
LINEAR ALGEBRA- LECTURE 1

1. Introduction

Linear algebra is the study of vector spaces and linear transformations. These terms - its definitions,
examples, importance - will become clear as we study these and associated concepts in depth. Linear
algebra is widely used and makes its presence felt in many braches of mathematics : multivariate
calculus, probability theory, differential equations, differential geometry to name a few.

The roots of modern day Linear algebra can be traced back to the efforts of solving a system of
equations. For example, let us take the following system of two linear equations

4x1 − x2 = 0
x1 + x2 = 1

in two unknowns x1 and x2. A solution to the above system of equations is an ordered pair (x1, x2)
(which can be thought of as a point in the plane R2) which satisfies both the above equations. The
above system of equations has an unique solution, namely,

(x1, x2) = (1/5, 4/5).

This can be found out in several ways. Here are two familiar ways to find the solution.

(1) We may first solve for one of the unknowns, say x1, in the first equation to obtain

x1 =
x2

4
and substitute this in the second equation

x2

4
+ x2 =

5x2

4
= 1

to get the above mentioned solution.
(2) Another familiar way to obtain a solution is by eliminating the variables. Thus, adding the

two equations eliminates the variable x2 and the solution drops out immediately.

The second method has an intrinsic advantage that will become clear soon. There is also another
method, for those who are geometrically inclined, to obtain a solution to the above system of
equations. One notes that the set of points that satisfy each equation is a straight line and the
solution in this case is precisely the point of intersection.

Given a system of equations one is not only interested in the question of existence of solutions but
also in the nature of the set of solutions if they exist. Often one could be presented with the following
system of linear equations

4x1 + 4x2 = 0
x1 + x2 = 1.

This system of linear equations clearly has no solutions. On the other hand if we have just the one
system of linear equation

x1 − x2 = 0

then there are infinitely many solutions.
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Solving a system of linear equations could become a highly complex task with the increase in the
number of equations and variables. Linear algebra develops, amongst other things, a theory to
undertsand the existence and nature of the solution set to a system of equations. This in a natural
way then leads to the study of matrices and determinant of matrices and finally to the notion of
vector spaces and linear transformations. The problem of of existence of solutions to a linear system
of equations can be understood very well in the language of vector spaces and linear transformations
as we shall see.

We will assume familiarity with basic notions in set theory (union, intersection, complementation)
and with functions (one-one, onto). Other than this we will define everything.

We will refer to the following books : Algebra (Michael Artin), Linear Algebra (Hoffmann and
Kunze) and some others given in the course details.

2. Systems of equations

We begin our study by trying to understand systems of linear equations in somewhat greater depth
and generality. This will motivate our study of matrices in the next section.

A system of m linear equations in n variables is by definition a collection of m equations

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(2.0.1)

in the n variables (or unknowns) x1, . . . , xn and where aij , bk are numbers (either real or complex).
The numbers aij are called the coefficients of the linear system and x1, . . . , xn the variables. The
linear system (2.0.1) is said to be homogeneous if b1 = b2 = · · · = bm = 0 and inhomogeneous
otherwise. A solution to the above linear system is defined as follows.

Definition 2.1. A solution to a system of m linear equations in n variables as in (2.0.1) is by
definition a n-tuple (s1, . . . , sn) of numbers such that when we substitute x1 = s1, . . . , xn = sn in
(2.0.1) all the equations hold.

The set of solutions to a system of linear equations is therefore a subset of the n-dimensional space
(either Rn or Cn). Let us try to understand our familiar method of eliminating variables in obtaining
solutions to a system of linear equations by an example. Suppose we are given the system of two
linear equations in three variables

x1 − x2 + x3 = 0
2x1 + 3x2 + 2x3 = 0

We multiply the first equation by 3 and add it to the second equation we obtain

5x1 + 5x3 = 0

or x1 = −x3. So that if (x1, x2, x3) is a solution, then x1 = −x3 and x2 = 0. Conversely, any such
triple is a solution. Thus the set of solutions consists of triples (a, 0,−a). In these manipulations,
it becomes increasingly clear that the manipulations are just with the coefficients and that so far as
manipulations are concerned the unknowns are less important.

