
Elementary Number Theory
B. Math. (Hons.) First year

Instructor : B. Sury

September 30, 2021

Introduction.

Among the three texts prescribed in the syllabus, I will primarily follow
the one by Niven-Zuckermann-Montgomery. However, I will also discuss
examples and applications that may not be found in any of these texts but
are relevant to the topics of the syllabus.

Before beginning with purely number theoretic content, we start by dis-
cussing certain basic principles that play in many parts of mathematics in-
cluding number theory. These primarily consist of three topics: (i) Principle
of Inclusion-Exclusion, (ii) Pigeon-hole Principle, and (iii) Mathematical In-
duction. These are introduced and discussed briefly in the beginning and a
more detailed study is done at a later stage of the course.
One maxim for this course: Solve as many problems as you can.

Right in the beginning, we recall a basic axiom which we will keep using
throughout.

Well-ordering Principle. Every non-empty set S of integers has a least
element; that is, there exists s ∈ S such that s ≤ t for all t ∈ S.

1 Mathematical Induction

The Principle of Mathematical Induction is an AXIOM; it cannot be proved,
But, one usually thinks of it as a consequence of the well-ordering principle.
The assertion is:
Let S be a set of natural numbers with the two properties :
a natural number n0 ∈ S, and
whenever n ≥ n0 and n ∈ S, we have n+ 1 ∈ S.
Then S contains all the natural numbers n ≥ n0.
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One deduces this from the well-ordering principle as follows. If S is not the
whole of {n|n ≥ n0}, consider the set

T := {n ∈ N : n ≥ n0, n 6∈ S}.

This, being a non-empty set of natural numbers, has a least element t.
Clearly, t > n0 as n0 ∈ S; so, t − 1 is a natural number ≥ n0. It is not
in T by the choice of t as smallest; hence t − 1 ∈ S. By the property of S,
this implies t = (t− 1) + 1 ∈ S, which gives a contradiction. Hence, T must
be empty.

Induction is often applied as follows. If a statement Sn is to be proved to be
valid for all natural numbers n ≥ n0. One first proves Sn0 to be valid. Then,
one assumes that Sm is valid for all m with n0 ≤ m ≤ n and proves Sn+1 to
be valid.

Binomial Theorem for positive integer powers

If u, v are complex numbers, and n ∈ N, then

(u+ v)n =
n∑

r=0

(
n

r

)
urvn−r

where
(
n
r

)
:= n!

r!(n−r)! .
This follows by induction on n if we use the property(

n

r

)
+

(
n

r − 1

)
=

(
n+ 1

r

)
for 1 ≤ r ≤ n. Note that this identity itself follows on multiplying the evident
identity

1

r
+

1

n− r + 1
=

n+ 1

r(n− r + 1)

by n!
(r−1)!(n− r)!.

Here are more applications of induction. I urge you to try these problems
first before looking up the solutions given below. I leave problem 2 as an
exercise.
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Problem 1.
Prove Fermat’s little theorem :
If p is a prime number, then np−n is a multiple of n for any natural number
n. In particular, if n is a natural number not divisible by p, then p divides
np−1 − 1.

Problem 2.
Suppose n is a natural number and that two girls Archana and Bharati
are assigned one each among the numbers n and n + 1. They know their
numbers are consecutive but do not know whose number is bigger. After
every second a beep goes off and each of them announces independently and
simultaneously whether she knows the other’s number or not. Prove that
after exactly n beeps (and not before), the girl with the smaller number n
guesses her friend’s number.

Problem 3.
Prove that every rational number m

n
with 0 < m

n
< 1 can be expressed as a

sum of fractions 1
n1

+ 1
n2

+ · · ·+ 1
nk

where n1 < n2 < · · · < nk.

Problem 4.
Find the minimum number of steps needed to solve the ‘tower of Hanoi’
problem :
There are n rings placed around a tower. The rings are numbered 1 to n
from top to bottom. The problem is to slide the rings out of the first tower
and on to a second tower. The rule is to never have a ring with a larger
number over one with a smaller number. To accomplish this, a third tower
is also provided.

Problem 5.
Prove that the sequence of numbers defined by a1 = 2, an+1 = a1a2 · · · an + 1
satisfies, for any n, the identity

n∑
i=1

1

ai
+

n∏
i=1

1

ai
= 1.

Can you deduce from this that there exist infinitely many prime numbers?

