X −√

p+
√
q)(X +

√
p−√

q).

Since
√
p,
√
q,
√
p±√

q,
√
pq are all irrational, none of the linear or quadratic

factors of P (X) are in Z[X]. It suffices to show that a factorization of P
exists modulo any prime power as we can use Chinese reminder theorem to
get a factorisation modulo a general integer. Let us check modulo prime
powers now. We have the equivalent expressions:

P (X) = X4 − 2(p+ q)X2 + (p− q)2

= (X2 + p− q)2 − 4pX2

= (X2 − p+ q)2 − 4qX2

= (X2 − p− q)2 − 4pq.

The second and third equalities above show that P (X) is reducible modulo
any pn and any qn. Also since p ≡ 1 mod 8, p is a quadratic residue modulo
any 2n and the second equality above again shows that P (X) is reducible
mod 2n.
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If ℓ is a prime ̸= 2, p, q, let us show now that P (X) is reducible modulo ln

for any n.
At least one of (pℓ ), (

q
ℓ ) and (pqℓ ) is 1 because, by the product formula for

Legendre symbols, (pℓ )(
q
ℓ )(

pq
ℓ ) = 1.

According as (pℓ ), (
q
ℓ ) or (

pq
ℓ ) = 1, the expressions (X2 + p− q)2 − 4pX2 or

(X2 − p+ q)2 − 4qX2 or (X2 − p− q)2 − 4pq shows that P (X) is reducible
mod ℓn for any n.

1. We know from QRL that the symbol

(
3
p

)
= 1 if, and only if, p ≡ ±1

mod 12. We have noted earlier that 2 is not a primitive root mod a Fermat
prime Fn = 22

n
+1 with n > 1. However, we verify now that 3 is a primitive

root mod any Fermat prime Fn with n > 0. Indeed, since the order of 3
mod Fn would divide 22

n
if Fn is prime, then the assertion 3(Fn−1)/2 ≡ −1

mod Fn would be equivalent to 3 being a primitive root mod Fn. That is,

this is equivalent to

(
3
Fn

)
= −1 and hence, equivalent to Fn ≡ ±5 mod 12.

Clearly, Fn ≡ 5 mod 12 as it is 1 mod 4 and 2 mod 3.

2. We claim that 2n − 1 cannot divide 3n − 1 if n > 1.
Write an = 2n−1 and bn = 3n−1 and suppose an|bn for some n > 1. Then,
n is odd (otherwise an ≡ 0 mod 3). So, an ≡ 1 mod 3 and ≡ −1 mod 4.
In other words, an ≡ 7 mod 12. Thus, an has a prime divisor p ≡ ±5 mod

12. Now, 3n ≡ 1 mod p implies

(
3
p

)
= 1 as n is odd.

QRL gives

(
p
3

)
=

(
3
p

)(
p
3

)
= 1 or −1 according as to whether p ≡ 1 mod

4 or 3 mod 4.

But,

(
p
3

)
= 1 or −1 according as to whether p ≡ −5 or 5 mod 12. This is

a contradiction.

3. We can verify that 1/47 has decimal expansion with period 46. Can we
generalize this? Let n be a positive integer such that both 20n+3, 40n+7 are
primes. We prove that the decimal expansion of 1

40n+7 has period 40n+ 6.
Note that the period of the decimal expansion of 1/p is the order of 10 mod
p. By quadratic reciprocity law, 10 is a (non-zero) square modulo a prime p
if and only if p is of the form 40m±1, 40m±3, 40m±9 or 40m±13. Indeed,
2 is a square mod p iff p = 8k ± 1 and 5 is a square mod p iff p = 5u ± 1.
Thus, in our case of p = 40n + 7, the order of 10 is d which is a divisor of
p−1 and is not equal to the odd prime (p−1)/2 (because 10 is a non-square
mod p means 10(p−1)/2 ≡ −1 mod p). Hence, the order must be p − 1 (it

4



cannot be 2 because p > 11)

4. Let p be a prime such that every quadratic non-residue mod p is a
primitive root mod p. Then, p = 22

n
+ 1 for some n ≥ 0. In other words,

p = 3 or a Fermat prime.
Indeed, p = 3 satisfies this; assume p ̸= 3. Consider a possible odd divisor
d of p− 1. Consider an element a of order (p− 1)/d in the cyclic group Z∗

p.