Let us go back to the general setup of the linear system given as in (2.0.1). Given numbers (also
called scalars) c1, c2, . . . , cm, we multiply the i-th equation in (2.0.1) by ci and add to get

(c1a11x1 + · · ·+ c1a1nxn) + · · ·+ (cmam1x1 + · · ·+ cmamnxn) = c1b1 + · · ·+ cmbm. (2.1.1)
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We say that the equation in (2.1.1) is a linear combination of the equations in (2.0.1). It is clear that
if (x1, . . . , xn) is a solution of (2.0.1), then it is also a solution of (2.1.1). Thus if we have another
system of linear equations

d11x1 + d12x2 + · · ·+ d1nxn = e1
d21x1 + d22x2 + · · ·+ d2nxn = e2

...
...

dk1x1 + ak2x2 + · · ·+ dknxn = ek

(2.1.2)

in which each equation is a linear combination of of the equations in (2.0.1), then every solution of
(2.0.1) is a solution of the system of equations in (2.1.2). Further, if every equation in (2.0.1) is also
a linear combination of the equations in (2.1.2) then the two system of equations have the same set
of solutions.

We say that two system of linear equations are equivalent if each equation in each system is a
linear combination of the equations in the other system. Our discussion above actually proves the
following.

Proposition 2.2. Equivalent systems of linear equations have exactly the same set of solutions. □

Here are two examples.

Example 2.3. Suppose we are given two systems of linear equations in two variables as below

x1 − x2 = 0
2x1 + x2 = 0

and
3x1 + x2 = 0
x1 + x2 = 0.

We then see that
1

3
(x1 − x2) +

4

3
(2x1 + x2) = 3x1 + x2

and

−
(
1

3

)
(x1 − x2) +

2

3
(2x1 + x2) = x1 + x2.

Thus each equation in the second system is a linear combination of the equations in the first system.
It is an easy exercise to check that each equation in the first system is a linear combination of the
equations in the second system. Thus both the linear systems have the same set of solutions.

Example 2.4. Suppose we are given a homogeneous system of m linear equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
...

am1x1 + am2x2 + · · ·+ amnxn = 0.

(2.4.1)

Such a system always has a solution, namely the n-tuple (x1, . . . , xn) with

x1 = x2 · · · = xn = 0.

We further note the following. Suppose that (c1, . . . , cn) and (d1, . . . , dn) are two solutions of the
above system. Then for each 1 ≤ i ≤ m we have

ai1c1 + ai2c2 + · · ·+ aincn = 0
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and
ai1d1 + ai2d2 + · · ·+ aindn = 0

and therefore
ai1(c1 + d1) + ai2(c2 + d2) + · · ·+ ain(cn + dn) = 0.

Thus (c1 + d1, . . . , cn + dn) is also a solution of the above linear system. Further, for every scalar r,
it is clear that (rc1, . . . , rcn) is also a solution of the linear system. Thus for a homogeneous system
of linear equations, the set of solutions has a nice structure in that the set of solutions is closed with
respect to sum and scalar mulitplication.

Here are some problems.

Exercise 2.5. Consider the two systems of linear equations in four variables

2x1 + (−1 + i)x2 + x4 = 0
3x2 − 2ix3 + 5x4 = 0

and (
1 + i

2

)
x1 + 8x2 − ix3 − x4 = 0(

2
3

)
x1 −

(
1
2

)
x2 + x3 + 7x4 = 0.

Decide whether the two systems of linear equations defined above are equivalent.

Exercise 2.6. Prove that if two homogeneous systems of linear equations in two variables have the
same set of solutions, then they are equivalent.

Exercise 2.7. Which conclusions hold in Example 2.4 when the system of linear equations in con-
sideration is inhomogeneous?

3. Matrices

Recall that one of the methods of solving a system of linear equations is that of elimination of
variables. It becomes increasing evident that the manipulations that are carried out to eliminate
the variables are manipulations on the coefficients of the variables and the variables themselves play
a secondary role. The coefficients and the manipulations that are carried out in the method of
elimination of variables can be systematically understood by use of matrices. We study these now.

Given positive integers m,n an m× n matrix is a rectangular array
a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

... . . . . . .
...

amn am2 . . . . . . amn


of mn many numbers aij ∈ F . Thus a m × n matrix has m rows and n columns and the entry aij
appears in the i-th row and the j-th column. The number aij is called the ij-th entry of the matrix.
The above matrix is often shortened to the notation

A = (aij) .