Problem 6.
If n points on a circle are joined by all possible secants, find the number of
regions produced inside the circle provided no third secant passes through a
point of intersection of two secants.
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Problem 7.
Consider the Fibonacci sequence defined recursively by F1 = 1 = F2 and
Fn+1 = Fn + Fn−1 for all n ≥ 2. Prove that Fn+1 =

∑[n/2]
i=0

(
n−i
i

)
.

Here [x] denotes the largest integer ≤ x.

Problem 8.
For every natural number n, show that

∑n
r=0(−1)r

(
n
r

)
(n − r)d = 0 if d < n

and equals n! if d = n.

Problem 9.
Show that the n-th prime number pn is at the most 22n−1

.

Problem 10.
Solve the ‘marriage problem’ by induction :
Suppose each girl among a set of n girls is acquainted with a set of boys in
such a way that for each m ≤ n, the total number of boys that every subset
of m girls is aquainted with, is at least m. Then, show that each of the n
girls can be paired with a boy who is also an acquaintance.

Solution 1.
Now 1p − 1 = 0 which is certainly a multiple of p. Assume that np − n is a
multiple of p for some n ≥ 1. Now

(n+1)p−(n+1) = 1+

(
p

1

)
n+

(
p

2

)
n2+· · ·+np−(1+n) =

p−1∑
r=1

(
p

r

)
nr+np−n.

Now, for each r in between 1 and p − 1, the number
(
p
r

)
r(r − 1) · · · 1 =

p(p − 1) · · · (p − r + 1) is a multiple of p whereas p does not divide any of
r, r − 1, · · · , 1. As p is a prime, we have therefore that p divides

(
p
r

)
for

1 ≤ r < p. Hence (n+ 1)p − (n+ 1) = np − n+ a multiple of p. As np − n is
already a multiple of p by assumption, we have that (n+ 1)p− (n+ 1) is also
a multiple of p. Therefore, by mathematical induction, it follows that ap− a
is a multiple of p for every natural number a.
To prove the second statement, we have ap−a = a(ap−1−1) to be a multiple
of p and, for a not divisible by p, this means that ap−1− 1 is a multiple of p.

Solution 3.
We apply induction on the numerator m of the fraction. If m = 1, clearly m

n
is

already of the form asserted. Assume now that m > 1 and that every fraction
k
l

with 1 ≤ k < m is expressible in the asserted form. Write 1
r
≤ m

n
< 1

r−1
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for a unique r ≥ 2. Then,

m

n
− 1

r
=
mr − n
rn

.

As mr − n < m (since m
n
< 1

r−1), we may write mr−n
rn

=
∑k

i=1
1
ni

with
n1 < n2 < · · · < nk. But then

m

n
=

1

r
+

k∑
i=1

1

ni

.

We note that r < n1; otherwise, we would have m
n
− 1

r
≥ 1

n1
≥ 1

r
which implies

m
n
≥ 2r. This would mean 1

r−1 > 2
r
; that is, r < 2 which is impossible.

Therefore, r < n1 and the expression m
n

= 1
r

+
∑k

i=1
1
ni

is as asserted.

Solution 4.
For n = 1, it takes only one step to move the ring from the first tower to the
second one (and does not require a third tower). Assume f(n) is the least
number of steps required for n rings. Suppose n > 1. Move the top n − 1
rings to the second tower - this requires f(n− 1) steps. Then move the n-th
ring to the third tower - this is one step. Move the rings 1 to n − 1 from
the second to the third to tower - this again requires f(n − 1) steps. Thus,
f(n) = 2f(n− 1) + 1. By induction, we get f(n) = 2n − 1.

Solution 5.
Clearly the assertion holds for n = 1 since a1 = 2. Assume that it holds for
some n ≥ 1. Now

n+1∑
i=1

1

ai
+

n+1∏
i=1

1

ai
=

1

an+1

+
n∑

i=1

1

ai
+

1

an+1

n∏
i=1

1

ai

=

∏n
i=1 ai + 1

an+1

∏n
i=1 ai

+
n∑

i=1

1

ai
=

1∏n
i=1 ai

+
n∑

i=1

1

ai
= 1

since an+1 =
∏n

i=1 ai + 1.
Finally, notice that since each ak is relatively prime to all the ar with r < k
(it leaves a remainder 1), each prime divisor of ak gives a new prime which
does not occur in the prime factorisations of ar with r < k.