Note that a(p−1)/2 ≡ −1 mod p; otherwise, the order (p − 1)/d of a would
divide (p − 1)/2, an impossibility. Thus, a is a quadratic non-residue mod
p. Hence, it would have to be a primitive root; that is, the order (p− 1)/d
equals p − 1. Therefore, d = 1. So, p − 1 is a power of 2 and is a prime
which implies it is a Fermat prime.

1 Problems on QRL from NZM

The following problems are from the exercises following section 3.2 of NZM.

Exercise 17, section 3.2. If 19a2 ≡ b2 mod 7 for some integers a, b, we
claim that this congruence must hold modulo 72.
Indeed, if (7, a) = 1, then we would have 19 ≡ (a−1b)2 mod 7 which means(

19
7

)
= 1. This is clearly checked to not hold. Hence 7|a. Hence 7|b also.

So, we have 19a2 ≡ b2 mod 72.

Exercise 20, section 3.2. If x, y are integers, we shall show that x2−2
2y2+3

cannot be an integer.
Indeed, the denominator is an odd number which is either 3 or 5 mod 8.
Hence, it must have some prime divisor p ≡ ±3 mod 8. But such a prime
cannot divide the numerator as, otherwise, 2 would be a quadratic residue
mod p.

Exercise 22, section 3.2. If p is an odd prime not dividing ab, we show
that the number of solutions for x, y satisfying ax2 + by2 ≡ 1 mod p is

p−
(

−ab
p

)
.

For any solution x, y we have, mod p,

a2x2 ≡ a− aby2 = (−ab)(y2 − b−1).

That is,

(
−ab(y2−b−1)

p

)
= 1.
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We digress to observe a few things. First, note that x2 ≡ d mod p has

1 +

(
d
p

)
solutions.

We claim that
∑p−1

y=0

(
y2+a
p

)
equals p − 1 or −1 according as to whether p

divides a or not.
We may assume p does not divide a; else, it is clear.
By the above exercise, the number of solutions of x2 ≡ y2 + a mod p is

1+

(
y2+a
p

)
. Therefore, varying y also, it follows that the number of solutions

in x, y of x2 − y2 ≡ a mod p is

p−1∑
y=0

(
1 +

(
y2 + a

p

))
= p+

p−1∑
y=0

(
y2 + a

p

)
.

On the other hand, the number of solutions of x2 − y2 ≡ a is exactly p− 1
since this congruence is equivalent to uv ≡ a where u = x + y, v = x − y,
and since (a, p) = 1, each v ̸= 0 has exactly one u. Comparison of the

two expressions for the number of solutions proves
∑p−1

y=0

(
y2+a
p

)
equals −1

when (a, p) = 1.
We already counted the number of solutions (as y varies) as the expression

p−1∑
y=0

(
1 +

(
−ab

p

)(
y2 − b−1

p

))
.

As the above count implies that
∑p−1

y=0

(
y2−b−1

p

)
= −1 (since −b−1 is co-

prime to p), we get the expression asserted.

Exercise 23, section 3.2. If a, b are positive integers, then we claim

[a/2]∑
r=1

[rb/a] +

[b/2]∑
s=1

[sa/b] = [a/2][b/2]− [GCD(a, b)/2].

This is exactly similar to Eisenstein’s proof of QRL we discussed that used
counting lattice points excepting that we have two integers a, b that may
not be primes.
Look at the line ay = bx and we first look at all the lattice points (x, y)
with 1 ≤ x ≤ a/2 and 1 ≤ y ≤ b/2. These are clearly [a/2][b/2] in number.
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Among them exactly [GCD(a, b)/2] lie on the line. The other lattice points
we counted are either below or above the line. Clearly, these are the two
sums on the LHS of our assertion.
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