LINEAR ALGEBRA- LECTURE 10

1. VECTOR SPACES

Recall that a vector space over a field F' is a set V' along with two operations
+: VXV —V
called addition and another map
G FxV —V
called scalar multiplication satisfying the following conditions!
(1) addition is commutative, that is, u +v = v 4+ u for all u,v € V,
(2) addition is associative, that is, (u +v) + ww = u + (v + w) for all u,v,w € V,
(3) there is an additive identity, that is, there exists 0 € V withO+u=u+u=wuforallu € V
(4) each element has an additive inverse, that is, for each u € V, there exists v € V' such that
u 4+ v = 0. The element v is called the additive inverse of u and we write v = —u.
5) l-v=wvforallveV.

(
(6) for scalars a,b € F' we have (a + b)u = au + bu and a(u +v) = au + av for all u,v € V and
(7) for scalars a,b € F' we have (ab)u = a(bu) for all u € V.

If V is a vector space over the field F', then the elements of V' are called vectors. Here are some
properties that are easily verified.

Lemma 1.1. Let V be a vector space over a field F.

(1) The additive identity in V' is unique.

(2) The additive inverse of a vector is unique.

(3) Let 0 € F be a scalar, then 0-u =0 for all u € U.

(4) Let —1 € F be a scalar, then (—1)u = —u for all u € V.

Proof. We first prove (1). Assume that 0,0" € V are two additive identities. Then
0'=0+0=0

shows that 0 = 0’. Given u € V let v/, u” € V be such that v + 4 = 0 and u + v” = 0. Then the

computation
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W=u+0=vu+w+u")=0W +u)+u" =0+u" =u
shows that v’ = u” and hence (2) holds. To prove (3) we note that
0-u=0+0u=0-u+0-u
and hence 0-u = 0. To prove (4) we observe that
u+(—Du=01+(-1)u=0-u=0
and thus (—1)u = —u. O

"n the previous set of discussion/notes we had missed out on condition (5) below. Please make note of this.



The motivation for the above abstract definition, as we have seen, comes from concrete examples.
Here are some more examples.

Example 1.2. The addition and multiplcation of real numbers makes the set R of real numbers
into a vector space over the field R. Similarly, the complex numbers C is a vector space over itself.
More generally, every field F' is a vector space over itself.

Example 1.3. Oberve that C and R are vector spaces over the field Q of rational numbers and
that C is a vector space over R.

Example 1.4. Let U denote the set of all functions f : [0,1] — R. Given f,g € U we may add
the two function to get a function
(f+g):[0,1] — R
by setting
(f+9)(t) = f(t) +9(t).

Given a scalar ¢ € R and f € U we define a function af € U by setting
(af)(t) =a- f(D).

This defines scalar multiplication. It is an exercise now to check that the above two operations
makes U into a vector space over R.

Example 1.5. Let U be as in the previous example and let B C U denote the subset of U consisting
of those functions f € U that are bounded. In other words f € B if and only if there exists a constant
C such that

fO<c
for all t € [0,1]. It is again an exercise to show that B is a vector space over R with the same
operations as in U.

Example 1.6. Let U, B be as above. Let V C U be the subset of those functions f € U that
are continuous. Then as sum of of two continuous functions is continuous and scalar multiple of
a continuous function is continuous we see that V is also a vector space over R. The following

inclusions hold

VCBCU.
Example 1.7. Let U be as above and let W C U be the subset of U consisting of those functions
f € U for which

F(1/2) = 0.

That W is a vector space over R with the same operations as in U is left as an exercise.

The above examples lead us to the notion of a subspace. Here is the definition.

Definition 1.8. Let V be a vector space over a field F'. A subset W C V is called a subspace of V'
if W is closed under addition and scalar multiplication.

In other words a subset W of a vector space V is a subspace if and only if it is also a vector space
in its own right under the same operations as those in V.

We shall often use the shorthand W < V to denote that W is a subspace of V. In the above examples
we have the following
V<BLU
and
W <U.

Here are some more examples.



Example 1.9. Let V be a vector space over a field F. There are two canonical suabsaces of V. The
subspaces W = {0} consisting of just the zero vector in V is clearly a subspace of V and W' =V
is also a subspace. These are called the trivial subspaces of V. A subspace W of V is said to be
proper if W # {0}, V.
Example 1.10. Let V' be a vector space over a field F' and v € V be a vector. Let
W={av : a € F}
We claim that W is a subspace of V. To check this we need to check that W is closed with respect
to addition and scalar multiplication. So let wy,ws € W. Then w; = a1v and we = asv for some
scalars ay,as € F. As
wy + we = a1v + agv = (a1 + az)v € W
we conclude that W is closed with respect to addition. If a € F' is a scalar, then
a-wy =a-(av) = (aa;)v e W
shows that W is closed with respect to scalar multiplication and hence is a subspace of V. The

subsace W is said to be spanned by the vector v.

Definition 1.11. Let V be a vector space over a field F' and let vy ...vp € V be vectors. A vector
w which is a sum of the form

W= a1 + agVa + - -+ + apvp = E a;v; €V
i

where a1, ...,a € F are scalars is said to be a linear combination of the the vectors vy, ..., vg.

Remark 1.12. We remark that the results we prove are valid for arbitrary fields unless otherwise
stated. Most often our examples and exercises will use specific fields like Q, R and C. We shall often
just say V is a vector space (instead of V' is a vector space over a field F') when the underlying field
is not important or is understood from the context.

Here are some exercises.

Exercise 1.13. Check that the sets U, B, V, W defined in Examples1.4,1.5,1.6 and 1.7 are vector
spaces over R.

Exercise 1.14. Describe all proper subspaces of the vector space R? of column vectors.

Exercise 1.15. Let V be a vector space over a field F' and let vq,...,vx € V be vectors. Let W be
the subset of V' consisting of vectors that are linear combinations of the vectors vy,...,v;. Prove
that W is a subspace of V. W is called the subspace spanned by the vectors vy, ..., vg.

Exercise 1.16. Let AX = 0 denote a homogeneous system of equations with real coefficients. Prove
that the set of solutions is a vector space over R.