Solution 6.
Any two points give rise to a secant and we have

(
n
2

)
secants produced by n
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points. Each secant gives rise to an additional region. Further, each set of 4
points produces exactly two secants which have one point of intersection in
the interior of the circle - there are

(
n
4

)
such points inside. Each such point

of intersection gives rise to an additional region. Therefore, starting with the
single region, the total number of regions produced is

(
n
2

)
+
(
n
4

)
+ 1.

Solution 7.
Clearly, the identity

(
m
k

)
+
(

m
k−1

)
=
(
m+1
k

)
gives us the same recursion for∑[n/2]

i=0

(
n−i
i

)
as the one defining the Fibonacci numbers. Since the values

match for n = 1 and n = 2, we have the assertion.

Solution 8.
Let f(x) be any function and define the ‘forward difference operator’ ∆ on
f by (∆f)(x) = f(x + 1) − f(x). We have (∆2f)(x) = ∆(∆f)(x) = f(x +
2)− 2f(x+ 1) + f(x). By induction on n, it follows that

(∆nf)(x) =
n∑

r=0

(−1)r
(
n

r

)
f(x+ n− r).

This just uses again the identity
(
m
k

)
+
(

m
k−1

)
=
(
m+1
k

)
. Now, if f(x) happens

to be a polynomial of degree d, we observe that (∆f)(x) = f(x+ 1)−f(x) is
again a polynomial whose degree is less than d because the top degree term
cancels. Therefore, if d < n, then (∆nf)(x) is the zero polynomial. Also,
(∆df)(x) is a constant whose value is d! as proved also by induction on d.
The assertion of the problem follows by taking f(x) = xd.

Solution 9.
If p1 < p2 < p3 < · · · denotes the sequence of all prime numbers, then clearly
p1p2 · · · pn+1 leaves a remainder of 1 on division by each of the first n primes.
So, its smallest prime factor is at least pn+1. In other words

pn+1 ≤ p1p2 · · · pn + 1.

Now p1 = 2 ≤ 220 which verifies the assertion of the problem when n = 1.
Assume now that n ≥ 1 and that pk ≤ 22k−1

for all 1 ≤ k ≤ n. Then,

pn+1 ≤ 21+2+···+22
n−1

+ 1 = 22n−1 + 1 ≤ 22n

as 1 ≤ 22n−1.
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Solution 10 - Hall’s marriage problem:
We apply induction. Clearly, the result holds for n = 1. Assume n > 1 and
that the result holds for all m < n.
If, for each k between 1 and n− 1, every set of k girls are acquainted with at
least k + 1, then get an arbitrary girl married off with an arbitrary acquain-
tance. Apply induction to the n− 1 case and we are done. In the other case,
suppose there is some k < n such that there is a set of k girls with exactly
k acquaintances. The rest of the n− k couples satisfy the hypothesis of the
marriage theorem for n − k (otherwise, there is some set of r ≤ n − k girls
with less than r acquaintances and then there is a set of r+ k girls with less
than r + k acquaintances in the original set, which is a contradiction of the
hypothesis). Thus, one can marry off the rest of the n−k girls with acquain-
tances by induction. Similarly, applying induction to the set of k girls, we
have the theorem for n.
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2 The Principle of Inclusion and Exclusion

PIE as the title can be referred to briefly, is an easy combinatorial principle
that applies in situations where counting is involved.

If A and B are two finite, overlapping sets, then

|A ∪B| = |A|+ |B| − |A ∩B|

where |A|, |B| etc. denote the sizes of A,B etc. If A,B,C are three finite
sets, one can deduce from the above (by replacing B by B ∪ C) that:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩A|+ |A ∩B ∩ C|.

The PIE allows us to write down an expression for the size of the union
of a finite number of finite sets in terms of the sizes of the various partial
intersections among them. The general formula (which can be proved by
mathematical induction - which will be recalled below) asserts that for finite
sets A1, · · · , An, we have:

|
n⋃

i=1

Ai| =
n∑

i=0

|Ai|−
∑
i<j

|Ai∩Aj|+
∑
i<j<k

|Ai∩Aj∩Ak|−· · ·+(−1)n−1|
n⋂

j=1

Ai|.

This general formula easily lends itself to immediate applications, such as:

If m1,m2, · · · ,mr is a finite sequence of positive integers (that is, some of
them may be equal and they may be in any order), then

max(m1, · · · ,mr) =∑
i

mi−
∑
i<j

min(mi,mj)+
∑
i<j<k

min(mi, nj,mk)−· · ·+(−1)r−1min(m1, · · · ,mr).

In the above expressions, ‘max’ and ‘min’ indicate maximum and minimum
respectively.