A m× 1 matrix

A =


a1
a2
...

am


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is called a m-dimensional column vector. A m-dimensional column vector thus may be identified
with a point in the m-dimensional space and conversely. A 1× n matrix

B =
(
a1, a2, · · · , an

)
is called an n-dimensional row vector. A 1× 1 matrix is a scalar. A m× n matrix is called asquare
matrix ifm = n. Two matrices are equal if and only if they are of the same size and the corresponding
entries are equal.

There are various operations that one can perform on matrices. Given two m× n matrices

A = (aij) , B = (bij)

their sum A+B is defined to be the m× n matrix

A+B = (cij)

where
cij = aij + bij .

The next operation is that of scalar multiplication. Given the m×n matrix A as above and a scalar
r, the m× n matrix r ·A is the matrix

r ·A = (cij)

where
cij = r · aij .

It is possible to define multiplication of matrices when the two matrices are of suitable sizes. Let

A = (aij) , B = (bij)

be two matrices of sizes m× n and n× r respectively. The product AB is defined to be the m× r
matrix

AB = C = (cij)

where
cij = ai1b1j + ai2b2j + · · ·+ ainbnj = Σn

i=1aikbkj .

In particular, the product of a row vector and a column vector

(
a1, . . . , an

)

b1
b2
...
bn

 = a1b1 + · · ·+ anbn.

is a 1 × 1 matrix which is a scalar. The addition and product of matrices are connected, as one
would expect, by the distributive law whenever it makes sense.

Lemma 3.1. Let A,B be two m× n matrices and let C be an n× r matrix. Then

(A+B)C = AC +BC.

Proof. We let A,B,C be the matrices

A = (aij) , B = (bij) , C = (cij) .

Then A+B = (aij + bij) and hence if we write

(A+B)C = (dij) ,

then, by definition, we obtain

dij = Σk(aik + bik)ckj = Σkaikckj +Σkbikckj .
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The last sum is precisely the sum of the ij-th terms of the matrices AC and BC respectively. This
completes the proof. □

The product of matrices is associative whenever the product makes sense.

Lemma 3.2. Let A,B,C be matrices of sizes m× n, n× r and r × s respectively and let r ∈ F be
a scalar. Then

(1) A(BC) = (AB)C and
(2) r(AB) = (rA)B = A(rB).

Proof. Exercise. □

Here are some exercises.

Exercise 3.3. Complete the proof of Lemma3.2.

Exercise 3.4. Compute ( 1 1
0 1 )

n
.

Exercise 3.5. Find a formula for
(

1 1 1
0 1 1
0 0 1

)n

.

Exercise 3.6. Let M and M ′ be m × n and n × p matrices. Let r be an integer less than n. We
may decompose the two matrices into blocks as follows

M =
(
A B

)
, M ′ =

(
A′

B′

)
where A is a m× r matrix and A′ is a r × p matrix. Show that

MM ′ = AA′ +BB′.

We may decompose M,M ′ as

M =

(
A B
C D

)
, M ′ =

(
A′ B′

C ′ D′

)
.

Here the number of columns of A and C are equal to the number of columns of A′ and C ′. Verify
that

MM ′ =

(
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

)
The above multiplication is called block multiplication and will be used later.

Exercise 3.7. Let A,B be square matrices. When is (A+B)(A−B) = A2−B2. Compute (A+B)3.

Exercise 3.8. In each case find all matrices that commute with the given matrix.(
1 3
0 1

)
,

(
1 0
0 0

)
Exercise 3.9. A square matrix A = (aij) is said to be upper triangular if aij = 0 for all i > j.
Show that the product of two upper triangular matrices is an upper triangular matrix.

Exercise 3.10. A square matrix A is said to be nilpotent if Ak = 0 for some k > 0. If A is nilpotent
show that I+A is invertible.

Exercise 3.11. Show that the product of a 2× 1 matrix A and a 1× 2 matrix B is not invertible.

Exercise 3.12. A square matrix A = (aij) is said to be symmetric if aij = aji for all i, j. Check
by an example that the product of two symmetric matrices need not be symmetric. Can you find a
condition on two symmetric matrices A,B that will ensure that AB is symmetric?
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Exercise 3.13. Find a matrix X so that

X

(
1 2 3
4 5 6

)
=

(
−7 −8 −9
2 4 6

)
Exercise 3.14. Suppose A and B are square matrices of the same order such that AB = BA. Show
that ABn = BnA for all n > 0.

Exercise 3.15. Let A be the matrix 1 0 1 4
0 1 0 2
0 0 1 1


Find a column vector X so that AX is the third column of A. Find a row vector Y so that Y A is
the first row of A.