If n1, · · · , nr are arbitrary positive integers, then looking at the exponents
m1, · · · ,mr to which any prime divides the numbers, and applying the above
identity, one obtains:

[n1, · · · , nr] =
(
∏

i ni)(
∏

i<j<k(ni, nj, nk)) · · ·
(
∏

i<j(ni, nj))(
∏

i<j<k<l(ni, nj, nk, nl)) · · ·
.
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Here, [a1, · · · , ak] and (a1, · · · , ak) denote the LCM and GCD respectively.
This is the generalization of the usual relation (a, b)[a, b] = ab.

Another application of PIE is:
If N is a positive integer, and n1, n2, . . . are positive integers, any two of
which are relatively prime, then the number of elements of {1, 2, 3, . . . , N}
which are not divisible by any of the numbers n1, n2, . . . is

N −
([

N

n1

]
+

[
N

n2

]
+ · · ·

)
+

([
N

n1n2

]
+

[
N

n1n3

]
+

[
N

n2n3

]
+ · · ·

)
− · · · .

There is a special case of the above formula which is of great interest in
number theory. We consider the following problem.

For a given positive integer N , what is the number of positive
integers not exceeding N which are relatively prime to N?

The numbers which are relatively prime to N are exactly those which are
not divisible by any of the prime divisors of N . Let us denote the primes
dividing N by p, q, r, . . .. Now we apply the idea described in the last section.
We conclude that the required number is:

N −
(
N

p
+
N

q
+
N

r
+ · · ·

)
+

(
N

pq
+
N

qr
+
N

pr
+ · · ·

)
− · · · . (1)

By factoring out N we find that the resulting expression can be factorized in
a convenient manner; we get the following:

N

(
1− 1

p

)(
1− 1

q

)(
1− 1

r

)
· · · . (2)

For example, take N = 30. Since 30 = 2× 3× 5, we see that the number of
positive integers not exceeding 30 and relatively prime to 30 is

30

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 30 · 1

2
· 2

3
· 4

5
= 8.

This is easily checked. (The positive integers less than 30 and relatively
prime to 30 are 1, 7, 11, 13, 17, 19, 23 and 29.)
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The second formula defines the famous totient function which we associate
with the name of Euler. The symbol reserved for this function is ϕ(N). So
we may write:

ϕ(N) = N
∏
p|N

(
1− 1

p

)
, (3)

the product being taken over all the primes p that divide N ; that is why we
have written ‘p | N ’ below the product symbol. (The symbol

∏
is used for

products in the same way that
∑

is used for sums.)
Later, we will be studying ‘arithmetic’ functions such as φ(n) in detail.

One further example is the enumeration of ‘derangements’ - the number
of ways that n envelopes bearing addresses of n people are mailed so that
nobody gets the right envelope. the number of possibilities when nobody
receives their correct letter to be

n!−
(
n

1

)
(n−1)!+

(
n

2

)
(n−2)!−

(
n

3

)
(n−3)!+· · ·+(−1)n

(
n

n

)
0! = n!

n∑
r=0

(−1)r

r!

This is left as an exercise and so is the next problem.

Exercise. Use PIE to show that there are exactly 100 composite numbers
not exceeding 1000 which are not multiples of any of the three primes 2, 3
and 5.
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3 Pigeon-hole Principle

This rather simple principle has remarkably strong applications. The pigeon-
hole principle was formulated by Dirichlet and is also known as Schubfach-
prinzip (schubfach means drawer). Simply stated, it says that if some pigeons
are to be placed inside pigeon-holes and there are more pigeons than pigeon-
holes, then at least one pigeon-hole must have more than one pigeon. Here
are some striking applications of this principle. Try them first before looking
at the solutions given below.

Problem 11.
In any party, show that there are (at least) two people who shake hands with
the same number of people.

Problem 12.
Given natural numbers a1 < a2 < · · · < an+1 between 1 and 2n, prove that
ai divides an aj for some i 6= j.

Problem 13.
Show that every natural number n has a multiple of the form 11 · · · 10 · · · 0.
We can deduce from this that every rational number can be expressed as

a
10b(10c−1) for some integer a and natural numbers b, c.

Problem 14.
Suppose 25 boys and 25 girls are sitting around a table. Argue that some
person must have both neighbors to be girls.

Problem 15.
Inside a forest of dimension 12 miles by 12 miles, if there are 13 lions, argue
that there must be two at a distance less than 5 miles.

Problem 16.
If a, b are relatively prime natural numbers, then use the pigeon-hole principle
principle to prove that there is a natural number x < b and an integer y such
that ax+ by = 1.

Problem 17.
If every point of the co-ordinate plane is colored either black or white, prove
that there must be some rectangle all of whose vertices have the same colors.
Generalize to c colors.
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Problem 18.
Let f(X) be a polynomial with integer coefficients such that f(a1) = f(a2) =
f(a3) = 2 for distinct integers a1, a2, a3. Show that there is no integer b such
that f(b) = 3.

Solution 11.
Suppose there are n people in the party and name them P1, · · · , Pn. Make
an array as follows and fill in the (i, j)-th square with 1 or 0 according as to
whether Pi and Pj shake hands or not.

∗ P1 P2 · · · · · · Pn

P1

P2

·
·
Pn

Thus, the sum si of the i-th row is the number of people that the i-th person
Pi shakes hands with. The n sums s1, s2, · · · , sn are all among the n numbers
0, 1, · · · , n−1. Now, the numbers 0 and n−1 cannot both be values because
then there would be a person shaking hands with nobody and one shaking
hands with everybody ! Thus, the numbers s1, · · · , sn (the ‘pigeons’) must be
fit inside less than n numbers occurring among 0, 1, · · · , n−1 (‘pigeon-holes’).
So, some si = sj with i 6= j.

Solution 12.
Writing ai = 2bici with ci odd and bi ≥ 0, we have n pigeon-holes (the odd
numbers between 1 and 2n) and n + 1 pigeons (c1, · · · , cn) to fit them in.
Thus, ci = cj for some i 6= j. Now, ai divides aj or aj divides ai according
as to whether bi < bj or bj < bi.

Solutions 13.
To prove 3 first, start with any natural number n. Consider the sequence of
numbers 1, 11, 111, 1111, · · · · · · On dividing them by n, they leave remainders
which we denote by r1, r2, r3 etc. But the possible remainders on division by n
are the n numbers 0, 1, · · · , n−1. Hence there must be two different numbers
of the form 11 · · · 1 which leave the same remainder on division by n. But
then their difference is a multiple of n and is of the asserted form.
Finally, to deduce the second part, start with any rational number d

n
where
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n is a natural number and d is an integer (possibly zero). If a multiple kn is
of the form in problem 3, then the multiple 9kn is of the form 99 · · · 90 · · · 0
which is a number of the form 10b(10c − 1). Thus

d

n
=

9kd

9kn
=

9kd

10b(10c − 1)
.

Solution 14.
Name the persons in the sitting order (start anywhere) as P1, P2, · · · , P50.
Bring one more table and make the odd-numbered persons P1, P3, · · · , P49

around it in the same order. Now, if originally no person had two girl neigh-
bours, it follows that after the movement of the off-numbered people to the
new table, neither table has 2 girl neighbours ! But then in each table there
are at the most 12 girls (as each table has 25 persons). Thus it is impossible
to account for the 25 girls.

Solution 15.
Dividing the forest into 12 rectangles of dimensions 3 miles by 4 miles, one
of the rectangles must have 2 lions. The diagonal of any of these rectangles
has length at the most 5 miles.

Solution 16.
The natural numbers a, 2a, · · · , (b−1)a leave non-zero remainders on dividing
by b. Moreover, if two different ones among them leave the same remainder,
their difference (which is again of the form ka with 1 ≤ k < b − 1) is a
multiple of b which is impossible. Thus, they all leave different remainders
which must be the numbers 1, 2, · · · , b− 1 in some order. In particular, there
is some ax with 1 ≤ x < b so that ax − 1 = bd for some natural number d.
Take y = −d and we have ax+ by = 1.

Solution 17.
Consider any three horizontal lines and any vertical line. The three points
of intersection can have any one of 23 = 8 color combinations. Thus, if we
consider 9 vertical lines, there are at least 2 vertical lines such that the the
color combination of points of intersections with the three horizontal lines
is identical for both. As at least two of the three points of intersection are
identically colored, we have a rectangle with all four vertices with the same
color.
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Solution 18.
Writing f(X) = c0+c1X+· · ·+cnXn, notice that for any two integers a, b we
have f(b)− f(a) = (b− a)(c1 + c2(b+ a) + · · ·+ cn(bn−1 + bn−2a+ · · ·+ an−1).
In particular, b − a divides f(b) − f(a). Now, if there exists an integer b
so that f(b) = 3, then we would have each of the three distinct integers
b− a1, b− a2, b− a3 to be factors of f(b)− f(ai) = 3− 2 = 1. As 1 has only
1 and −1 as factors, this is an impossibility.

4 Euclidean Division Algorithm

We will assume the fundamental theorem of arithmetic which asserts that
every positive integer > 1 is uniquely (up to order) expressible as a product
of prime numbers.

Theorem. If a, b are integers with b 6= 0, then the division algorithm assures
us that there exist integers q, r with 0 ≤ r < |b| and a = qb+ r.
The proof is as follows.
By the well-ordering principle, the (non-empty) set of non-negative numbers
among the set {a−qb : q ∈ Z} has a least element; call it r. Then, 0 ≤ r < |b|.
Indeed, if r ≥ |b|, we derive a contradiction as follows.
When b > 0, then if r = a− qb ≥ |b| = b, we have

0 ≤ r′ := a− b(q + 1) < a− bq = r;

a contradiction.
When b < 0, then if r = a− qb ≥ |b| = −b, then

0 ≤ r′ := a− b(q − 1) < a− qb = r;

a contradiction.

Recall that the Euclidean division algorithm implies that the GCD of any
two positive integers m,n can be found by successive usage as the remainder
keeps decreasing until it reaches 0. Indeed, write

m = q1n+ r1;

n = r1q2 + r2;
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r1 = r2q3 + r3;

· · · · · · · · ·

rn−3 = rn−2qn−1 + rn−1;

rn−2 = rn−1qn

where rn = 0. Note that n > r1 > r2 > · · · > rn−1 > rn = 0 as the
remainders are non-negative and decreasing until they reach 0. Notice that
inductively each ri is of the form mu + nv for some integers u, v. So, if d
divides m and n, then it divides each ri; in particular, d divides rn−1. Now,
rn−1 divides rn−2 by the last equality, which implies it divides rn−3 by the
penultimate one. Proceeding in this manner, rn−1 divides both m and n.
Hence, rn−1 = GCD(m,n).

Henceforth, we will write (m,n) for GCD(m,n).
The fact that the GCD of m,n is of the form mu + nv can also be proved
non-constructively as follows.
Among the positive integers of the form mu+nv, choose the smallest one. If
d = mu+nv, then each divisor of m,n divides d. Further, d itself must divide
m as well as n for, dividing m by d, we have m = qd+r with 0 ≤ r < d which
gives r = m− qd = m(1− qu) +n(−qv) < d, which would be a contradiction
of the choice of d as the smallest of that form unless r = 0. Hence, d|m;
similarly, d|n. hence d = (m,n).

The above proof yields also:
Corollary. For integers m,n - not both zero - the set {mu + nv : u, v ∈
Z} = {dr : r ∈ Z} where d = (m,n).

Now, we recall:

The Fundamental Theorem of Arithmetic. Every positive integer n > 1
can be expressed as a product of prime numbers, uniquely up to ordering.
The proof of existence of a product expression follows by induction applied
suitably. Start with 2 which is a prime and there is nothing to prove. Assume
n > 2 and that for every 1 < m < n, the positive integer m is expressible
as a product of prime numbers. Now, if n is prime, then there is nothing
to prove. If not, then it is composite and, by the well-ordering principle, we
have a smallest positive number d1 with 1 < d < n which divides n. Writing
n = d1n1, we have that both d1 and n1 are larger than 1 and less than n. By
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the induction hypothesis, both of them are products of primes which means
that n itself is such a product.
To prove uniqueness, let p1p2 · · · pr = q1q2 · · · qs for primes pi, qj, with r + s
smallest possible. If r + s = 2, we clearly have r = s = 1 and p1 = q1.
Assume r + s > 2. Then, since p1 is a prime dividing q1q2 · · · qs, it divides
one of the qj’s, say qk. As qj’s are primes, we have p1 = qk. Canceling off
this from both sides, we have an equality of products whose sum of lengths
is r + s − 2 < r + s. We derive a contradiction to the choice of r + s, This
proves the theorem.

by the fundamental theorem of arithmetic, we have the property of primes
that, then u = 1 or v = 1. Other basic properties of divisibility also follow
such as:
(ra, rb) = r(a, b) for any positive integer r;
(a+ bc, b) = (a, b) for a, b, c integers; and
a|bc and GCD(a, c) = 1 implies a|b.
(m,n) =

∏
p prime p

min(vp(m),vp(n) where vp(n) is the power of p dividing n
(allowing 0).
Similarly, [m,n] := LCM(m,n) =

∏
p prime p

max(vp(m),vp(n).
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